JP2011159455A - Thin-film superconducting wire rod and method for manufacturing the same - Google Patents

Thin-film superconducting wire rod and method for manufacturing the same Download PDF

Info

Publication number
JP2011159455A
JP2011159455A JP2010018863A JP2010018863A JP2011159455A JP 2011159455 A JP2011159455 A JP 2011159455A JP 2010018863 A JP2010018863 A JP 2010018863A JP 2010018863 A JP2010018863 A JP 2010018863A JP 2011159455 A JP2011159455 A JP 2011159455A
Authority
JP
Japan
Prior art keywords
superconducting
thin film
superconducting wire
layer
wire
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010018863A
Other languages
Japanese (ja)
Other versions
JP5027896B2 (en
Inventor
Yuki Shinkai
優樹 新海
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
International Superconductivity Technology Center
Sumitomo Electric Industries Ltd
Original Assignee
International Superconductivity Technology Center
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by International Superconductivity Technology Center, Sumitomo Electric Industries Ltd filed Critical International Superconductivity Technology Center
Priority to JP2010018863A priority Critical patent/JP5027896B2/en
Publication of JP2011159455A publication Critical patent/JP2011159455A/en
Application granted granted Critical
Publication of JP5027896B2 publication Critical patent/JP5027896B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Abstract

<P>PROBLEM TO BE SOLVED: To provide a thin-film superconducting wire rod and its manufacturing method which allows maintaining enough superconducting characteristics even in performing a bending process with a bending diameter smaller than before. <P>SOLUTION: In the manufacturing method of the thin-film superconducting wire rod with a copper protecting layer formed around a body part equipped with a substrate and a superconducting layer, a thickness of the copper protecting layer located at a superconducting layer side is made thicker than that of the same at a substrate side, and the copper protecting layer is formed by a plating method so that a distance from a neutral line showing a center position of the thickness of the thin-film superconducting wire rod to a surface of the superconducting layer is to be smaller than a given value. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、薄膜超電導線材とその製造方法に関し、詳しくは、コイルの形成など小さな曲げ直径で曲げ加工を行う場合であっても、充分な超電導特性を維持することができる薄膜超電導線材とその製造方法に関する。   The present invention relates to a thin film superconducting wire and a manufacturing method thereof, and more particularly, a thin film superconducting wire capable of maintaining sufficient superconducting characteristics even when bending is performed with a small bending diameter such as formation of a coil, and the manufacturing thereof. Regarding the method.

高温超電導体の発見以来、ケーブル、コイル、マグネットなどの電力機器への応用を目指し、基板上に酸化物超電導層を有する薄膜超電導線材の開発が精力的に行われている。   Since the discovery of high-temperature superconductors, thin-film superconducting wires having an oxide superconducting layer on a substrate have been vigorously developed for application to power equipment such as cables, coils, and magnets.

この薄膜超電導線材は、一般に、長尺でフレキシブルな金属テープ(金属基板)上に順に形成された中間層および超電導層と、超電導層を保護するためにさらにその上に設けられた保護層で構成されている。   This thin film superconducting wire is generally composed of an intermediate layer and a superconducting layer sequentially formed on a long and flexible metal tape (metal substrate), and a protective layer provided on the intermediate layer and the superconducting layer. Has been.

このような従来の薄膜超電導線材の例を図4に示す。図4に示すように従来の薄膜超電導線材は、基板1、中間層2、超電導層3、および超電導層3の上面側および基板1の下面側に形成された銀安定化層4からなる超電導本体部と、その外周に形成された銅保護層5により構成されている(特許文献1)。   An example of such a conventional thin film superconducting wire is shown in FIG. As shown in FIG. 4, the conventional thin film superconducting wire comprises a substrate 1, an intermediate layer 2, a superconducting layer 3, and a superconducting body comprising a silver stabilizing layer 4 formed on the upper surface side of the superconducting layer 3 and the lower surface side of the substrate 1. Part and the copper protective layer 5 formed on the outer periphery thereof (Patent Document 1).

そして、このような薄膜超電導線材を超電導層側が外周となるように巻き回すことにより、コイルなどが形成される。   And a coil etc. are formed by winding such a thin film superconducting wire so that the superconducting layer side may become the perimeter.

特開2007−80780号公報JP 2007-80780 A

近年、超電導機器の小型化が求められており、これに対応して、小さな曲げ直径で薄膜超電導線材を曲げ加工して、コイルなどを形成することが求められている。   In recent years, miniaturization of superconducting equipment has been required, and in response to this, it is required to bend a thin film superconducting wire with a small bending diameter to form a coil or the like.

しかしながら、上記した従来の薄膜超電導線材は、小さな曲げ直径で曲げ加工を行った場合、超電導特性の劣化を招くことがあり、前記した超電導機器の小型化に充分対応することができなかった。   However, when the above-described conventional thin film superconducting wire is bent with a small bending diameter, the superconducting characteristics may be deteriorated, and the above-described miniaturization of the superconducting device cannot be sufficiently coped with.

即ち、薄膜超電導線材に曲げ加工を行った場合、薄膜超電導線材の内側では圧縮歪みが発生し、外側では引っ張り歪みが発生し、それぞれに応力(圧縮応力および引っ張り応力)が作用する。そして、超電導層は圧縮歪みには強いが引っ張り歪みには弱いセラミックス特有の性質を有している。このため、曲げ直径が小さくなるほど、外周部に位置する超電導層には大きな引っ張り歪みが発生して大きな引っ張り応力が掛かることになり、超電導特性の劣化を招いて、コイルとして充分な超電導特性を維持することが困難となる。   That is, when bending is performed on the thin film superconducting wire, compressive strain is generated inside the thin film superconducting wire, tensile strain is generated outside, and stress (compressive stress and tensile stress) acts on each. The superconducting layer has a characteristic characteristic of ceramics that is strong against compressive strain but weak against tensile strain. For this reason, the smaller the bending diameter, the larger the tensile strain is generated in the superconducting layer located on the outer periphery, resulting in a large tensile stress, which deteriorates the superconducting characteristics and maintains sufficient superconducting characteristics as a coil. Difficult to do.

このため、コイルの形成に際して、充分な超電導特性を維持することができる曲げ直径の限度(臨界外曲げ直径)を小さくした薄膜超電導線材の開発が望まれていた。   For this reason, it has been desired to develop a thin-film superconducting wire having a small bending diameter limit (outside critical bending diameter) capable of maintaining sufficient superconducting characteristics when forming a coil.

そこで、本発明は、近年の超電導機器の小型化への要請に充分応えることが可能な、従来よりも小さな曲げ直径で曲げ加工を行う場合であっても、充分な超電導特性を維持することができる、即ち、小さな臨界外曲げ直径を有する薄膜超電導線材とその製造方法を提供することを課題とする。   Therefore, the present invention can sufficiently meet the recent demand for miniaturization of superconducting equipment, and can maintain sufficient superconducting characteristics even when bending is performed with a smaller bending diameter than before. An object of the present invention is to provide a thin film superconducting wire having a small critical outer bending diameter and a method for producing the same.

請求項1に記載の発明は、
基板および超電導層を有する超電導本体部の周囲に銅保護層が形成された薄膜超電導線材の製造方法であって、
前記超電導層側に位置する銅保護層の厚みを前記基板側に位置する銅保護層の厚みより厚くして、前記薄膜超電導線材の厚みの中心位置を示す中立線から前記超電導層表面までの距離が所定値以下となるように、前記銅保護層をめっき法により形成する
ことを特徴とする薄膜超電導線材の製造方法である。
The invention described in claim 1
A method of manufacturing a thin film superconducting wire in which a copper protective layer is formed around a superconducting body having a substrate and a superconducting layer,
The thickness of the copper protective layer located on the superconducting layer side is made larger than the thickness of the copper protective layer located on the substrate side, and the distance from the neutral line indicating the center position of the thickness of the thin film superconducting wire to the superconducting layer surface The method for producing a thin film superconducting wire characterized in that the copper protective layer is formed by a plating method so that is less than or equal to a predetermined value.

前記した通り、薄膜超電導線材に曲げ加工を行った場合、薄膜超電導線材の内側では圧縮歪みが発生し、外側では引っ張り歪みが発生する。このとき、超電導層が薄膜超電導線材の中立線、即ち、薄膜超電導線材の厚みの中心位置を示す仮想線に位置していれば、圧縮歪みと引っ張り歪みとが釣り合うため、応力が0となり歪みが生じない。しかし、基板の厚みは超電導層の厚みに比べて遙かに厚いため、従来の薄膜超電導線材においては、中立線が基板内に位置して超電導層とは大きな距離を有している。この結果、コイルなどの形成時、外側に位置する超電導層には、曲げ加工により大きな引っ張り歪みが発生して、コイルとして充分な超電導特性を維持することが困難となっており、そのため、小さなコイルなど自由度の高い設計は困難であった。   As described above, when the thin film superconducting wire is bent, compressive strain occurs inside the thin film superconducting wire, and tensile strain occurs outside. At this time, if the superconducting layer is located on the neutral line of the thin film superconducting wire, that is, the virtual line indicating the center position of the thickness of the thin film superconducting wire, the compressive strain and the tensile strain are balanced, so the stress becomes zero and the strain is reduced. Does not occur. However, since the thickness of the substrate is much larger than the thickness of the superconducting layer, in the conventional thin film superconducting wire, the neutral line is located in the substrate and has a large distance from the superconducting layer. As a result, when a coil or the like is formed, a large tensile strain is generated in the superconducting layer located outside by bending, making it difficult to maintain sufficient superconducting characteristics as a coil. It was difficult to design with a high degree of freedom.

これに対して本請求項の発明においては、銅保護層の形成に際して、超電導層側に位置する銅保護層の厚みを基板側に位置する銅保護層の厚みより厚くして、中立線から超電導層表面(厚い銅保護層側の面)までの距離を小さくしているため、小さな曲げ直径で曲げ加工を行っても、薄膜超電導線材に大きな引っ張り歪みが発生せず、薄膜超電導線材の劣化を招くことがない。   On the other hand, in the invention of this claim, when forming the copper protective layer, the thickness of the copper protective layer located on the superconducting layer side is made larger than the thickness of the copper protective layer located on the substrate side, so that the superconducting from the neutral line. Since the distance to the layer surface (the surface on the thick copper protective layer side) is reduced, even if bending is performed with a small bending diameter, large tensile strain does not occur in the thin film superconducting wire, and the thin film superconducting wire is deteriorated. There is no invitation.

そして、本請求項の発明においては、超電導層側の銅保護層の形成に際して、従来の薄膜超電導線材における銅保護層の形成と同様に、めっき法を用いている。めっき法は、前記の通り、従来より銅保護層の形成に採用されている方法であるため、薄膜超電導線材の製造コストの大きな上昇を引き起こすことがない。   In the invention of this claim, when forming the copper protective layer on the superconducting layer side, a plating method is used as in the case of forming the copper protective layer in the conventional thin film superconducting wire. As described above, the plating method is a method that has been conventionally employed for forming the copper protective layer, and thus does not cause a significant increase in the manufacturing cost of the thin film superconducting wire.

さらに、基板側にマスキング処理を施して同じめっき条件で複数回のめっきを行うなどの方法により、容易に超電導層側および基板側の銅保護層の厚みを調整することができると共に、厚み方向においても品質が安定した銅保護層を形成することができる。   Furthermore, the thickness of the superconducting layer side and the copper protective layer on the substrate side can be easily adjusted by a method such as performing masking treatment on the substrate side and performing plating multiple times under the same plating conditions, and in the thickness direction It is also possible to form a copper protective layer with stable quality.

なお、本請求項の発明における「基板および超電導層を有する超電導本体部」には、一般的には、基板、超電導層の他に、中間層や銀安定化層などの層が設けられている。   The “superconducting body having a substrate and a superconducting layer” in the present invention is generally provided with layers such as an intermediate layer and a silver stabilizing layer in addition to the substrate and the superconducting layer. .

また、本請求項の発明における「所定値」とは、薄膜超電導線材に所望の曲げ加工を行った場合においても、実用上問題のない引っ張り歪みとなる中立線から超電導層表面までの距離を言う。   In addition, the “predetermined value” in the present invention means the distance from the neutral line to the surface of the superconducting layer, which causes a tensile strain without any practical problem even when the thin film superconducting wire is subjected to a desired bending process. .

請求項2に記載の発明は、
前記超電導層側に位置する銅保護層を以下の式1を満足する厚みに形成することを特徴とする請求項1に記載の薄膜超電導線材の製造方法である。
{A/(B+R)}×100<0.3 ・・・・・ (式1)
但し、A:薄膜超電導線材の中立線から超電導層表面までの距離(mm)
B:薄膜超電導線材の表面から中立線までの距離(mm)
R:曲げ直径(mm)
The invention described in claim 2
2. The method for producing a thin film superconducting wire according to claim 1, wherein the copper protective layer located on the superconducting layer side is formed to a thickness satisfying the following formula 1.
{A / (B + R)} × 100 <0.3 (Formula 1)
A: Distance from the neutral wire of the thin film superconducting wire to the surface of the superconducting layer (mm)
B: Distance from the surface of the thin film superconducting wire to the neutral wire (mm)
R: Bending diameter (mm)

本発明者は、従来の薄膜超電導線材を用いて、曲げ直径を種々変えて、曲げ加工時に発生する超電導層における引っ張り歪みの程度と、臨界電流値Icなど超電導特性の変化の程度とを測定し、両者の関係につき検討した。   The present inventor measured the degree of tensile strain in the superconducting layer generated during bending and the degree of change in superconducting characteristics such as the critical current value Ic using various conventional thin film superconducting wires. The relationship between the two was examined.

その結果、中立線から超電導層表面までの距離をAmm、薄膜超電導線材の表面から中立線までの距離をBmm、曲げ直径をRmmとしたとき、{A/(B+R)}×100の式で定義される引っ張り歪み(%)が、0.3%以上の場合に曲げ加工による超電導特性の劣化(例えば、Icの低下)が発生していることが分かり、本請求項の発明に至った。   As a result, when the distance from the neutral wire to the surface of the superconducting layer is Amm, the distance from the surface of the thin film superconducting wire to the neutral wire is Bmm, and the bending diameter is Rmm, the definition is {A / (B + R)} × 100. When the tensile strain (%) is 0.3% or more, it was found that deterioration of superconducting characteristics due to bending (for example, reduction in Ic) occurred, leading to the invention of this claim.

即ち、超電導層側に位置する銅保護層の厚みを厚く形成して薄膜超電導線材を製造することにより、中立線の位置を超電導層側に近づけることができるため、曲げ加工における引っ張り歪みの発生を小さくすることができ、この引っ張り歪みを0.3%未満とすることにより、曲げ加工において超電導特性の劣化を招く恐れがない薄膜超電導線材を提供することができる。   That is, by forming a thin copper superconducting wire by forming a thick copper protective layer located on the superconducting layer side, the position of the neutral wire can be brought closer to the superconducting layer side. By making this tensile strain less than 0.3%, it is possible to provide a thin film superconducting wire that does not cause deterioration of superconducting characteristics in bending.

請求項3に記載の発明は、
前記薄膜超電導線材の厚みが0.1〜0.25μmであり、
前記超電導層側に位置する銅保護層を、前記中立線から前記超電導層表面までの距離が30μm以下となる厚みに形成することを特徴とする請求項2に記載の薄膜超電導線材の製造方法である。
The invention according to claim 3
The thin film superconducting wire has a thickness of 0.1 to 0.25 μm,
3. The method for producing a thin film superconducting wire according to claim 2, wherein the copper protective layer located on the superconducting layer side is formed with a thickness such that a distance from the neutral wire to the surface of the superconducting layer is 30 μm or less. is there.

一般に、薄膜超電導線材の曲げ加工は、10mm以上の曲げ直径で行われている。一般的な薄膜超電導線材の厚みである0.1〜0.25μm厚の薄膜超電導線材の場合、薄膜超電導線材の中立線から超電導層表面までの距離が30μm以下となるように、超電導層側に位置する銅保護層の厚みを厚く形成すると、曲げ直径(R)=10mmとしたときの引っ張り歪みは、前記式1に基づく計算により0.3%未満となるため、曲げ直径10mmで曲げ加工を行う場合であっても超電導特性の劣化を招くことがない。   In general, bending of a thin film superconducting wire is performed with a bending diameter of 10 mm or more. In the case of a thin film superconducting wire having a thickness of 0.1 to 0.25 μm, which is the thickness of a general thin film superconducting wire, on the superconducting layer side so that the distance from the neutral wire of the thin film superconducting wire to the surface of the superconducting layer is 30 μm or less. When the thickness of the copper protective layer is thick, the tensile strain when the bending diameter (R) = 10 mm is less than 0.3% according to the calculation based on the above formula 1, so that bending work is performed with a bending diameter of 10 mm. Even if it is carried out, the superconducting characteristics are not deteriorated.

請求項4に記載の発明は、
請求項1ないし請求項3のいずれか1項に記載の薄膜超電導線材の製造方法を用いて製造されていることを特徴とする薄膜超電導線材である。
The invention according to claim 4
It is manufactured using the manufacturing method of the thin film superconducting wire of any one of Claim 1 thru | or 3, It is a thin film superconducting wire characterized by the above-mentioned.

請求項1ないし請求項3のいずれか1項に記載の薄膜超電導線材の製造方法を用いて製造された薄膜超電導線材は、前記の通り、小さな曲げ直径で曲げ加工を行っても薄膜超電導線材の超電導特性の劣化を招かず、充分な超電導特性を維持することができる。また、品質の安定した薄膜超電導線材を低コストで提供することができる。   As described above, the thin film superconducting wire manufactured using the method for manufacturing a thin film superconducting wire according to any one of claims 1 to 3 is a thin film superconducting wire even if it is bent with a small bending diameter. Sufficient superconducting characteristics can be maintained without deteriorating superconducting characteristics. Moreover, the thin film superconducting wire with stable quality can be provided at a low cost.

本発明により、従来よりも小さな臨界外曲げ直径を有する薄膜超電導線材とその製造方法を提供することができ、近年の超電導機器の小型化への要請に充分応えることができる。   According to the present invention, it is possible to provide a thin film superconducting wire having a smaller critical outer bending diameter than that of the prior art and a method for manufacturing the same, and sufficiently meet the recent demand for miniaturization of superconducting equipment.

薄膜超電導線材における曲げ直径とIc(1)/Ic(0)との関係を説明する図である。It is a figure explaining the relationship between the bending diameter in a thin film superconducting wire, and Ic (1) / Ic (0). 本発明に係る薄膜超電導線材の構成の概略を模式的に示す断面図である。It is sectional drawing which shows typically the outline of a structure of the thin film superconducting wire which concerns on this invention. 本発明における薄膜超電導線材の製造工程の概略を模式的に示す図である。It is a figure which shows typically the outline of the manufacturing process of the thin film superconducting wire in this invention. 従来の薄膜超電導線材の構成の概略を模式的に示す断面図である。It is sectional drawing which shows the outline of a structure of the conventional thin film superconducting wire typically.

以下、本発明を実施例に基づいて具体的に説明する。   Hereinafter, the present invention will be specifically described based on examples.

1.曲げ直径が超電導特性の劣化に及ぼす影響について
最初に、曲げ直径が超電導特性の劣化に及ぼす影響について検討を行った。
1. Effect of bending diameter on degradation of superconducting properties First, the effect of bending diameter on degradation of superconducting properties was examined.

まず、表1に示す構造の従来の薄膜超電導線材を用意し、その臨界電流値Ic(以下、「Ic(0)」と表記する)を測定した。   First, a conventional thin film superconducting wire having the structure shown in Table 1 was prepared, and its critical current value Ic (hereinafter referred to as “Ic (0)”) was measured.

Figure 2011159455
Figure 2011159455

その後、この薄膜超電導線材に対して、10mm、15mm、20mm、30mm、40mmの各曲げ直径で曲げ加工を行い、同様に臨界電流値Ic(以下、「Ic(1)」と表記する)を測定し、Ic(1)/Ic(0)を求めた。結果を、図1に、曲げ直径とIc(1)/Ic(0)との関係で示す。   Thereafter, the thin film superconducting wire was bent at bending diameters of 10 mm, 15 mm, 20 mm, 30 mm and 40 mm, and the critical current value Ic (hereinafter referred to as “Ic (1)”) was measured in the same manner. Ic (1) / Ic (0) was obtained. A result is shown in FIG. 1 by the relationship between a bending diameter and Ic (1) / Ic (0).

図1より、曲げ直径が20mmより小さい場合、Ic(1)/Ic(0)が1を割り込み、薄膜超電導線材の劣化が起こっていることが分かる。   As can be seen from FIG. 1, when the bending diameter is smaller than 20 mm, Ic (1) / Ic (0) interrupts 1, and the thin film superconducting wire is deteriorated.

また、各曲げ直径で曲げ加工を行った際に超電導層に発生する引っ張り歪み(%)を、前記式1{A/(B+R)}×100を用いて計算した。前記の通り、Aは薄膜超電導線材の中立線から超電導層表面までの距離(mm)であり、Bは薄膜超電導線材の表面から中立線までの距離(mm)であり、Rは曲げ直径(mm)である。結果を表2に示す。   Further, the tensile strain (%) generated in the superconducting layer when bending was performed at each bending diameter was calculated using the above formula 1 {A / (B + R)} × 100. As described above, A is the distance (mm) from the neutral line of the thin film superconducting wire to the surface of the superconducting layer, B is the distance (mm) from the surface of the thin film superconducting wire to the neutral line, and R is the bending diameter (mm). ). The results are shown in Table 2.

Figure 2011159455
Figure 2011159455

表2より、曲げ直径が図1より劣化が起こることが分かっている20mmより小さい場合、0.3%以上の引っ張り歪みが発生していることが分かる。このことより、歪みを0.3%未満にしなければならないことが分かる。   From Table 2, it can be seen that when the bending diameter is smaller than 20 mm, which is known to cause deterioration from FIG. 1, tensile strain of 0.3% or more is generated. This shows that the distortion must be less than 0.3%.

2.超電導層側の銅保護層の厚みの増加量と歪みとの関係
次に、同じ薄膜超電導線材を用いて、超電導層側の銅保護層の厚みを厚くして、その増加量が引っ張り歪みに与える影響を測定し、中立線から超電導層表面までの距離をどの程度に設定すればよいか検討した。
2. Relationship between the increase in the thickness of the copper protective layer on the superconducting layer side and strain Next, using the same thin film superconducting wire, increase the thickness of the copper protective layer on the superconducting layer side, and the increased amount gives tensile strain The effect was measured and the distance from the neutral line to the superconducting layer surface was examined.

具体的には、曲げ直径を線材加工時望ましい曲げ直径とされている10mmとし、引っ張り歪みについて、劣化を引き起こす恐れがない0.3%未満の値として0.29%を採用して、薄膜超電導線材の表面から中立線までの距離(B)を、超電導層側の銅保護層の厚みを厚くすることにより変化させて薄膜超電導線材の中立線から超電導層表面までの距離(A)の変化を求めた。結果を表3に示す。   Specifically, the thin film superconductor adopts a bending diameter of 10 mm, which is a desirable bending diameter at the time of wire processing, and adopts 0.29% as a value of less than 0.3% that does not cause deterioration of tensile strain. Change the distance (A) from the neutral line of the thin film superconducting wire to the superconducting layer surface by changing the distance (B) from the surface of the wire to the neutral line by increasing the thickness of the copper protective layer on the superconducting layer side. Asked. The results are shown in Table 3.

Figure 2011159455
Figure 2011159455

表3より、Bが実験に用いた0.05〜0.4mm、即ち、厚みが0.1〜0.8mmの薄膜超電導線材の場合、Aを30μm(0.030mm)以下にすれば劣化が生じないことが分かる。   From Table 3, in the case of a thin film superconducting wire having a thickness of 0.05 to 0.4 mm, that is, a thickness of 0.1 to 0.8 mm used in the experiment, deterioration is caused if A is 30 μm (0.030 mm) or less. It turns out that it does not occur.

3.薄膜超電導線材の作製
次に、本実施例における薄膜超電導線材を作製した。
3. Production of Thin Film Superconducting Wire Next, a thin film superconducting wire in this example was produced.

(1)薄膜超電導線材の構成
図2に、本実施例における薄膜超電導線材の構成の概略を模式的に示す。図2に示すように、本実施例における薄膜超電導線材は、中間層2および超電導層3が形成された基板1の上下両面に銀安定化層4が形成された超電導本体部11の外周に銅保護層5が形成されている。そして、銅保護層5は、第1の銅保護層5aおよび第2の銅保護層5bより構成されて、超電導層側に位置する銅保護層の厚みは、基板側に位置する銅保護層の厚みより厚く形成されている。
(1) Configuration of Thin Film Superconducting Wire FIG. 2 schematically shows the configuration of the thin film superconducting wire in this example. As shown in FIG. 2, the thin film superconducting wire in the present embodiment is made of copper on the outer periphery of a superconducting main body 11 in which a silver stabilizing layer 4 is formed on both upper and lower surfaces of a substrate 1 on which an intermediate layer 2 and a superconducting layer 3 are formed. A protective layer 5 is formed. And the copper protective layer 5 is comprised from the 1st copper protective layer 5a and the 2nd copper protective layer 5b, and the thickness of the copper protective layer located in the superconducting layer side is the copper protective layer located in the board | substrate side. It is formed thicker than the thickness.

なお、図2において各層を明確に示すために、図面上、中立線は薄膜超電導線材の中央部より少し下に位置している。   In order to clearly show each layer in FIG. 2, the neutral line is positioned slightly below the center of the thin film superconducting wire in the drawing.

(2)薄膜超電導線材の作製手順
本実施例における薄膜超電導線材は、図3に示す製造工程に従って作製される。
(2) Production Procedure of Thin Film Superconducting Wire The thin film superconducting wire in this example is produced according to the production process shown in FIG.

(a)超電導本体部の作製
はじめに、厚み132.5μmの超電導本体部11を、公知の方法を用いて作製した。
(A) Production of Superconducting Main Body First, a superconducting main body 11 having a thickness of 132.5 μm was produced using a known method.

具体的には、Ni、Cuからなる配向金属基板(厚さ120μm)1上に、RFスパッタリング法を用いて、CeO層/YSZ層/CeO層の3層からなる総厚さ0.5μmの中間層2を形成し、その後、中間層2上にPLD法を用いて、厚さ2μmのGdBCOからなる超電導層3を形成した。 Specifically, a total thickness of 0.5 μm consisting of three layers of CeO 2 layer / YSZ layer / CeO 2 layer is formed on an oriented metal substrate (thickness 120 μm) 1 made of Ni and Cu by RF sputtering. Then, a superconducting layer 3 made of GdBCO having a thickness of 2 μm was formed on the intermediate layer 2 by using the PLD method.

さらに、超電導層3上および基板1の裏面に、DCスパッタリング法を用いて、それぞれ厚さ8μm、2μmの銀安定化層を形成し、超電導本体部11を作製した。   Furthermore, a silver stabilizing layer having a thickness of 8 μm and 2 μm was formed on the superconducting layer 3 and on the back surface of the substrate 1, respectively, by using a DC sputtering method, thereby producing a superconducting body 11.

(b)1回目の銅保護層の形成
供給リール12に巻かれた超電導本体部11の先端部を繰り出し、搬送して、基板側の銀安定化層にマスキング材20を当接させた後、めっき液(硫酸:硫酸銅=150g:100g)が収容された第1のCuめっき槽13に浸漬させた。
(B) Forming the first copper protective layer After feeding and transporting the tip of the superconducting body 11 wound around the supply reel 12, the masking material 20 is brought into contact with the silver stabilizing layer on the substrate side. It was immersed in the 1st Cu plating tank 13 in which the plating solution (sulfuric acid: copper sulfate = 150 g: 100 g) was accommodated.

第1のCuめっき槽13において、超電導本体部11と、図示しない電極(正極)との間に電圧を印加(電流密度:5A/dm)し、超電導本体部11の基板側を除く3面に厚み100μmの第1の銅保護層5aを形成した。 In the first Cu plating tank 13, three surfaces excluding the substrate side of the superconducting body 11 by applying a voltage (current density: 5 A / dm 2 ) between the superconducting body 11 and an electrode (positive electrode) (not shown). A first copper protective layer 5a having a thickness of 100 μm was formed.

(c)2回目の銅保護層の形成
銅保護層5aが形成された超電導本体部11を第1のCuめっき槽13から取り出し、搬送して、マスキング材20を取り去った後、第2のCuめっき槽14に浸漬させた。
(C) Formation of the second copper protective layer After removing the superconducting body 11 having the copper protective layer 5a formed from the first Cu plating tank 13 and carrying the masking material 20, the second Cu is removed. It was immersed in the plating tank 14.

第2のCuめっき槽14において、電圧を印加して、銅保護層5aが形成された超電導本体部11の外周4面に厚み10μmの第2の銅保護層5bを形成した。   In the second Cu plating tank 14, a voltage was applied to form a second copper protective layer 5 b having a thickness of 10 μm on the outer peripheral surface 4 of the superconducting main body 11 on which the copper protective layer 5 a was formed.

このように銅保護層の形成は2回に分けて行ったが、同じめっき設備を用いて同じめっき条件で行ったため、一体化して安定した品質の銅保護層を形成することができた。   Thus, although formation of the copper protective layer was performed in two steps, since it was performed under the same plating conditions using the same plating equipment, a copper protective layer with a stable quality could be formed integrally.

(d)巻き取り
第2のめっきが完了した後は、第2のCuめっき槽14から取り出し、水洗、乾燥などの後処理を行って、搬送し、巻取リール16にて巻き取り、薄膜超電導線材の作製を完了した。
(D) Winding After the completion of the second plating, the film is taken out from the second Cu plating tank 14, subjected to post-treatment such as water washing and drying, transported, wound up by the winding reel 16, and thin film superconducting The production of the wire was completed.

作製された薄膜超電導線材において、薄膜超電導線材の中立線から超電導層表面までの距離は20μmとなり30μm以下であり、歪みは0.19%となり0.3%未満であることが確認された。   In the manufactured thin film superconducting wire, it was confirmed that the distance from the neutral wire of the thin film superconducting wire to the surface of the superconducting layer was 20 μm and 30 μm or less, and the strain was 0.19% and less than 0.3%.

4.超電導特性の確認
作製された薄膜超電導線材を巻取リールから繰り出し、臨界電流値Icを測定した。その後、曲げ直径10mmで曲げ加工を行い、再び臨界電流値Icを測定した。
4). Confirmation of superconducting characteristics The produced thin film superconducting wire was drawn out from a take-up reel, and the critical current value Ic was measured. Thereafter, bending was performed with a bending diameter of 10 mm, and the critical current value Ic was measured again.

曲げ加工の前後で測定した2回の臨界電流値Icを比較し、測定値に有意差がないことを確認した。これにより、曲げ直径10mmで曲げ加工を行っても劣化が生じていないことが分かる。   Two critical current values Ic measured before and after bending were compared, and it was confirmed that there was no significant difference in the measured values. Thereby, it turns out that deterioration does not arise even if it bends with a bending diameter of 10 mm.

以上の通り、本発明に従うことにより、小さな曲げ直径で曲げ加工を行っても、超電導特性の劣化を招かず、充分な超電導特性を維持することができる薄膜超電導線材を提供できることが分かる。   As described above, it can be seen that, according to the present invention, it is possible to provide a thin film superconducting wire capable of maintaining sufficient superconducting characteristics without causing deterioration of superconducting characteristics even when bending is performed with a small bending diameter.

なお、本発明は、上記の実施の形態に限定されるものではない。本発明と同一および均等の範囲内において、上記に対して種々の変更を加えることが可能である。   The present invention is not limited to the above embodiment. Various modifications can be made to the above within the same and equivalent scope as the present invention.

1 基板
2 中間層
3 超電導層
4 銀安定化層
5 銅保護層
5a 第1の銅保護層
5b 第2の銅保護層
11 超電導本体部
12 供給リール
13 第1のCuめっき槽
14 第2のCuめっき槽
16 巻取リール
20 マスキング材
DESCRIPTION OF SYMBOLS 1 Board | substrate 2 Intermediate | middle layer 3 Superconducting layer 4 Silver stabilization layer 5 Copper protective layer 5a 1st copper protective layer 5b 2nd copper protective layer 11 Superconducting main-body part 12 Supply reel 13 1st Cu plating tank 14 2nd Cu Plating tank 16 Take-up reel 20 Masking material

Claims (4)

基板および超電導層を有する超電導本体部の周囲に銅保護層が形成された薄膜超電導線材の製造方法であって、
前記超電導層側に位置する銅保護層の厚みを前記基板側に位置する銅保護層の厚みより厚くして、前記薄膜超電導線材の厚みの中心位置を示す中立線から前記超電導層表面までの距離が所定値以下となるように、前記銅保護層をめっき法により形成する
ことを特徴とする薄膜超電導線材の製造方法。
A method of manufacturing a thin film superconducting wire in which a copper protective layer is formed around a superconducting body having a substrate and a superconducting layer,
The thickness of the copper protective layer located on the superconducting layer side is made larger than the thickness of the copper protective layer located on the substrate side, and the distance from the neutral line indicating the center position of the thickness of the thin film superconducting wire to the superconducting layer surface The method for producing a thin film superconducting wire, characterized in that the copper protective layer is formed by a plating method so that is less than or equal to a predetermined value.
前記超電導層側に位置する銅保護層を以下の式1を満足する厚みに形成することを特徴とする請求項1に記載の薄膜超電導線材の製造方法。
{A/(B+R)}×100<0.3 ・・・・・ (式1)
但し、A:薄膜超電導線材の中立線から超電導層表面までの距離(mm)
B:薄膜超電導線材の表面から中立線までの距離(mm)
R:曲げ直径(mm)
The method for producing a thin film superconducting wire according to claim 1, wherein the copper protective layer positioned on the superconducting layer side is formed to a thickness that satisfies the following formula 1.
{A / (B + R)} × 100 <0.3 (Formula 1)
A: Distance from the neutral wire of the thin film superconducting wire to the surface of the superconducting layer (mm)
B: Distance from the surface of the thin film superconducting wire to the neutral wire (mm)
R: Bending diameter (mm)
前記薄膜超電導線材の厚みが0.1〜0.25μmであり、
前記超電導層側に位置する銅保護層を、前記中立線から前記超電導層表面までの距離が30μm以下となる厚みに形成することを特徴とする請求項2に記載の薄膜超電導線材の製造方法。
The thin film superconducting wire has a thickness of 0.1 to 0.25 μm,
The method for producing a thin film superconducting wire according to claim 2, wherein the copper protective layer located on the superconducting layer side is formed to have a thickness such that the distance from the neutral wire to the surface of the superconducting layer is 30 µm or less.
請求項1ないし請求項3のいずれか1項に記載の薄膜超電導線材の製造方法を用いて製造されていることを特徴とする薄膜超電導線材。   A thin film superconducting wire manufactured using the method for manufacturing a thin film superconducting wire according to any one of claims 1 to 3.
JP2010018863A 2010-01-29 2010-01-29 Thin film superconducting wire and manufacturing method thereof Active JP5027896B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010018863A JP5027896B2 (en) 2010-01-29 2010-01-29 Thin film superconducting wire and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010018863A JP5027896B2 (en) 2010-01-29 2010-01-29 Thin film superconducting wire and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2011159455A true JP2011159455A (en) 2011-08-18
JP5027896B2 JP5027896B2 (en) 2012-09-19

Family

ID=44591244

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010018863A Active JP5027896B2 (en) 2010-01-29 2010-01-29 Thin film superconducting wire and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP5027896B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013150942A1 (en) * 2012-04-06 2013-10-10 古河電気工業株式会社 Superconductor wire
JP2014013877A (en) * 2012-03-26 2014-01-23 Chubu Electric Power Co Inc Superconductive pancake coil, and method of manufacturing the same
WO2014126149A1 (en) * 2013-02-15 2014-08-21 株式会社フジクラ Oxide superconducting wire
WO2015064284A1 (en) * 2013-11-01 2015-05-07 住友電気工業株式会社 Thin-film superconducting wire rod and superconducting device
JP2016164846A (en) * 2015-03-06 2016-09-08 昭和電線ケーブルシステム株式会社 Method for manufacturing oxide superconducting wire rod
CN105989931A (en) * 2015-03-20 2016-10-05 昭和电线电缆系统株式会社 A superconducting wire manufacturing method and a superconducting wire manufacturing device
CN108342757A (en) * 2018-02-05 2018-07-31 苏州新材料研究所有限公司 A kind of method that electro-coppering prepares high-temperature superconductor band protective layer

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0773758A (en) * 1993-09-06 1995-03-17 Fujikura Ltd Structure of oxide superconductor with stabilized metallic layer
JPH07335051A (en) * 1994-06-02 1995-12-22 Chodendo Hatsuden Kanren Kiki Zairyo Gijutsu Kenkyu Kumiai Oxide superconductive tape with stabilizing layer and manufacture thereof
JP2007188844A (en) * 2006-01-16 2007-07-26 Sumitomo Electric Ind Ltd Superconducting cable

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0773758A (en) * 1993-09-06 1995-03-17 Fujikura Ltd Structure of oxide superconductor with stabilized metallic layer
JPH07335051A (en) * 1994-06-02 1995-12-22 Chodendo Hatsuden Kanren Kiki Zairyo Gijutsu Kenkyu Kumiai Oxide superconductive tape with stabilizing layer and manufacture thereof
JP2007188844A (en) * 2006-01-16 2007-07-26 Sumitomo Electric Ind Ltd Superconducting cable

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014013877A (en) * 2012-03-26 2014-01-23 Chubu Electric Power Co Inc Superconductive pancake coil, and method of manufacturing the same
WO2013150942A1 (en) * 2012-04-06 2013-10-10 古河電気工業株式会社 Superconductor wire
CN103366894A (en) * 2012-04-06 2013-10-23 古河电气工业株式会社 Superconductor wire
CN103366894B (en) * 2012-04-06 2016-12-28 古河电气工业株式会社 Superconducting line
WO2014126149A1 (en) * 2013-02-15 2014-08-21 株式会社フジクラ Oxide superconducting wire
US10163549B2 (en) 2013-02-15 2018-12-25 Fujikura Ltd. Oxide superconducting wire
WO2015064284A1 (en) * 2013-11-01 2015-05-07 住友電気工業株式会社 Thin-film superconducting wire rod and superconducting device
JP2016164846A (en) * 2015-03-06 2016-09-08 昭和電線ケーブルシステム株式会社 Method for manufacturing oxide superconducting wire rod
CN105989931A (en) * 2015-03-20 2016-10-05 昭和电线电缆系统株式会社 A superconducting wire manufacturing method and a superconducting wire manufacturing device
JP2016178041A (en) * 2015-03-20 2016-10-06 昭和電線ケーブルシステム株式会社 Method for manufacturing superconducting wire rod, and apparatus for manufacturing superconducting wire rod
CN108342757A (en) * 2018-02-05 2018-07-31 苏州新材料研究所有限公司 A kind of method that electro-coppering prepares high-temperature superconductor band protective layer

Also Published As

Publication number Publication date
JP5027896B2 (en) 2012-09-19

Similar Documents

Publication Publication Date Title
JP5027896B2 (en) Thin film superconducting wire and manufacturing method thereof
JP5084766B2 (en) Thin film superconducting wire and superconducting cable conductor
JP5119582B2 (en) Superconducting wire manufacturing method and superconducting equipment
JP5379360B2 (en) Composite superconducting wire, manufacturing method of composite superconducting wire, and superconducting cable
JP5326573B2 (en) Superconducting tape and method for producing superconducting tape
US10096403B2 (en) Method for producing superconductive conductor and superconductive conductor
CN110703165B (en) Device and method for testing turning diameter of superconducting strip
US11910727B2 (en) Ultra-thin film superconducting tapes
JP2010176892A (en) Superconductive wire and method of manufacturing the same
KR20120120119A (en) Low ac-loss multi-filament type superconductive wire material, and manufacturing method thereof
CN117248256A (en) Copper plating method for superconducting tape
WO2020066907A1 (en) Insulation coating compound superconducting wire and rewinding method thereof
JPWO2016104530A1 (en) Coil conductor manufacturing method and induction coil provided with coil conductor manufactured using the method
JP5027895B2 (en) Thin film superconducting wire
JP2014072039A (en) PRECURSOR FOR MANUFACTURING Nb3Sn SUPERCONDUCTING WIRE ROD AND Nb3Sn SUPERCONDUCTING WIRE ROD
JP7358688B2 (en) Compound superconducting stranded wire and its rewinding method
TW201531174A (en) Composite metal foil, composite metal foil containing carrier, and metal clad laminate and printed wiring board using the same
JP2010218730A (en) Superconducting wire rod and method of manufacturing the same
JP2008308749A (en) Copper plating method
JP6163039B2 (en) Superconducting cable
CN114207745A (en) Oxide superconducting wire
KR101418003B1 (en) superconducting round wire using coated conductors and their continuous fabrication method
JP2008229703A (en) Method of manufacturing copper-coated aluminum wire and copper-coated aluminum wire
WO2022249336A1 (en) Electric wire and method for manufacturing electric wire
CN114758849A (en) Superconducting tape, copper plating method for superconducting tape, method for producing superconducting tape, superconducting coil, and method for impregnating superconducting coil

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120327

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120329

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120516

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120618

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120622

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150629

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5027896

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250