JP6163039B2 - Superconducting cable - Google Patents
Superconducting cable Download PDFInfo
- Publication number
- JP6163039B2 JP6163039B2 JP2013159009A JP2013159009A JP6163039B2 JP 6163039 B2 JP6163039 B2 JP 6163039B2 JP 2013159009 A JP2013159009 A JP 2013159009A JP 2013159009 A JP2013159009 A JP 2013159009A JP 6163039 B2 JP6163039 B2 JP 6163039B2
- Authority
- JP
- Japan
- Prior art keywords
- superconducting
- layer
- critical current
- tape
- current value
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000000758 substrate Substances 0.000 claims description 4
- 241000954177 Bangana ariza Species 0.000 claims description 3
- 229910052693 Europium Inorganic materials 0.000 claims description 3
- 229910052688 Gadolinium Inorganic materials 0.000 claims description 3
- 229910052689 Holmium Inorganic materials 0.000 claims description 3
- 229910052779 Neodymium Inorganic materials 0.000 claims description 3
- 229910052772 Samarium Inorganic materials 0.000 claims description 3
- 229910052727 yttrium Inorganic materials 0.000 claims description 3
- 239000011162 core material Substances 0.000 description 15
- 230000005540 biological transmission Effects 0.000 description 10
- 238000012423 maintenance Methods 0.000 description 10
- 239000004745 nonwoven fabric Substances 0.000 description 9
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 8
- 230000000052 comparative effect Effects 0.000 description 8
- 230000007423 decrease Effects 0.000 description 7
- 239000000463 material Substances 0.000 description 7
- 239000010949 copper Substances 0.000 description 6
- 239000007788 liquid Substances 0.000 description 5
- 238000000034 method Methods 0.000 description 5
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 4
- 229910052802 copper Inorganic materials 0.000 description 4
- 238000010438 heat treatment Methods 0.000 description 4
- 229910052757 nitrogen Inorganic materials 0.000 description 4
- 239000000047 product Substances 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 3
- 238000007747 plating Methods 0.000 description 3
- 230000003247 decreasing effect Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000009413 insulation Methods 0.000 description 2
- 239000002655 kraft paper Substances 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000000123 paper Substances 0.000 description 2
- 239000002243 precursor Substances 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- 238000004544 sputter deposition Methods 0.000 description 2
- 230000000087 stabilizing effect Effects 0.000 description 2
- 229910000990 Ni alloy Inorganic materials 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- 238000007792 addition Methods 0.000 description 1
- 239000006227 byproduct Substances 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 238000003618 dip coating Methods 0.000 description 1
- 230000005684 electric field Effects 0.000 description 1
- 238000010292 electrical insulation Methods 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 238000007735 ion beam assisted deposition Methods 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 241000894007 species Species 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 238000004804 winding Methods 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E40/00—Technologies for an efficient electrical power generation, transmission or distribution
- Y02E40/60—Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment
Landscapes
- Superconductors And Manufacturing Methods Therefor (AREA)
Description
本発明は、超電導ケーブルに関し、特に、多層配置された超電導線材を備える超電導ケーブルに関する。 The present invention relates to a superconducting cable, and more particularly to a superconducting cable including superconducting wires arranged in multiple layers.
一般に、超電導ケーブルでは、芯材(フォーマ)の外周に超電導線材(以下、超電導テープという)がスパイラル状に巻回されている。また、超電導テープについては、超電導状態を保ちながら流せる電流値(臨界電流値)が決まっている。 In general, in a superconducting cable, a superconducting wire (hereinafter referred to as a superconducting tape) is wound in a spiral shape on the outer periphery of a core (former). In addition, for the superconducting tape, the current value (critical current value) that can flow while maintaining the superconducting state is determined.
よって、所望の大電流送電を可能とする超電導ケーブルでは、大電流送電を満たす本数の超電導テープが、同心円状に多層に配置されている。なお、多層配置された超電導テープによる層の間)には、超電導テープを押えたり、超電導テープ間での電気絶縁をとるための、押えテープが設けられる。 Therefore, in a superconducting cable that enables a desired large current transmission, a number of superconducting tapes that satisfy the large current transmission are arranged in multiple layers concentrically. A presser tape is provided between the layers of superconducting tapes arranged in multiple layers to hold the superconducting tape or to provide electrical insulation between the superconducting tapes.
断熱管に収納される超電導テープを多層で配置してなる超電導ケーブル(ケーブルコア)に、所望の大電流(例えば5kw以上の電流)を流すと、超電導テープに印可される磁場が大きくなる。そのため、この磁場の印可により超電導テープの臨界電流(臨界電流値)Icの低下が大きくなり、所望の送電容量を確保することが困難となることが知られている(特許文献1参照)。 When a desired large current (for example, a current of 5 kw or more) is passed through a superconducting cable (cable core) in which superconducting tapes housed in a heat insulating tube are arranged in multiple layers, the magnetic field applied to the superconducting tape increases. For this reason, it is known that the application of this magnetic field greatly reduces the critical current (critical current value) Ic of the superconducting tape, making it difficult to secure a desired transmission capacity (see Patent Document 1).
具体的には、特許文献1の実施例からも明らかなように、超電導テープを多層配置した構造の超電導ケーブルに大電流を送電した場合、超電導ケーブルでは、内側の層から外側の層に向かって順に、超電導テープに対する磁場の影響が大きくなる。この影響によって、各層における超電導テープの臨界電流Icは、内側の層から外側の層の順に低下し、超電導テープによる層毎の臨界電流値の合計値は、内側の層から外側の層に向かって大きく低下する。 Specifically, as is clear from the example of Patent Document 1, when a large current is transmitted to a superconducting cable having a structure in which superconducting tapes are arranged in multiple layers, in the superconducting cable, from the inner layer to the outer layer, In turn, the influence of the magnetic field on the superconducting tape increases. Due to this influence, the critical current Ic of the superconducting tape in each layer decreases in order from the inner layer to the outer layer, and the total critical current value for each layer by the superconducting tape is from the inner layer to the outer layer. Decrease significantly.
この点を鑑みて、特許文献1では、所望の送電容量を確保する場合、超電導ケーブル(ケーブルコア)における超電導テープの本数を増やさずに、一つの断熱管に収納される超電導ケーブルの本数を増やすことで、対応している。 In view of this point, in Patent Document 1, when securing a desired power transmission capacity, the number of superconducting cables accommodated in one heat insulating tube is increased without increasing the number of superconducting tapes in the superconducting cable (cable core). That's it.
このように、特許文献1からも明らかなように、超電導テープを多層配置した構造の超電導ケーブルでは、超電導ケーブルに大容量で通電すると、超電導テープの臨界電流は、内側に配置された超電導テープから外側に配置された超電導テープの順に減少する。 Thus, as is clear from Patent Document 1, in a superconducting cable having a structure in which superconducting tapes are arranged in multiple layers, when the superconducting cable is energized with a large capacity, the critical current of the superconducting tape is determined from the superconducting tape arranged inside. It decreases in the order of the superconducting tape arranged on the outside.
これに対して、近年では、超電導ケーブル自体の本数を増やすことなく、超電導テープとしての超電導線材を多層配置した構造の一本の超電導ケーブルで、効率よく、所望の送電容量を確保したいという要望があった。 On the other hand, in recent years, there has been a demand for efficiently securing a desired transmission capacity with a single superconducting cable having a multi-layered arrangement of superconducting wires as a superconducting tape without increasing the number of superconducting cables themselves. there were.
本発明の目的は、超電導線材を多層配置した構造で、効率よく、所望の送電容量を確保できる超電導ケーブルを提供することである。 An object of the present invention is to provide a superconducting cable that can efficiently secure a desired transmission capacity with a structure in which superconducting wires are arranged in multiple layers.
本発明の超電導ケーブルの一つの態様は、基材上に中間層を介して形成されたREBa y Cu 3 O z 系(REは、Y、Nd、Sm、Eu、Gd及びHoから選択された1種以上の元素を示し、y≦2及びz=6.2〜7である)超電導層を備える超電導線材が同心円状に多層配置され、各層は、同じ本数の同じ幅の前記超電導線材により構成され、前記超電導線材の臨界電流値は、所定層を構成する超電導線材よりも前記所定層の外側の層を構成する超電導線材の方が高く、前記所定層の直外側の層の超電導線材の臨界電流値は、前記所定層の超電導線材の臨界電流値の1.1〜1.5倍である構成を採る。 One aspect of the superconducting cable of the present invention is a REBa y Cu 3 O z system (RE is selected from Y, Nd, Sm, Eu, Gd and Ho formed on an intermediate layer via an intermediate layer). Superconducting wires comprising superconducting layers (showing elements of more than species and y ≦ 2 and z = 6.2 to 7) are concentrically arranged in layers, and each layer is composed of the same number of superconducting wires of the same width. The critical current value of the superconducting wire is higher in the superconducting wire constituting the layer outside the predetermined layer than in the superconducting wire constituting the predetermined layer, and the critical current of the superconducting wire in the layer immediately outside the predetermined layer. The value is 1.1 to 1.5 times the critical current value of the superconducting wire of the predetermined layer .
本発明によれば、超電導線材を多層配置した構造において、通電による磁場の影響があっても、各層の超電導線材の特性を最大限活かして、所望の送電容量を効率よく確保することができる。 According to the present invention, in a structure in which superconducting wires are arranged in multiple layers, even if there is an influence of a magnetic field due to energization, it is possible to efficiently secure a desired transmission capacity by making the best use of the characteristics of the superconducting wires of each layer.
以下、本発明の実施の形態について、図面を参照して詳細に説明する。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
図1は、本発明の一実施の形態に係る超電導ケーブルの要部構成を示す縦断面図である。 FIG. 1 is a longitudinal cross-sectional view showing a main configuration of a superconducting cable according to an embodiment of the present invention.
<超電導ケーブル100の構成>
図1に示す超電導ケーブル100は、芯材(フォーマ)111と、芯材111の外周に多層配置された超電導テープ131〜134とを有する。
<Configuration of superconducting cable 100>
A superconducting cable 100 shown in FIG. 1 includes a core material (former) 111 and superconducting tapes 131 to 134 arranged in multiple layers on the outer periphery of the core material 111.
具体的には、超電導ケーブル100は、芯材111、押えテープ121、第1の超電導テープ131、押えテープ122、第2の超電導テープ132、押えテープ123、第3の超電導テープ133、押えテープ124、第4の超電導テープ134、を有する。なお、この超電導ケーブル100は、実際の使用時では、筒状電極に接続された状態で、液体窒素などの極低温の液体に浸される。そして、超電導ケーブルの電流が、筒状電極を介してリードケーブルによって常温部に引き出されるようになっている。例えば、リードケーブルは、ポリマー套管(図示せず)などを介して気中に導出される。 Specifically, the superconducting cable 100 includes a core material 111, a holding tape 121, a first superconducting tape 131, a holding tape 122, a second superconducting tape 132, a holding tape 123, a third superconducting tape 133, and a holding tape 124. , And a fourth superconducting tape 134. The superconducting cable 100 is immersed in a cryogenic liquid such as liquid nitrogen while being connected to the cylindrical electrode in actual use. And the electric current of a superconducting cable is drawn out to a normal temperature part by a lead cable through a cylindrical electrode. For example, the lead cable is led into the air through a polymer sleeve (not shown) or the like.
芯材111は、円筒形状であり、銅の撚線から構成されている。芯材111の外周には、不織布からなる押えテープ121が巻回されている。押えテープ121の外周には、第1の超電導テープ131が、図2に示すように、スパイラル状に巻回されている。第1の超電導テープ131の外周には、不織布からなる押えテープ122が巻回されている。押えテープ122の外周には、第2の超電導テープ132が、第1の超電導テープ131と同様にスパイラル状に巻回されている。第2の超電導テープ132の外周には、不織布からなる押えテープ123が巻回されている。押えテープ123の外周には、第3の超電導テープ133が、第1の超電導テープ131と同様にスパイラル状に巻回されている。第3の超電導テープ133の外周には、不織布からなる押えテープ124が巻回されている。押えテープ124の外周には、第4の超電導テープ134が、第1の超電導テープ131と同様にスパイラル状に巻回されている。 The core material 111 has a cylindrical shape and is composed of a copper stranded wire. A presser tape 121 made of a nonwoven fabric is wound around the outer periphery of the core material 111. A first superconducting tape 131 is wound around the outer periphery of the presser tape 121 in a spiral shape as shown in FIG. A presser tape 122 made of a nonwoven fabric is wound around the outer periphery of the first superconducting tape 131. A second superconducting tape 132 is wound around the outer periphery of the presser tape 122 in a spiral shape, similarly to the first superconducting tape 131. A presser tape 123 made of a nonwoven fabric is wound around the outer periphery of the second superconducting tape 132. A third superconducting tape 133 is wound around the outer periphery of the presser tape 123 in the same spiral manner as the first superconducting tape 131. A presser tape 124 made of a nonwoven fabric is wound around the outer periphery of the third superconducting tape 133. A fourth superconducting tape 134 is wound around the outer periphery of the presser tape 124 in the same spiral manner as the first superconducting tape 131.
このように、超電導テープを1層毎に巻いた上に押えテープ121〜124が、巻回される(ここでは重ね巻かれる)ことで、押えテープ121〜124は、液体窒素温度中において、超電導テープの形状を維持し、層間の絶縁性を確保している。なお、押えテープ121〜124は、層間の絶縁性を確保するとともに、巻回される超電導テープ131〜133を押え巻くものであれば、どのような材料で構成されてもよい。押えテープ121〜124は、クラフト紙(絶縁紙)によるテープや、クラフト紙とプラスティックとを複合した半合成絶縁紙性テープとしても良い。 In this way, the presser tapes 121 to 124 are wound on the superconducting tape for each layer, and the presser tapes 121 to 124 are superconductive at the liquid nitrogen temperature. The shape of the tape is maintained, and insulation between layers is ensured. The presser tapes 121 to 124 may be made of any material as long as the insulation between layers is secured and the superconducting tapes 131 to 133 to be wound are pressed and wound. The presser tapes 121 to 124 may be kraft paper (insulating paper) or semi-synthetic insulating paper tape in which kraft paper and plastic are combined.
超電導ケーブル100では、1層あたり同数の超電導テープがスパイラル状に巻回されている。すなわち、超電導ケーブル100では、超電導テープによる各層は、同じ本数の超電導テープにより構成されている。本実施の形態の例では、第1の超電導テープ131により構成される層、第2の超電導テープ132により構成される層、第3の超電導テープ133により構成される層及び第4の超電導テープ134により構成される層は、それぞれ、12本の超電導テープから構成されている。超電導テープ131〜134の材料としては、従来提案されている種々の超電導材料を用いることができる。ここでは、超電導テープ131〜134は、REBayCu3Oz系(REは、Y、Nd、Sm、Eu、Gd及びHoから選択された1種以上の元素を示し、y≦2及びz=6.2〜7である。)の高温超電導薄膜を備える。また、超電導テープ131〜134は、必ずしもテープ状でなくてもよく、超電導線材であればよい。 In the superconducting cable 100, the same number of superconducting tapes are wound spirally per layer. That is, in the superconducting cable 100, each layer of the superconducting tape is composed of the same number of superconducting tapes. In the example of the present embodiment, a layer composed of the first superconducting tape 131, a layer composed of the second superconducting tape 132, a layer composed of the third superconducting tape 133, and the fourth superconducting tape 134. Each of the layers is constituted by 12 superconducting tapes. As materials for the superconducting tapes 131 to 134, various conventionally proposed superconducting materials can be used. Here, the superconducting tapes 131 to 134 are REBa y Cu 3 O z- based (RE represents one or more elements selected from Y, Nd, Sm, Eu, Gd, and Ho, and y ≦ 2 and z = 6.2-7)). Further, the superconducting tapes 131 to 134 are not necessarily in the form of a tape, and may be any superconducting wire.
また、超電導ケーブル100は、実際には、第4の超電導テープ134の外周側に、電気絶縁層や、超電導シールド層、外部安定化層、コルゲート管などが設けられているが、これらを便宜上省略して示している。 The superconducting cable 100 is actually provided with an electrical insulating layer, a superconducting shield layer, an external stabilizing layer, a corrugated tube, etc. on the outer peripheral side of the fourth superconducting tape 134, but these are omitted for convenience. As shown.
超電導ケーブル100では、超電導テープ131〜134は、各層でそれぞれ異なる超電導特性(臨界電流値(@77.3K 自己磁場中))を有する。超電導テープ131〜134の臨界電流値は、層毎に異なっている。 In the superconducting cable 100, the superconducting tapes 131 to 134 have different superconducting characteristics (critical current value (in a 77.3K self-magnetic field)) in each layer. The critical current values of the superconducting tapes 131 to 134 are different for each layer.
ここでは、超電導ケーブル100で各層を構成する超電導テープ131〜134は、内側の層から外側の層の順に、臨界電流値(@77.3K 自己磁場中)が大きくなるように配置している。すなわち、第1の超電導テープ131の臨界電流値よりも第2の超電導テープ132の臨界電流値の方が大きい。また、この第2の超電導テープ132の臨界電流値よりも第3の超電導テープ133の臨界電流値の方が大きい。この第3の超電導テープ133の臨界電流値よりも第4の超電導テープ134の臨界電流値の方が大きい。なお、これら超電導テープ131〜134は、全て同様の製造方法で製造されたものであることが製造コストの観点からも望ましい。本実施の形態における超電導テープ131〜134の特性の違いは、各超電導テープ131〜134の製品誤差(個体差ともいう)により生じるものとする。 Here, the superconducting tapes 131 to 134 constituting each layer of the superconducting cable 100 are arranged so that the critical current value (in the @ 77.3K self-magnetic field) increases in order from the inner layer to the outer layer. That is, the critical current value of the second superconducting tape 132 is larger than the critical current value of the first superconducting tape 131. Further, the critical current value of the third superconducting tape 133 is larger than the critical current value of the second superconducting tape 132. The critical current value of the fourth superconducting tape 134 is larger than the critical current value of the third superconducting tape 133. In addition, it is desirable from the viewpoint of manufacturing cost that these superconducting tapes 131 to 134 are all manufactured by the same manufacturing method. The difference in the characteristics of the superconducting tapes 131 to 134 in the present embodiment is caused by product errors (also referred to as individual differences) of the respective superconducting tapes 131 to 134.
超電導ケーブル100では、超電導テープ131〜133の層における所定層を基準層とした場合、基準層の上の層(直外側の層)の超電導テープの臨界電流値は、基準層の超電導テープの臨界電流値の約1.1〜1.5倍としている。具体的には、第2の超電導テープ132の臨界電流値は、第1の超電導テープ131の臨界電流値の約1.1〜1.5倍である。また、第3の超電導テープ133の臨界電流値は、第2の超電導テープ132の臨界電流値の約1.1〜1.5倍である。また、第4の超電導テープ134の臨界電流値は、第3の超電導テープ133の臨界電流値の約1.1〜1.5倍である。このように超電導ケーブル100では、芯材111の中心から放射方向で重なる超電導テープ同士の臨界電流値の差を、上層の超電導テープの臨界電流値が、下層の超電導テープの臨界電流値の約1.1〜1.5倍となるようにしている。 In the superconducting cable 100, when a predetermined layer in the layers of the superconducting tapes 131 to 133 is a reference layer, the critical current value of the superconducting tape above the reference layer (the outermost layer) is the critical current value of the superconducting tape of the reference layer. The current value is about 1.1 to 1.5 times. Specifically, the critical current value of the second superconducting tape 132 is about 1.1 to 1.5 times the critical current value of the first superconducting tape 131. The critical current value of the third superconducting tape 133 is about 1.1 to 1.5 times the critical current value of the second superconducting tape 132. The critical current value of the fourth superconducting tape 134 is approximately 1.1 to 1.5 times the critical current value of the third superconducting tape 133. As described above, in the superconducting cable 100, the difference in critical current value between superconducting tapes that overlap in the radial direction from the center of the core material 111 is obtained. The critical current value of the upper superconducting tape is about 1 of the critical current value of the lower superconducting tape. .1 to 1.5 times.
また、第1〜第4の超電導テープ131〜134に通電した際の、第1〜第4の超電導テープ131〜134による層毎の臨界電流値の合計は、略同じ値としている。第1の超電導テープ131の層における臨界電流値の合計、第2の超電導テープ132の層における臨界電流値の合計、第3の超電導テープ133の層における臨界電流値の合計、及び、第4の超電導テープ134の層における臨界電流値の合計は、略同じ値である。 Moreover, the sum total of the critical current value for every layer by the 1st-4th superconducting tapes 131-134 when it supplies with electricity to the 1st-4th superconducting tapes 131-134 is made into the substantially same value. A sum of critical current values in the layer of the first superconducting tape 131, a sum of critical current values in the layer of the second superconducting tape 132, a sum of critical current values in the layer of the third superconducting tape 133, and a fourth The sum of critical current values in the layer of superconducting tape 134 is substantially the same value.
具体的には、超電導テープ131〜133の層における所定層の超電導線材の臨界電流Icの総合計は、前記所定層の直外側の層の超電導線材の臨界電流Icの総合計の約0.9〜1.1倍とする。 Specifically, the total sum of critical currents Ic of superconducting wires in a predetermined layer in the layers of superconducting tapes 131 to 133 is about 0.9 of the total sum of critical currents Ic of superconducting wires in layers immediately outside the predetermined layer. -1.1 times.
これら超電導テープ131〜134は、例えば、中間層が形成された配向金属基材上に、MOD(Metal-organic Deposition)法を用いて超電導層を形成することで製造される。 These superconducting tapes 131 to 134 are manufactured, for example, by forming a superconducting layer using an MOD (Metal-organic Deposition) method on an oriented metal substrate on which an intermediate layer is formed.
MOD法は、先ず、酸化物中間層が形成されたテープ状の基材を、超電導原料溶液(有機金属塩を有機溶媒に溶解させたもの)に浸し、この基材を超電導原料溶液から引き上げること(いわゆるディップコート法)により、基材の表面に超電導膜を付着させる。次に、仮焼成熱処理を施した後、基材への超電導膜塗布と仮焼成熱処理をくり返すことでアモルファス超電導前駆体を形成する。その後、形成した超電導前駆体に本焼成熱処理を施すことで、酸化物超電導層を形成する。 In the MOD method, first, a tape-like base material on which an oxide intermediate layer is formed is immersed in a superconducting raw material solution (organic metal salt dissolved in an organic solvent), and the base material is pulled up from the superconducting raw material solution. A superconducting film is deposited on the surface of the substrate by a so-called dip coating method. Next, after performing the pre-baking heat treatment, the amorphous superconducting precursor is formed by repeating the superconducting film application to the base material and the pre-baking heat treatment. Thereafter, the oxide superconducting layer is formed by subjecting the formed superconducting precursor to a main baking heat treatment.
なお、中間層は、例えば、テープ状のNi合金基板(基材)上に、テンプレートとしてIBAD法によりGd2Zr2O7中間層を成膜し、さらに、Gd2Zr2O7中間層上にスパッタリング法によりCeO2中間層を成膜する。また、中間層上に形成した酸化物超電導層上に、スパッタ法によりAg安定化層を施した後、後熱処理を施すことで超電導線材が製造される。 The intermediate layer is, for example, on a tape-shaped Ni alloy substrate (base material), thereby forming a Gd 2 Zr 2 O 7 intermediate layer by the IBAD method as a template, further, Gd 2 Zr 2 O 7 intermediate layer A CeO 2 intermediate layer is formed by sputtering. Moreover, after superposing the Ag stabilizing layer on the oxide superconducting layer formed on the intermediate layer by a sputtering method, a superconducting wire is manufactured by performing post heat treatment.
<超電導ケーブル100の作用効果>
このように超電導ケーブル100では、複数の超電導テープ131〜134を芯材111の外周に多層で配置して大容量の通電が可能となっている。この超電導ケーブル100において、各層を構成する超電導テープ131〜134の臨界電流値(@77.3K 自己磁場中)は、内側よりも外側に配置される超電導テープの方が大きい。
<Operational effect of superconducting cable 100>
As described above, in the superconducting cable 100, a plurality of superconducting tapes 131 to 134 are arranged in multiple layers on the outer periphery of the core material 111 so that a large capacity can be energized. In this superconducting cable 100, the superconducting tapes arranged outside are larger than the inside in the superconducting tapes 131 to 134 constituting each layer in the critical current value (in a 77.3K self-magnetic field).
これにより、大容量の通電に伴い、超電導ケーブルの周囲に磁場が発生し、この磁場の影響を受けることで各超電導テープ131〜134の臨界電流Icが低下しても、層毎の臨界電流Icの総合計は、略同じ(各層で差が無い)となる。また、これら層毎の総合計の総和、つまり、超電導ケーブル全体の臨界電流Icを、超電導ケーブル100と同様に使用した従来構成の超電導ケーブルよりも高く維持できる。 As a result, a magnetic field is generated around the superconducting cable due to energization of a large capacity, and even if the critical current Ic of each of the superconducting tapes 131 to 134 decreases due to the influence of this magnetic field, the critical current Ic for each layer is reduced. The grand total is substantially the same (there is no difference in each layer). Further, the total sum of these layers, that is, the critical current Ic of the entire superconducting cable can be maintained higher than that of the conventional superconducting cable used in the same manner as the superconducting cable 100.
具体的に説明する。超電導テープを多層配置した超電導ケーブルに大容量で通電した場合、通電に伴い発生する磁場によって、多層のうち外側に配置された超電導テープの臨界電流Icが低下する。 This will be specifically described. When a superconducting cable in which superconducting tapes are arranged in multiple layers is energized with a large capacity, the critical current Ic of the superconducting tapes arranged on the outside of the multilayers is reduced by the magnetic field generated by energization.
通電による超電導テープの臨界電流Icの低下の一例を説明する。例えば、製品性能として1本で臨界電流値が100A(@77.3K 自己磁場中)の超電導テープを用いて、芯材111の外周に多層(全4層 各層12本ずつ)配置して、超電導ケーブル100と同様な構造の超電導ケーブル(従来ケーブル)を形成する。この従来ケーブルに電流を流した場合、超電導テープの総数と、発生する磁場による臨界電流Icの低下(臨界電流の維持率で示す)とは、以下のような関係となった。つまり、この臨界電流値100Aの超電導テープを各層(全4層)で12本ずつ配置した従来ケーブルでは、層毎の超電導テープにおける自己磁場中の臨界電流Icの維持率(%)は、第1層は93%、第2層は83%、第3層は81%、第4層は76%となった。なお、臨界電流Icの維持率(%)とは、超電導テープにおける0Tでの臨界電流Ic@0T(自己磁場中)に対する超電導テープにおける印可磁場での臨界電流Icの比で示され、Ic@0T/Ic×100で表される。 An example of a decrease in the critical current Ic of the superconducting tape due to energization will be described. For example, using superconducting tape with a product performance of 1 and a critical current value of 100A (@ 77.3K in a self-magnetic field), multiple layers (12 layers in each of all 4 layers) are arranged on the outer periphery of the core material 111, and superconductivity A superconducting cable (conventional cable) having the same structure as that of the cable 100 is formed. When a current was passed through this conventional cable, the total number of superconducting tapes and the decrease in critical current Ic due to the generated magnetic field (indicated by the maintenance ratio of the critical current) were as follows. That is, in the conventional cable in which 12 superconducting tapes having a critical current value of 100 A are arranged in each layer (4 layers in total), the maintenance ratio (%) of the critical current Ic in the self-magnetic field in the superconducting tape for each layer is 1st. The layer was 93%, the second layer was 83%, the third layer was 81%, and the fourth layer was 76%. The maintenance rate (%) of the critical current Ic is represented by the ratio of the critical current Ic in the applied magnetic field in the superconducting tape to the critical current Ic @ 0T (in the self magnetic field) at 0T in the superconducting tape, and Ic @ 0T / Ic × 100.
このように、多層配置した超電導テープを有する従来ケーブルでは、最も外層部分である第4層を構成する超電導テープの臨界電流値が最も低い値(維持率76%)となり、内側の層から外側の層に向かって順に臨界電流の維持率が低下する。 As described above, in the conventional cable having the superconducting tape arranged in multiple layers, the critical current value of the superconducting tape constituting the fourth layer which is the outermost layer portion is the lowest value (maintenance rate 76%), and the outer layer extends from the inner layer to the outer side. The critical current retention rate decreases in order toward the layer.
また、従来ケーブルの構成では、層毎の臨界電流値が異なった場合、超電導ケーブル自体の臨界電流Icは、超電導テープの臨界電流値が最も小さい層の臨界電流値を反映する。すなわち、上記の例では自己磁場中の臨界電流Icの維持率が最も低い第4層の臨界電流(76%×100A×12本)の4層分が、従来ケーブル自体の臨界電流Icとなる。 In the conventional cable configuration, when the critical current value of each layer is different, the critical current Ic of the superconducting cable itself reflects the critical current value of the layer having the smallest critical current value of the superconducting tape. That is, in the above example, the critical current Ic of the conventional cable itself is four layers of the critical current (76% × 100 A × 12) of the fourth layer having the lowest critical current Ic maintenance rate in the self-magnetic field.
これに対して、本実施の形態の超電導ケーブル100では、芯材111の外周に、所定の数の超電導テープを同心円状に撚りあわせるようにして配置し、更に、それを多層で配置する際に、各層の超電導テープの臨界電流値を変えている。また、本実施の形態の超電導ケーブル100の超電導テープ131〜134では、内側に配置される超電導テープから外側に配置される超電導テープの順に、臨界電流値が優れている。言い換えれば、超電導テープ131〜134の臨界電流値は、所定層(例えば第1層)を構成する超電導テープ131よりも所定層の外側の層(例えば第2層)を構成する超電導テープ132の方が高い。また、これら超電導テープ131〜134において、所定層の超電導テープ131の臨界電流値と、所定層の外側の層の超電導テープ132の臨界電流値との差は、第1の超電導テープ131の臨界電流値の1.1〜1.5倍である。本実施の形態では、超電導テープ131〜134の関係としては、第1の超電導テープ131の臨界電流値<第2の超電導テープ132の臨界電流値<第3の超電導テープ133の臨界電流値<第4の超電導テープ134の臨界電流値である(臨界電流値(@77.3K 自己磁場中))。 On the other hand, in the superconducting cable 100 of the present embodiment, a predetermined number of superconducting tapes are arranged so as to be concentrically twisted on the outer periphery of the core material 111, and further, when arranged in multiple layers. The critical current value of the superconducting tape of each layer is changed. Moreover, in the superconducting tapes 131 to 134 of the superconducting cable 100 of the present embodiment, the critical current value is excellent in the order of the superconducting tape arranged on the inner side to the superconducting tape arranged on the outer side. In other words, the critical current value of the superconducting tapes 131 to 134 is higher than that of the superconducting tape 131 constituting the predetermined layer (for example, the first layer) than the superconducting tape 131 constituting the predetermined layer (for example, the first layer). Is expensive. Further, in these superconducting tapes 131 to 134, the difference between the critical current value of the superconducting tape 131 of the predetermined layer and the critical current value of the superconducting tape 132 of the outer layer of the predetermined layer is the critical current of the first superconducting tape 131. 1.1 to 1.5 times the value. In the present embodiment, the relationship between the superconducting tapes 131 to 134 is that the critical current value of the first superconducting tape 131 <the critical current value of the second superconducting tape 132 <the critical current value of the third superconducting tape 133 <the first. 4 is a critical current value of the superconducting tape 134 (critical current value (@ 77.3K in a self magnetic field)).
これにより、超電導ケーブル100によれば、通電時において、内層側から外層側に向かって(第1層から第4層に向かって)磁場の影響を大きく受けても、多層配置された超電導テープは、各テープ自体の異なる臨界電流値(@77.3K 自己磁場中)によって相殺される。よって、多層配置された超電導テープは、通電時に各層の臨界電流が互いに略同じ値となる。 As a result, according to the superconducting cable 100, the superconducting tapes arranged in multiple layers are not affected by the magnetic field from the inner layer side to the outer layer side (from the first layer to the fourth layer) during energization. , Offset by the different critical current values of each tape itself (in @ 77.3K self magnetic field). Therefore, in the superconducting tapes arranged in multiple layers, the critical currents of the respective layers have substantially the same value when energized.
すなわち、外側に配置される超電導テープの方が、その超電導テープの内側に配置される超電導テープよりも臨界電流値が優れている。このため、外側に配置される超電導テープに磁場が印可しても、その超電導テープの臨界電流値は、内側に配置される超電導テープの臨界電流値程度の臨界電流値となる。よって、超電導ケーブル100では、通電中の磁場の印可により、特定の超電導テープの臨界電流が極端に小さくなることがなく、他の超電導テープの臨界電流値との差が大きくなることがない。 That is, the superconducting tape disposed on the outer side has a higher critical current value than the superconducting tape disposed on the inner side of the superconducting tape. For this reason, even if a magnetic field is applied to the superconducting tape arranged outside, the critical current value of the superconducting tape becomes a critical current value about the critical current value of the superconducting tape arranged inside. Therefore, in superconducting cable 100, the critical current of a specific superconducting tape does not become extremely small due to the application of a magnetic field during energization, and the difference from the critical current value of other superconducting tapes does not become large.
したがって、超電導ケーブル100では、同じ臨界電流値の超電導テープを多層配置した従来構成と異なり、通電中の磁場の影響を受けても、多層配置された超電導テープどうしで臨界電流値に大きな差は発生することがない。 Therefore, in the superconducting cable 100, unlike the conventional configuration in which superconducting tapes having the same critical current value are arranged in multiple layers, a large difference occurs in the critical current values between the superconducting tapes arranged in multiple layers even under the influence of a magnetic field during energization. There is nothing to do.
具体的には、超電導ケーブル自体の臨界電流Icに反映される所定の超電導テープの最小の臨界電流値が生成されても、最小の臨界電流値と、それ以外の超電導テープ(特に内側の層を構成する超電導テープ)の臨界電流値の差は小さくなる。よって、最小値の臨界電流値を有する超電導テープ以外の超電導テープの臨界電流値のマージンを少なくできる。 Specifically, even if the minimum critical current value of a given superconducting tape reflected in the critical current Ic of the superconducting cable itself is generated, the minimum critical current value and the other superconducting tape (especially the inner layer) The difference in the critical current value of the superconducting tape to be formed becomes small. Therefore, the margin of the critical current value of the superconducting tape other than the superconducting tape having the minimum critical current value can be reduced.
また、臨界電流値に基づいて、各層を構成する超電導テープを選定して配置することで、これら超電導テープの層毎の合計の臨界電流値と、その層において生じる磁場中の維持率との積が、各層で略一定となるように設定する。このように、超電導テープの臨界電流値を設定して、各層において、通電により発生する磁場中の臨界電流値を一定にする。 In addition, by selecting and arranging the superconducting tape constituting each layer based on the critical current value, the product of the total critical current value for each layer of the superconducting tape and the maintenance factor in the magnetic field generated in the layer is obtained. Is set to be substantially constant in each layer. Thus, the critical current value of the superconducting tape is set, and the critical current value in the magnetic field generated by energization is made constant in each layer.
これにより、超電導ケーブル100に大電流を流すことで、外側に配置される超電導テープの臨界電流Icの維持率(@77.3K 自己磁場中)が低下しても、この低下する超電導テープは、この低下する超電導テープの層よりも内側の層を構成する超電導テープの臨界電流Icに近い臨界電流値を維持できる。 Thereby, even if the maintenance factor (@ 77.3K in the self magnetic field) of the critical current Ic of the superconducting tape disposed on the outside is decreased by flowing a large current through the superconducting cable 100, this decreased superconducting tape is It is possible to maintain a critical current value close to the critical current Ic of the superconducting tape constituting the inner layer of the lowering superconducting tape layer.
よって、通電中における各層毎の超電導テープの臨界電流値の合計は、ほぼ同じ値となり、超電導ケーブルとしての臨界電流Icを、超電導テープにおける臨界電流値のマージンを小さくして、効率よく、得ることができる。 Therefore, the sum of the critical current values of the superconducting tape for each layer during energization is almost the same value, and the critical current Ic as the superconducting cable can be obtained efficiently by reducing the margin of the critical current value in the superconducting tape. Can do.
このように、本実施の形態によれば、大容量の通電を実現するために、超電導テープ131〜134を多層配置した構造で、磁場の影響があっても、各層の超電導テープ131〜134の臨界電流を最大限活かして、超電導ケーブルとして最も大きな所望の送電容量を効率よく確保できる。 As described above, according to the present embodiment, in order to realize energization of a large capacity, the superconducting tapes 131 to 134 have a structure in which the superconducting tapes 131 to 134 are arranged in multiple layers. By making the best use of the critical current, it is possible to efficiently secure the largest desired transmission capacity as a superconducting cable.
また、超電導ケーブルにおいて、内側の層から外側の層の順に超電導特性(臨界電流値)が優れた超電導テープは、全て同様の製造方法で製造されている。このように同性能の超電導テープを、MOD法等を用いて製造した際に、製品誤差に起因して、超電導特性(臨界電流値)が若干悪い超電導テープが製造される場合がある。この場合でも、同様に製造された誤差の無い他の超電導テープとともに、同じ超電導ケーブルに使用できる。よって、超電導ケーブルに用いられる複数の超電導テープを歩留まりよく製造できる。 Moreover, in the superconducting cable, all superconducting tapes having excellent superconducting characteristics (critical current values) in the order from the inner layer to the outer layer are manufactured by the same manufacturing method. Thus, when a superconducting tape having the same performance is manufactured by using the MOD method or the like, a superconducting tape having a slightly poor superconducting characteristic (critical current value) may be manufactured due to a product error. Even in this case, it can be used for the same superconducting cable together with other superconducting tapes that are produced without error. Therefore, the several superconducting tape used for a superconducting cable can be manufactured with a sufficient yield.
以下の仕様で上記構成の超電導ケーブル100を試作した。
芯材111を軟銅円形圧縮導体とし、250sqmm、外径19.0mmとした。また、芯材111の外周に、押えテープ(不織布、2枚重ね巻き、外径19.6mm)121で押え巻きした。この押えテープ121上に第1の超電導テープ131として超電導線材(銅メッキ付き、厚さ0.1mm×幅4mm、右巻き、12本、外径19.8mm、よりピッチ240mm)を配置し、第1層を形成した。さらにこの第1の超電導テープ131の外周を、押えテープ(不織布、2枚重ね巻き、外径20.4mm)122で押え巻きした。この押えテープ122上に第2の超電導テープ132として超電導線材(銅メッキ付き、厚さ0.1mm×幅4mm、右巻き、12本、外径20.6mm)を配置し、第2層を形成した。さらに、この第2の超電導テープ132の外周を、押えテープ(不織布、2枚重ね巻き、外径21.2mm)123で押え巻きした。また、この押えテープ123上に第3の超電導テープ133として、超電導線材(鋼メッキ付き、厚さ0.1mm×幅4mm、右巻き、12本、外径20.8mm)を配置し、第3層を形成した。この第3の超電導テープ133の外周を、押えテープ(不織布、2枚重ね巻き、外径21.2mm)124で押え巻きした。この押えテープ124上に、第4の超電導テープ134として超電導線材(銅メッキ付き、厚さ0.1mm×幅4mm、右巻き、12本、外径21.4mm)を配置して第4層を形成し、その上に押えテープ(不織布、2枚重ね巻き、外径21.8mm)を配置して押え巻きした。
A superconducting cable 100 having the above-described configuration was prototyped.
The core material 111 was a soft copper circular compression conductor, 250 sqmm, and an outer diameter of 19.0 mm. Further, a presser tape (nonwoven fabric, two-ply wound, outer diameter 19.6 mm) 121 was wound around the outer periphery of the core material 111. A superconducting wire (with copper plating, thickness 0.1mm x width 4mm, right-handed, twelve, outer diameter 19.8mm, more pitch 240mm) is placed on the presser tape 121 as the first superconducting tape 131, and the first layer Formed. Furthermore, the outer periphery of the first superconducting tape 131 was press-wound with a presser tape 122 (nonwoven fabric, two-ply roll, outer diameter 20.4 mm). A superconducting wire (with copper plating, thickness 0.1 mm × width 4 mm, right-handed, 12 pieces, outer diameter 20.6 mm) was placed on the presser tape 122 as the second superconducting tape 132 to form a second layer. Further, the outer periphery of the second superconducting tape 132 was press-wound with a presser tape (nonwoven fabric, two-ply roll, outer diameter 21.2 mm) 123. In addition, a superconducting wire (with steel plating, thickness 0.1 mm x width 4 mm, right-handed, 12 pieces, outer diameter 20.8 mm) is arranged on the presser tape 123 as the third superconducting tape 133, and the third layer is formed. Formed. The outer periphery of the third superconducting tape 133 was press-wound with a presser tape (nonwoven fabric, two-layered, outer diameter 21.2 mm) 124. On this presser tape 124, a fourth layer is formed by placing a superconducting wire (copper-plated, thickness 0.1mm x width 4mm, right-handed, twelve, outer diameter 21.4mm) as the fourth superconducting tape 134. A presser tape (nonwoven fabric, two-ply roll, outer diameter 21.8 mm) was placed thereon and wound with presser.
<実施例1>
同構成の超電導ケーブルに用いられる超電導テープ(同性能を有するテープとして製造されたもの)の臨界電流値を測定(@77.3K 自己磁場中)し、超電導ケーブルにおいて、第1層、第2層、第3層、第4層の順に、各層を構成する超電導テープの臨界電流値が大きくなるように選定して配置した。ここでは、第1層を臨界電流値100A(@77.3K 自己磁場中)の超電導テープで構成した。また、第2層を臨界電流値112A(@77.3K 自己磁場中)の超電導テープで構成した。更に、第3層を臨界電流値115A(@77.3K 自己磁場中)の超電導テープで構成し、第4層を臨界電流値122A(@77.3K 自己磁場中)の超電導テープで構成した。これら各層の超電導テープは、超電導ケーブルにおいて断面視して放射線上に配置されている。なお、実施例1の超電導ケーブルでは、所定層を構成する超電導テープの臨界電流値と、所定層の上の層を構成する超電導テープの臨界電流値との差は、所定層の超電導テープの臨界電流値の約1.1〜1.5倍である。また、これら同性能の超電導テープ(臨界電流値100A)として製造された超電導テープの臨界電流値の差は製品個体差による。
<Example 1>
The critical current value of the superconducting tape (manufactured as a tape having the same performance) used for the superconducting cable of the same configuration was measured (@ 77.3K in a self-magnetic field), and the first and second layers of the superconducting cable were measured. The third layer and the fourth layer were selected and arranged so that the critical current value of the superconducting tape constituting each layer was increased. Here, the first layer was composed of a superconducting tape having a critical current value of 100 A (in a 77.3K self-magnetic field). The second layer was made of a superconducting tape having a critical current value of 112A (in a 77.3K self-magnetic field). Furthermore, the third layer was composed of a superconducting tape having a critical current value of 115A (@ 77.3K in a self magnetic field), and the fourth layer was composed of a superconducting tape having a critical current value of 122A (in a @ 77.3K self magnetic field). The superconducting tapes of these layers are arranged on the radiation in a cross-sectional view in the superconducting cable. In the superconducting cable of Example 1, the difference between the critical current value of the superconducting tape constituting the predetermined layer and the critical current value of the superconducting tape constituting the layer above the predetermined layer is the criticality of the superconducting tape of the predetermined layer. It is about 1.1 to 1.5 times the current value. Moreover, the difference in the critical current value of the superconducting tape manufactured as the superconducting tape having the same performance (critical current value 100A) depends on individual product differences.
<比較例1>
同構成の超電導ケーブルの第1層〜第4層を、それぞれ構成する超電導テープの臨界電流値を100A(@77.3K 自己磁場中)とみなして配置した。
<Comparative Example 1>
The first to fourth layers of the superconducting cable having the same configuration were arranged assuming that the critical current value of the superconducting tape constituting each layer was 100 A (in a 77.3K self-magnetic field).
これら実施例1と比較例1のケーブルの臨界電流Icの測定結果を表1に示す。なお、測定は、それぞれの超電導ケーブルを液体窒素容器内に配置し、直流四端子法により液体窒素温度で、各超電導ケーブルの臨界電流Icを計測した。なおケーブルの臨界電流の閾値は電界基準0.5μV/cmとした。 Table 1 shows the measurement results of the critical current Ic of the cables of Example 1 and Comparative Example 1. In the measurement, each superconducting cable was placed in a liquid nitrogen container, and the critical current Ic of each superconducting cable was measured at a liquid nitrogen temperature by a direct current four-terminal method. The threshold value of the critical current of the cable was set to an electric field standard of 0.5 μV / cm.
比較例1では、超電導テープは全部同じ特性(臨界電流値)とみなして超電導ケーブルの各層を構成している。 In Comparative Example 1, the superconducting tape is regarded as the same characteristic (critical current value), and each layer of the superconducting cable is configured.
層毎の超電導テープにおける自己磁場中の臨界電流Icの維持率(%)は、上述したように第1層は93%、第2層は83%、第3層は81%、第4層は76%となる。 As described above, the maintenance ratio (%) of the critical current Ic in the self-magnetic field in the superconducting tape for each layer is 93% for the first layer, 83% for the second layer, 81% for the third layer, 76%.
よって、比較例1の超電導ケーブルでは、1本の臨界電流Icが100Aの超電導線材を用いる場合、第1層:100A×0.93×12=1116A、第2層:100×0.83×12=996A、第3層:100×0.81×12=972A、第4層:100×0.76×12=912Aとなった。 Therefore, in the superconducting cable of Comparative Example 1, when one superconducting wire having a critical current Ic of 100 A is used, the first layer: 100 A × 0.93 × 12 = 1116 A, the second layer: 100 × 0.83 × 12 = 996 A, third layer: 100 × 0.81 × 12 = 972 A, fourth layer: 100 × 0.76 × 12 = 912 A.
このように、比較例1では、通電により発生する磁場の影響によって、各層を構成する超電導テープの臨界電流値は、外側層に位置するもの程、磁場の影響を受けて、小さくなる。つまり、超電導テープは、外層部分に配置されるにつれて(第1層から第4層に行くにつれて)特性が悪くなっている。 As described above, in Comparative Example 1, due to the influence of the magnetic field generated by energization, the critical current value of the superconducting tape constituting each layer becomes smaller due to the influence of the magnetic field as it is located in the outer layer. That is, the characteristics of the superconducting tape deteriorate as it is disposed in the outer layer portion (from the first layer to the fourth layer).
これにより、比較例1では、第1層〜第4層のうち、第4層部分が最も低い912Aとなっている。このため、比較例1の超電導ケーブルとして臨界電流Ic(磁場がかかったときの維持率を加味した超電導ケーブル全体のトータル臨界電流値)は、最も小さい値としての臨界電流Icを反映するので、912×4の3648Aになった。すなわち、912Aよりも大きい臨界電流値を有する第1層〜第3層のマージン分(912Aを超えた臨界電流値分)が無駄となっている。 Thereby, in the comparative example 1, among the first layer to the fourth layer, the fourth layer portion is the lowest 912A. For this reason, since the critical current Ic (the total critical current value of the entire superconducting cable considering the maintenance factor when a magnetic field is applied) as the superconducting cable of Comparative Example 1 reflects the critical current Ic as the smallest value, 912 It became 3648A of x4. That is, the margin of the first to third layers having a critical current value larger than 912A (the critical current value exceeding 912A) is wasted.
これに対して、実施例1の臨界電流値のトータル(磁場がかかったときの維持率を加味した状態のケーブル全体のトータル臨界電流値)は、最も低い第4層部分の1113A×4(層)=4452Aとなった。実施例1では、比較例1と比較して大きな臨界電流値が得られた。 On the other hand, the total critical current value of Example 1 (the total critical current value of the entire cable in consideration of the maintenance ratio when a magnetic field is applied) is 1113A × 4 (layer) of the lowest fourth layer portion. ) = 4452A. In Example 1, a larger critical current value was obtained than in Comparative Example 1.
以上、本発明の実施の形態について説明した。なお、以上の説明は本発明の好適な実施の形態の例証であり、本発明の範囲はこれに限定されない。つまり、上記装置の構成や各部分の形状についての説明は一例であり、本発明の範囲においてこれらの例に対する様々な変更や追加が可能であることは明らかである。 The embodiment of the present invention has been described above. The above description is an illustration of a preferred embodiment of the present invention, and the scope of the present invention is not limited to this. That is, the description of the configuration of the apparatus and the shape of each part is an example, and it is obvious that various modifications and additions to these examples are possible within the scope of the present invention.
本発明に係る超電導ケーブルは、超電導線材を多層配置した構造で、効率よく、所望の送電容量を確保できる効果を有し、少ない本数で大容量の送電を可能にする超電導ケーブルとして有用である。 The superconducting cable according to the present invention has a structure in which superconducting wires are arranged in multiple layers, has an effect of ensuring a desired power transmission capacity efficiently, and is useful as a superconducting cable that enables large-capacity power transmission with a small number of cables.
100 超電導ケーブル
111 芯材
121、122、123、124 押えテープ
131、132、133、134 超電導テープ(超電導線材)
100 Superconducting cable 111 Core material 121, 122, 123, 124 Presser tape 131, 132, 133, 134 Superconducting tape (superconducting wire)
Claims (3)
各層は、同じ本数の同じ幅の前記超電導線材により構成され、
前記超電導線材の臨界電流値は、所定層を構成する超電導線材よりも前記所定層の外側の層を構成する超電導線材の方が高く、
前記所定層の直外側の層の超電導線材の臨界電流値は、前記所定層の超電導線材の臨界電流値の1.1〜1.5倍である、
超電導ケーブル。 REBa y Cu 3 O z system formed on the substrate via an intermediate layer (RE represents one or more elements selected from Y, Nd, Sm, Eu, Gd and Ho, and y ≦ 2 and z = 6.2 to 7) superconducting wires having superconducting layers are arranged concentrically in multiple layers ,
Each layer is composed of the same number of the same superconducting wire with the same width ,
The critical current value of the superconducting wire is higher in the superconducting wire constituting the outer layer of the predetermined layer than in the superconducting wire constituting the predetermined layer,
The critical current value of the superconducting wire in the layer immediately outside the predetermined layer is 1.1 to 1.5 times the critical current value of the superconducting wire in the predetermined layer .
Superconducting cable.
請求項1に記載の超電導ケーブル。 The total sum of the critical current value of a superconducting wire of the predetermined layer when applying current to the superconducting wire, 0 of the total sum of the critical current value of a superconducting wire straight outer layer of the predetermined layer. 9 to 1.1 times,
The superconducting cable according to claim 1.
請求項1または2に記載の超電導ケーブル。 The total sum of the critical current value of the layer by layer at the time of supplying an electric current to the superconducting wire is the same,
The superconducting cable according to claim 1 or 2 .
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013159009A JP6163039B2 (en) | 2013-07-31 | 2013-07-31 | Superconducting cable |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013159009A JP6163039B2 (en) | 2013-07-31 | 2013-07-31 | Superconducting cable |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2015032363A JP2015032363A (en) | 2015-02-16 |
JP6163039B2 true JP6163039B2 (en) | 2017-07-12 |
Family
ID=52517551
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2013159009A Active JP6163039B2 (en) | 2013-07-31 | 2013-07-31 | Superconducting cable |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6163039B2 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110911046A (en) * | 2019-12-11 | 2020-03-24 | 广东电网有限责任公司 | Current-limiting type high-temperature superconducting cable |
JP7516220B2 (en) | 2020-11-19 | 2024-07-16 | 株式会社フジクラ | Oxide superconducting wire and superconducting cable |
CN116259443B (en) * | 2023-01-06 | 2024-06-28 | 国网浙江省电力有限公司绍兴供电公司 | Multi-layer spiral cable topological structure with variable critical current and preparation method and application thereof |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01204313A (en) * | 1988-02-10 | 1989-08-16 | Hitachi Ltd | Manufacture of superconductive hollow cable made of oxide |
-
2013
- 2013-07-31 JP JP2013159009A patent/JP6163039B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2015032363A (en) | 2015-02-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5663127B2 (en) | System for transmitting current including magnetically separated superconducting conductors | |
JPH11506260A (en) | AC cable with twisted electrical conductor | |
JP5192741B2 (en) | Superconducting conductor and superconducting cable with superconducting conductor | |
WO2015129272A1 (en) | Terminal structure for superconducting cable and method for manufacturing same | |
JP5115778B2 (en) | Superconducting cable | |
JP6163039B2 (en) | Superconducting cable | |
JP2009151993A (en) | Superconducting wire, superconducting wire manufacturing method, superconductor manufacturing method, superconducting equipment manufacturing method and superconducting wire manufacturing device | |
WO2010126099A1 (en) | Current terminal structure of superconducting wire material and superconducting cable having this current terminal structure | |
US12046393B2 (en) | Superconductive wire, stacked superconductive wire, superconductive coil and superconductive cable | |
JP2007305386A (en) | Superconducting wire rod, superconductor, superconducting apparatus, manufacturing method of the superconducting wire rod, and manufacturing method of the superconductor | |
JP2019186167A (en) | PRECURSOR OF Nb3Sn SUPERCONDUCTING WIRE ROD AND Nb3Sn SUPERCONDUCTING WIRE ROD | |
JP5385746B2 (en) | Superconducting cable | |
JP2011003468A (en) | Superconductive cable | |
JP2006196720A (en) | Superconductor and superconducting coil using the same | |
JP5604213B2 (en) | Superconducting equipment | |
JP4986291B2 (en) | Superconducting cable | |
JP5526629B2 (en) | Superconducting coil body manufacturing method and superconducting coil body | |
JP2008282584A (en) | Superconducting tape and manufacturing method therefor | |
JP4662203B2 (en) | Superconducting cable | |
JP5041414B2 (en) | Superconducting wire and superconducting conductor | |
JP4566576B2 (en) | Dislocation segment conductor | |
JP6214196B2 (en) | Oxide superconducting coil and superconducting equipment provided with the same | |
JP2008282566A (en) | Bismuth oxide superconducting element wire, bismuth oxide superconductor, superconducting coil, and manufacturing method of them | |
JP2009048793A (en) | Superconducting compound wire rod and superconducting cable | |
JP2003007150A (en) | Minimizing method of alternating current loss of high- temperature superconductive wire |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20160715 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20170316 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20170328 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20170526 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20170606 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20170616 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6163039 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
R371 | Transfer withdrawn |
Free format text: JAPANESE INTERMEDIATE CODE: R371 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |