JP2011003468A - Superconductive cable - Google Patents

Superconductive cable Download PDF

Info

Publication number
JP2011003468A
JP2011003468A JP2009146883A JP2009146883A JP2011003468A JP 2011003468 A JP2011003468 A JP 2011003468A JP 2009146883 A JP2009146883 A JP 2009146883A JP 2009146883 A JP2009146883 A JP 2009146883A JP 2011003468 A JP2011003468 A JP 2011003468A
Authority
JP
Japan
Prior art keywords
superconducting
layer
magnetic field
magnetic
wire
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009146883A
Other languages
Japanese (ja)
Other versions
JP5397994B2 (en
Inventor
Masayoshi Oya
正義 大屋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
International Superconductivity Technology Center
Sumitomo Electric Industries Ltd
Original Assignee
International Superconductivity Technology Center
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by International Superconductivity Technology Center, Sumitomo Electric Industries Ltd filed Critical International Superconductivity Technology Center
Priority to JP2009146883A priority Critical patent/JP5397994B2/en
Publication of JP2011003468A publication Critical patent/JP2011003468A/en
Application granted granted Critical
Publication of JP5397994B2 publication Critical patent/JP5397994B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a superconductive cable capable of reducing loss of an alternating current.SOLUTION: The superconductive cable is provided with a cable core which has a superconductive conductor layer formed by spirally winding a plurality of superconductive wire rods 120 on the outer circumference of a former 11, and the superconductor layer has a multi-layer structure in which the superconductive wire rod 120 is laminated in radial direction of the cable core. Then, in the superconductive conductor layer, an outer circumference side layer is formed by winding spirally the superconductive wire rod 120 similarly on the outer circumference of the inner circumference side layer 12a, and a magnetic field smoothing layer 12m consisting of a magnetic material is installed between the inner circumference side layer and the outer circumference side layer.

Description

本発明は、多層構造の超電導導体層を有する超電導ケーブルに関する。特に、交流損失の低減が可能である超電導ケーブルに関する。   The present invention relates to a superconducting cable having a superconducting conductor layer having a multilayer structure. In particular, the present invention relates to a superconducting cable that can reduce AC loss.

超電導ケーブルは、従来の電力ケーブルと比較して、コンパクトな形状で、かつ、大容量の電力を送電できることから、省エネルギー技術として期待されている。最近では、超電導線材そのものの高性能化はもちろんのこと、より低損失なケーブル構造の研究開発が活発に進められている(例えば、特許文献1を参照)。   A superconducting cable is expected as an energy saving technology because it has a compact shape and can transmit a large amount of power as compared with a conventional power cable. Recently, research and development of a cable structure with lower loss as well as higher performance of the superconducting wire itself have been actively promoted (see, for example, Patent Document 1).

超電導ケーブルは、超電導導体層を有するケーブルコアを二重管構造の断熱管内に収納し、この断熱管内に冷媒(例、液体窒素(LN2))を流通させることで、超電導導体層を冷却して超電導状態とする構造のものが代表的である。 A superconducting cable cools a superconducting conductor layer by storing a cable core having a superconducting conductor layer in a heat insulating pipe having a double pipe structure and circulating a refrigerant (eg, liquid nitrogen (LN 2 )) in the heat insulating pipe. A typical structure is a superconducting state.

図3は、超電導ケーブルの代表的な基本構造を示す図である。超電導ケーブル100は、3心のケーブルコア10を撚り合わせた状態で断熱管20内に一括に収納した構造である。断熱管20は、内管21と外管22とからなる二重管構造のコルゲート管であり、両管21、22の間に断熱材23が配置されている。また、断熱管20(外管22)の外周には防食層24が形成されている。   FIG. 3 is a diagram showing a typical basic structure of a superconducting cable. The superconducting cable 100 has a structure in which three cable cores 10 are twisted and housed together in a heat insulating tube 20. The heat insulating tube 20 is a corrugated tube having a double tube structure including an inner tube 21 and an outer tube 22, and a heat insulating material 23 is disposed between both the tubes 21 and 22. An anticorrosion layer 24 is formed on the outer periphery of the heat insulating tube 20 (outer tube 22).

一方、ケーブルコア10は、中心から順にフォーマ11、超電導導体層12、絶縁層13、超電導シールド層14、常電導保護層15を配置した構造である。フォーマ11は、通常、外形が円形状であり、一般的には絶縁被覆を施した銅素線を複数本撚り合わせて形成されている。超電導導体層12は、フォーマの外周にテープ状の複数の超電導線材120をスパイラル巻きして形成されており、図示するように、ケーブルコアの径方向に超電導線材120が積層された多層構造である。また、超電導導体層12において、各層を構成する超電導線材の間(図4(B)中、内周側の層12aと外周側の層12bとの間)には、例えばクラフト紙などの層間紙を巻回した層間絶縁層(図4(B)中、符号12iで示す)が形成されており、電気的に絶縁されている。層間紙のサイズは、幅20mm、厚さ50〜100μm程度である。   On the other hand, the cable core 10 has a structure in which a former 11, a superconducting conductor layer 12, an insulating layer 13, a superconducting shield layer 14, and a normal conducting protective layer 15 are arranged in order from the center. The former 11 generally has a circular outer shape, and is generally formed by twisting a plurality of copper strands coated with an insulating coating. The superconducting conductor layer 12 is formed by spirally winding a plurality of tape-shaped superconducting wires 120 around the outer periphery of the former, and has a multilayer structure in which the superconducting wires 120 are laminated in the radial direction of the cable core as shown in the figure. . Also, in the superconducting conductor layer 12, between the superconducting wires constituting each layer (between the inner peripheral layer 12a and the outer peripheral layer 12b in FIG. 4B), an interlayer paper such as kraft paper is used. An interlayer insulating layer (indicated by reference numeral 12i in FIG. 4B) is formed and is electrically insulated. The size of the interlayer paper is about 20 mm wide and about 50-100 μm thick.

超電導線材としては、Bi(ビスマス)系銀シース線材やRE123系薄膜線材が知られている(RE:希土類元素、例えばY(イットリウム)、Ho(ホルミウム)、Nd(ネオジウム)、Sm(サマリウム)、Gd(ガドリウム)など)。Bi系銀シース線材は、銀又は銀合金のシース内に例えばBi2Sr2CaCu2Ox(Bi2212)或いは(BiPb)2Sr2Ca2Cu3O10+d(Bi2223)で表される超電導体の原料粉末を充填し、伸線・焼結・圧延加工することで製造されている。一方、RE123系薄膜線材は、ステンレスやNi基合金(例:ハステロイ(登録商標))などの基板上に例えばREBa2Cu3O7-d(RE123)で表される超電導体の薄膜を蒸着することで製造されている。特に、薄膜線材は、超電導薄膜の厚みが薄いため、一般的に銀シース線材よりも平行磁場に対する損失特性に優れているといわれている。 As superconducting wires, Bi (bismuth) -based silver sheath wires and RE123-based thin film wires are known (RE: rare earth elements such as Y (yttrium), Ho (holmium), Nd (neodymium), Sm (samarium), Gd (Gadolinium). Bi-based silver sheath wire is a superconductivity represented by Bi 2 Sr 2 CaCu 2 O x (Bi2212) or (BiPb) 2 Sr 2 Ca 2 Cu 3 O 10 + d (Bi2223) in a silver or silver alloy sheath. It is manufactured by filling body powder and drawing, sintering, and rolling. On the other hand, RE123-based thin film wire deposits a superconductor thin film represented by, for example, REBa 2 Cu 3 O 7-d (RE123) on a substrate such as stainless steel or Ni-based alloy (eg, Hastelloy (registered trademark)). It is manufactured by. In particular, it is said that a thin film wire is generally superior in loss characteristics with respect to a parallel magnetic field than a silver sheath wire because the thickness of the superconducting thin film is thin.

また、例えば特許文献2には、超電導導線の周囲に2重の磁気遮蔽体が配設された電力ケーブルが開示されている。   For example, Patent Document 2 discloses a power cable in which a double magnetic shield is disposed around a superconducting wire.

特開2005‐100777号公報Japanese Patent Laid-Open No. 2005-100777 特開昭58‐147906号公報JP 58-147906 A

しかし、従来の超電導ケーブルは、交流損失の低減が不十分であり、更なる改善が望まれている。   However, conventional superconducting cables are insufficient in reducing AC loss, and further improvements are desired.

超電導導体層は、ケーブルコアの曲げ特性を考慮して、図4(A)に示すように、隣り合う超電導線材120間にギャップgが設けられている。また、超電導線材には、加工性、機械的強度、取り扱い性を考慮して、銀シースや基板が使用されている。そして、超電導線材をフォーマにスパイラル巻きしたとき、線材はフォーマに沿って湾曲変形し難く、図4(A)に示すように、線材120が巻回されたフォーマ11を断面視した場合、線材120が描く外形(輪郭)が多角形となる。   In consideration of the bending characteristics of the cable core, the superconducting conductor layer is provided with a gap g between adjacent superconducting wires 120 as shown in FIG. In addition, a silver sheath or a substrate is used for the superconducting wire in consideration of workability, mechanical strength, and handleability. When the superconducting wire is spirally wound around the former, the wire is difficult to bend and deform along the former. As shown in FIG. 4A, when the former 11 around which the wire 120 is wound is viewed in cross section, the wire 120 The outer shape (contour) drawn by becomes a polygon.

このような超電導ケーブルにおいて、超電導線材に交流電流が流れると、それに伴い、線材が構成する超電導導体層の各層において周方向に沿って交流磁場が発生する。このときの周方向の磁場は、線材が描く外形に依存し、円形ではなく、多角形となるため、中心から同一半径の周方向では不均一となり、また、多角形の頂点に位置する箇所では、径方向の磁場が生成される。特に、この箇所にはギャップが設けられていることから、磁場の乱れが大きい。その結果、図4(B)に例示するような従来のケーブルコア構造では、内周側の層12aを構成する線材120に流れる電流に起因して生成された径方向の磁場が、線材間に設けられたギャップから漏れ、外周側の層12bを構成する線材120のテープ面に対して垂直に印加されるため、外周側の層に大きな交流損失が発生する。   In such a superconducting cable, when an alternating current flows through the superconducting wire, an alternating magnetic field is generated along the circumferential direction in each of the superconducting conductor layers formed by the wire. The magnetic field in the circumferential direction at this time depends on the outer shape drawn by the wire, and is not a circle but a polygon. A radial magnetic field is generated. In particular, since the gap is provided at this location, the magnetic field is greatly disturbed. As a result, in the conventional cable core structure illustrated in FIG. 4B, the radial magnetic field generated due to the current flowing in the wire 120 constituting the inner peripheral layer 12a is generated between the wires. Leakage occurs from the provided gap, and since the voltage is applied perpendicularly to the tape surface of the wire 120 constituting the outer peripheral layer 12b, a large AC loss occurs in the outer peripheral layer.

本発明は、上記の事情に鑑みてなされたものであり、その目的の一つは、交流損失の低減が可能である超電導ケーブルを提供することにある。   The present invention has been made in view of the above circumstances, and one of its purposes is to provide a superconducting cable capable of reducing AC loss.

外周側の層に発生する交流損失を低減するには、内周側の層における周方向の磁場を円形に近づくように平滑化することが挙げられる。そこで、線材が描く外形を円形に近づける一手段として、線材をより細線化することが考えられる。しかし、線材の細線化は、線材の使用本数の増加に伴う巻回作業性の低下により、巻回作業に多大な時間を要する。また、線材の使用本数の増加により、隣り合う線材間のギャップの管理が難しくなる。   In order to reduce the AC loss generated in the outer peripheral layer, the circumferential magnetic field in the inner peripheral layer may be smoothed so as to approach a circle. Therefore, it is conceivable to make the wire more thin as one means for bringing the outer shape drawn by the wire closer to a circle. However, the thinning of the wire rod requires a lot of time for the winding work due to a decrease in winding workability accompanying an increase in the number of wires used. Moreover, management of the gap between adjacent wires becomes difficult due to an increase in the number of wires used.

本発明の超電導ケーブルは、フォーマの外周に複数の超電導線材をスパイラル巻きして形成された超電導導体層を有するケーブルコアを備え、超電導導体層は、ケーブルコアの径方向に超電導線材が積層された多層構造である。そして、超電導導体層において、内周側の層と外周側の層との間に磁性材料からなる磁場平滑化層が設けられていることを特徴とする。   The superconducting cable of the present invention includes a cable core having a superconducting conductor layer formed by spirally winding a plurality of superconducting wires around the outer periphery of the former, and the superconducting conductor layer is formed by stacking superconducting wires in the radial direction of the cable core. It has a multilayer structure. In the superconducting conductor layer, a magnetic field smoothing layer made of a magnetic material is provided between the inner peripheral layer and the outer peripheral layer.

この構成によれば、磁性材料からなる磁場平滑化層が、内周側の層が生成する磁場を周方向に沿って円形に近づくように平滑化することで、外周側の層に印加される径方向の磁場が減少するため、交流損失の低減が可能である。   According to this configuration, the magnetic field smoothing layer made of a magnetic material is applied to the outer peripheral layer by smoothing the magnetic field generated by the inner peripheral layer so as to approach a circle along the circumferential direction. Since the radial magnetic field decreases, AC loss can be reduced.

磁場平滑化層を構成する磁性材料としては、比透磁率が高いことが好ましく、例えば比透磁率が10以上、特に20以上であることが望ましい。比透磁率が高い磁性材料は、磁場を通し易く、磁場の平滑化に寄与する。   The magnetic material constituting the magnetic field smoothing layer preferably has a high relative permeability. For example, the relative permeability is preferably 10 or more, particularly 20 or more. A magnetic material having a high relative permeability is easy to pass a magnetic field and contributes to the smoothing of the magnetic field.

より好ましくは、磁性材料の比透磁率が、超電導線材を構成するいずれの材料の比透磁率より高い方がよい。これは、磁場平滑化層を構成する磁性材料の比透磁率が超電導線材を構成する材料の比透磁率より低い場合、内周側の層に生成された径方向の磁場が磁場平滑化層に比べて外側層を構成する超電導線材に通り易くなるため、交流損失の低減効果が不十分になる虞がある。一方、磁場平滑化層の比透磁率が超電導線材の比透磁率より高い場合、交流損失の低減効果が得られ易い。   More preferably, the relative permeability of the magnetic material should be higher than the relative permeability of any material constituting the superconducting wire. This is because when the relative magnetic permeability of the magnetic material constituting the magnetic field smoothing layer is lower than the relative magnetic permeability of the material constituting the superconducting wire, the radial magnetic field generated in the inner peripheral layer is applied to the magnetic field smoothing layer. Compared to the superconducting wire constituting the outer layer, the AC loss reduction effect may be insufficient. On the other hand, when the relative permeability of the magnetic field smoothing layer is higher than the relative permeability of the superconducting wire, it is easy to obtain an AC loss reduction effect.

上述したように、磁性材料は、高透磁率であることが好ましいが、より好ましくは高透磁率かつ低ヒステリシス損の軟磁性材料であることが好ましい。低ヒステリシス損であれば、磁場平滑化層に印加される磁場によって発生するヒステリシス損を低減することができ、以って交流損失の低減が期待できる。具体的な軟磁性材料としては、例えば純鉄、ニッケル、コバルト、ケイ素鋼、パーマロイ及びフェライトなどが挙げられる。   As described above, the magnetic material preferably has a high magnetic permeability, but more preferably a soft magnetic material having a high magnetic permeability and a low hysteresis loss. If the hysteresis loss is low, the hysteresis loss generated by the magnetic field applied to the magnetic field smoothing layer can be reduced, and thus reduction of the AC loss can be expected. Specific examples of soft magnetic materials include pure iron, nickel, cobalt, silicon steel, permalloy, and ferrite.

磁場平滑化層の厚みは、0.5μm以上2μm以下であることが好ましい。磁場平滑化層が厚くなると、その分ヒステリシス損が増大する傾向がある。そこで、磁場平滑化層の厚みを0.5μm以上とすることで、磁路を確保しつつ、2μm以下とすることで、ヒステリシス損の抑制を図ることができる。   The thickness of the magnetic field smoothing layer is preferably 0.5 μm or more and 2 μm or less. As the magnetic field smoothing layer becomes thicker, the hysteresis loss tends to increase accordingly. Therefore, by setting the thickness of the magnetic field smoothing layer to 0.5 μm or more, it is possible to suppress hysteresis loss by setting the thickness to 2 μm or less while ensuring a magnetic path.

超電導線材は、薄膜線材であることが好ましい。上述したように、薄膜線材は、銀シース線材に比べて平行磁場に対する損失特性に優れており、本発明による交流損失の低減効果が大きくなることが期待される。また、薄膜線材を用いることで、超電導導体層の厚みを薄くすることが可能であり、ケーブルコアひいては超電導ケーブル全体の小径化を図ることができる。   The superconducting wire is preferably a thin film wire. As described above, the thin film wire is superior in the loss characteristics with respect to the parallel magnetic field as compared with the silver sheath wire, and it is expected that the effect of reducing the AC loss according to the present invention is increased. Further, by using a thin film wire, it is possible to reduce the thickness of the superconducting conductor layer, and to reduce the diameter of the cable core and thus the entire superconducting cable.

本発明の超電導ケーブルは、多層構造の超電導導体層において内周側の層と外周側の層との間に磁場平滑化層が設けられていることで、交流損失の低減が可能である。   In the superconducting cable of the present invention, a magnetic field smoothing layer is provided between the inner peripheral layer and the outer peripheral layer in the superconducting conductor layer having a multilayer structure, so that AC loss can be reduced.

実施の形態1に係る超電導ケーブルにおけるケーブルコアの超電導導体層の要部概略断面図であり、(A)は、磁場平滑化層の断面形状を線材が描く外形に沿って形成した場合を示し、(B)は、磁場平滑化層の断面形状を円形に形成した場合を示す。It is a principal part schematic sectional drawing of the superconducting conductor layer of the cable core in the superconducting cable which concerns on Embodiment 1, (A) shows the case where the cross-sectional shape of a magnetic field smoothing layer is formed along the external shape which a wire draws, (B) shows the case where the cross-sectional shape of the magnetic field smoothing layer is formed in a circular shape. 磁性テープの概略斜視図であり、(A)は、磁性材料のみからなる磁性テープを示し、(B)は、基材表面に磁性材料を被覆した磁性テープを示す。It is a schematic perspective view of a magnetic tape, (A) shows the magnetic tape which consists only of magnetic materials, (B) shows the magnetic tape which coat | covered the magnetic material on the base-material surface. 超電導ケーブルの代表的な基本構造を説明する概略斜視図である。It is a schematic perspective view explaining the typical basic structure of a superconducting cable. (A)は、超電導線材をフォーマに巻回した状態を説明する概略断面図である。(B)は、超電導線材を巻回して形成された超電導導体層を説明する部分拡大概略断面図である。(A) is a schematic sectional drawing explaining the state which wound the superconducting wire around the former. (B) is a partially enlarged schematic sectional view for explaining a superconducting conductor layer formed by winding a superconducting wire.

以下、本発明の実施の形態を図を用いて説明する。また、図中において同一部材には同一符号を付している。なお、実施の形態で説明する超電導ケーブルの基本構造は、図3、4を用いて説明した従来の超電導ケーブルの基本構造と同様であり、以下では従来との相違点を中心に説明し、その他の点については説明を省略する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. Moreover, the same code | symbol is attached | subjected to the same member in the figure. The basic structure of the superconducting cable described in the embodiment is the same as the basic structure of the conventional superconducting cable described with reference to FIGS. 3 and 4, and the following description will focus on the differences from the conventional one. Description of this point is omitted.

[実施の形態1]
図1は、超電導ケーブルにおけるケーブルコアの超電導導体層をその長手方向に直交する方向に切断した断面を示す。実際には、超電導導体層は、フォーマの外周に複数の超電導線材をスパイラル巻きして形成され、かつ、ケーブルコアの径方向に超電導線材が積層された多層構造であるが、この図1では、超電導線材120が構成する超電導導体層の各層のうち、フォーマ11に最も近接する内周側の層12a(1層目)のみを示す。
[Embodiment 1]
FIG. 1 shows a cross section of the superconducting conductor layer of a cable core in a superconducting cable, cut in a direction perpendicular to the longitudinal direction. Actually, the superconducting conductor layer is formed by spirally winding a plurality of superconducting wires around the outer periphery of the former, and has a multilayer structure in which superconducting wires are laminated in the radial direction of the cable core. Of the layers of the superconducting conductor layer formed by the superconducting wire 120, only the inner peripheral layer 12a (first layer) closest to the former 11 is shown.

超電導導体層において、内周側の層12aの外周には、同じように超電導線材をスパイラル状に巻回して外周側の層(2層目)が形成されているが、内周側の層と外周側の層との間には磁性材料からなる磁場平滑化層12mが設けられている。この磁場平滑化層12mは、内周側の層12aの外周に、例えば後述する磁性テープを巻回することで、周方向にほぼ一様に形成されている。磁場平滑化層12mを構成する磁性材料としては、比透磁率が10以上の軟磁性材料が好ましく、例えば純鉄、ニッケル、コバルト、ケイ素鋼(例、Fe‐3〜4%Si)、パーマロイ(例、Fe‐35〜85%Ni)及びフェライト(例、Mn‐Zn系フェライト、Ni‐Zn系フェライト)などが挙げられる。ここでは、磁場平滑化層12mは、例えばニッケルで構成されている。   In the superconducting conductor layer, the outer peripheral layer (second layer) is similarly formed on the outer periphery of the inner peripheral layer 12a by spirally winding the superconducting wire. A magnetic field smoothing layer 12m made of a magnetic material is provided between the outer peripheral side layers. The magnetic field smoothing layer 12m is formed substantially uniformly in the circumferential direction by, for example, winding a magnetic tape to be described later around the outer periphery of the inner peripheral layer 12a. The magnetic material constituting the magnetic field smoothing layer 12m is preferably a soft magnetic material having a relative magnetic permeability of 10 or more, such as pure iron, nickel, cobalt, silicon steel (eg, Fe-3 to 4% Si), permalloy ( Examples include Fe-35 to 85% Ni) and ferrite (eg, Mn-Zn ferrite, Ni-Zn ferrite). Here, the magnetic field smoothing layer 12m is made of nickel, for example.

磁性テープとしては、例えば図2に示す態様のものが挙げられる。図2(A)に示す磁性テープM1は、磁性材料mのみからなる磁性テープである。また、磁性テープM1で磁場平滑化層12m(図1参照)を構成した場合に、内周側の層と外周側の層との間の層間絶縁を確保することができない場合などは、例えば層間紙を巻回した層間絶縁層と磁場平滑化層とを組み合わせて設けてもよい。磁性テープのサイズを、幅20mm、厚さ50〜100μm程度とすれば、現状の層間紙と同じようにして巻回することができる。   As a magnetic tape, the thing of the aspect shown in FIG. 2 is mentioned, for example. The magnetic tape M1 shown in FIG. 2 (A) is a magnetic tape made of only the magnetic material m. In addition, when the magnetic field smoothing layer 12m (see FIG. 1) is configured with the magnetic tape M1, if the interlayer insulation between the inner peripheral layer and the outer peripheral layer cannot be ensured, for example, the interlayer A combination of an interlayer insulating layer wound with paper and a magnetic field smoothing layer may be provided. If the size of the magnetic tape is about 20 mm wide and about 50-100 μm thick, it can be wound in the same way as the current interlayer paper.

図2(B)に示す磁性テープM2は、基材sの表面に磁性材料mを被覆した磁性テープである。基材sとしては、例えばクラフト紙、クラフト紙とプラスチックフィルムとを積層した複合紙(PPLP(登録商標、Polypropylene Laminated Paper))やステンレスなどを用いることができる。磁性材料mの被覆方法としては、例えば真空蒸着法、スパッタリング法などの各種物理的蒸着法や化学的蒸着法、或いは電解めっき法、無電解めっき法などのめっき法を用いることができる。磁性テープM1では、磁性材料mを例えば2μm以下といった所定の厚みに加工することが困難であるが、磁性テープM2では、磁性材料mの厚さを所定の厚みに調整し易い。基材のサイズは、幅20mm、厚さ50〜100μm程度とすることが好ましい。   The magnetic tape M2 shown in FIG. 2 (B) is a magnetic tape in which the surface of the base material s is coated with a magnetic material m. As the substrate s, for example, kraft paper, composite paper in which kraft paper and plastic film are laminated (PPLP (registered trademark, Polypropylene Laminated Paper)), stainless steel, or the like can be used. As a method for coating the magnetic material m, for example, various physical vapor deposition methods such as vacuum vapor deposition and sputtering, chemical vapor deposition, or plating methods such as electrolytic plating and electroless plating can be used. In the magnetic tape M1, it is difficult to process the magnetic material m to a predetermined thickness of 2 μm or less, for example, but in the magnetic tape M2, the thickness of the magnetic material m is easily adjusted to a predetermined thickness. The size of the substrate is preferably about 20 mm in width and about 50 to 100 μm in thickness.

このような磁性テープを巻回して内周側の層の外周に磁場平滑化層を形成した場合、磁場平滑化層の断面形状が磁性テープの性質によって変化する。例えば磁性テープが剛性が低く変形し易い場合には、巻回したときに磁性テープが内周側の層の外形に対応して変形するので、図1(A)に示すように、線材120が描く外形に沿って磁場平滑化層12mの断面形状が形成されることになる。一方、磁性テープが高剛性でかつある程度の曲げ性を有する場合には、磁性テープを内周側の層の外形に関係なく円形となるように巻回できるので、図1(B)に示すように、磁場平滑化層12mの断面形状が円形に形成されることになる。磁性テープの剛性や曲げ性などの性質は、磁性テープM1の場合では構成する磁性材料mで決まる。磁性テープM2の場合は、基材sと磁性材料mの組み合わせと厚みで決まり、例えば、基材にクラフト紙といった剛性の低い材料を選択すれば磁性テープの剛性が低下し、一方、ステンレスといった剛性の高い材料を選択すれば磁性テープの剛性が向上する。   When such a magnetic tape is wound to form a magnetic field smoothing layer on the outer periphery of the inner peripheral layer, the cross-sectional shape of the magnetic field smoothing layer changes depending on the properties of the magnetic tape. For example, when the magnetic tape is low in rigidity and easily deformed, the magnetic tape deforms corresponding to the outer shape of the inner peripheral layer when wound, so that the wire 120 is formed as shown in FIG. A cross-sectional shape of the magnetic field smoothing layer 12m is formed along the drawn outline. On the other hand, when the magnetic tape is highly rigid and has a certain degree of bendability, the magnetic tape can be wound into a circular shape irrespective of the outer shape of the inner peripheral layer, and as shown in FIG. In addition, the cross-sectional shape of the magnetic field smoothing layer 12m is formed in a circular shape. In the case of the magnetic tape M1, properties such as rigidity and bendability of the magnetic tape are determined by the magnetic material m to be configured. In the case of magnetic tape M2, it is determined by the combination and thickness of base material s and magnetic material m.For example, if a low-rigidity material such as kraft paper is selected as the base material, the rigidity of the magnetic tape will decrease, whereas the rigidity such as stainless steel If a material having a high thickness is selected, the rigidity of the magnetic tape is improved.

以上説明した実施の形態1に係る超電導ケーブルは、次の効果を奏する。超電導導体層に電流が流れたときに、内周側の層が生成する周方向の磁場の乱れを磁場平滑化層が抑制し、周方向の磁場が円形に近づくように平滑化されるため、外周側の層に印加される径方向の磁場が減少し、交流損失を低減することができる。磁場平滑化層を比透磁率10以上の軟磁性材料で構成することにより、磁場を通り易くして平滑化を図り易く、また、磁場平滑化層におけるヒステリシス損を低減することができる。特に、図1(B)に示すように、磁場平滑化層の断面形状を円形に近づけた場合、内周側の層における周方向の磁場がより円形に近づくように平滑化されるため、効果的に交流損失を低減することができる。   The superconducting cable according to Embodiment 1 described above has the following effects. When a current flows through the superconducting conductor layer, the magnetic field smoothing layer suppresses the disturbance of the circumferential magnetic field generated by the inner circumferential layer, and the circumferential magnetic field is smoothed so as to approach a circle. The radial magnetic field applied to the outer peripheral layer is reduced, and the AC loss can be reduced. By configuring the magnetic field smoothing layer with a soft magnetic material having a relative magnetic permeability of 10 or more, the magnetic field can be easily passed through the magnetic field and smoothed, and the hysteresis loss in the magnetic field smoothing layer can be reduced. In particular, as shown in FIG. 1B, when the cross-sectional shape of the magnetic field smoothing layer is made closer to a circle, the circumferential magnetic field in the inner peripheral layer is smoothed so as to approach a more circular shape. AC loss can be reduced.

(変形例1)
この例では、磁場平滑化層の厚みが2μm以下である。磁場平滑化層の厚みは、磁性材料の比透磁率や保持力などの磁気特性との関係から、磁場平滑化層に求められる特性に応じて適宜決定すればよい。しかし、磁場平滑化層の厚みが厚くなると、その分ヒステリシス損が増大する傾向がある。そこで、磁場平滑化層の厚みを2μm以下にすることで、ヒステリシス損を十分に抑制することができる。一方、磁場平滑化層の厚みの下限値は、磁路を確保するため、0.5μmとすることが好ましい。
(Modification 1)
In this example, the thickness of the magnetic field smoothing layer is 2 μm or less. The thickness of the magnetic field smoothing layer may be appropriately determined according to the characteristics required for the magnetic field smoothing layer from the relationship with the magnetic properties such as the relative permeability and coercive force of the magnetic material. However, as the thickness of the magnetic field smoothing layer increases, the hysteresis loss tends to increase accordingly. Therefore, the hysteresis loss can be sufficiently suppressed by setting the thickness of the magnetic field smoothing layer to 2 μm or less. On the other hand, the lower limit value of the thickness of the magnetic field smoothing layer is preferably 0.5 μm in order to secure a magnetic path.

(変形例2)
この例では、超電導線材がRE123系薄膜線材である。超電導線材としては、銀シース線材、薄膜線材のいずれでもよく、特に限定されないが、薄膜線材を用いることが好ましい。薄膜線材は、銀シース線材に比べて平行磁場に対する損失特性に優れており、交流損失の低減効果が大きくなることが期待できる。また、薄膜線材を用いることで、超電導導体層の厚みを薄くすることが可能であり、ケーブルコアひいては超電導ケーブル全体の小径化を図ることができる。具体的なRE123系薄膜線材としては、例えばY系(YBCO)薄膜線材、Ho系(HoBCO)薄膜線材などが挙げられる。
(Modification 2)
In this example, the superconducting wire is a RE123-based thin film wire. The superconducting wire may be either a silver sheath wire or a thin film wire, and is not particularly limited, but a thin film wire is preferably used. The thin film wire is excellent in loss characteristics with respect to the parallel magnetic field as compared with the silver sheath wire, and it can be expected that the effect of reducing the AC loss is increased. Further, by using a thin film wire, it is possible to reduce the thickness of the superconducting conductor layer, and to reduce the diameter of the cable core and thus the entire superconducting cable. Specific examples of the RE123-based thin film wire include a Y-based (YBCO) thin film wire and a Ho-based (HoBCO) thin film wire.

薄膜線材の場合、フォーマの外周にスパイラル巻きする際に、薄膜線材の超電導薄膜側をケーブルコアの径方向内周側に向ける場合、径方向外周側に向ける場合のいずれでもよい。径方向内周側に向ける場合、超電導薄膜に引張応力が作用し難く、超電導特性の劣化が少ない。径方向外周側に向ける場合、超電導ケーブルの中間接続部又は終端接続部において超電導導体層とその接続対象との電気的導通が取り易い。   In the case of the thin film wire, when spirally wound around the outer periphery of the former, either the superconducting thin film side of the thin film wire is directed to the radially inner peripheral side or the radially outer peripheral side of the cable core may be used. When facing the radially inner side, tensile stress is unlikely to act on the superconducting thin film, and the superconducting properties are less degraded. In the case of directing toward the outer peripheral side in the radial direction, electrical connection between the superconducting conductor layer and its connection object is easy at the intermediate connection portion or the terminal connection portion of the superconducting cable.

(変形例3)
この例では、磁性材料の比透磁率が、超電導線材を構成するいずれの材料の比透磁率より高い。超電導線材には、超電導体の他、銀シース或いはステンレスの基板などが用いられている。これらを構成する材料よりも磁性材料の比透磁率を高くすることで、磁場が外側層を構成する超電導線材よりも磁場平滑化層を通り易くなり、磁場平滑層による交流損失の低減効果が大きくなることが期待できる。銀やステンレスよりも比透磁率が高い磁性材料としては、上記列挙した軟磁性材料、例えばニッケルが挙げられる。
(Modification 3)
In this example, the relative permeability of the magnetic material is higher than the relative permeability of any material constituting the superconducting wire. In addition to the superconductor, a silver sheath or a stainless steel substrate is used as the superconducting wire. By making the relative permeability of the magnetic material higher than the material constituting these, it becomes easier for the magnetic field to pass through the magnetic field smoothing layer than the superconducting wire constituting the outer layer, and the effect of reducing AC loss by the magnetic field smoothing layer is greater. Can be expected. Examples of the magnetic material having a higher relative permeability than silver or stainless steel include the above-described soft magnetic materials such as nickel.

(変形例4)
上記した実施の形態1では、磁性テープを巻回して内周側の層の外周に磁場平滑化層を形成した例を説明したが、ここでは、磁場平滑化層の別の形成方法について説明する。例えば、磁性材料からなる筒状磁性部材を内周側の層の外周に設置して磁場平滑化層を形成することができる。筒状磁性部材は、複数の磁性材料の分割片を組み合わせて筒状にしたものでもよい。また、筒状磁性部材は、筒状基材の表面に磁性材料を被覆したものでもよいし、磁性材料を被覆した分割基材を複数組み合わせて筒状にしたものでもよい。筒状磁性部材は、複数のユニットを長手方向に直列させて連結する必要があるため、ケーブル長が短い場合に好適である。
(Modification 4)
In the first embodiment described above, the example in which the magnetic tape is wound to form the magnetic field smoothing layer on the outer periphery of the inner peripheral layer has been described. Here, another method for forming the magnetic field smoothing layer will be described. . For example, the magnetic field smoothing layer can be formed by installing a cylindrical magnetic member made of a magnetic material on the outer periphery of the inner peripheral layer. The cylindrical magnetic member may be formed by combining a plurality of pieces of magnetic material into a cylindrical shape. In addition, the cylindrical magnetic member may be a cylindrical base material coated with a magnetic material, or a cylindrical base material formed by combining a plurality of divided base materials coated with a magnetic material. The cylindrical magnetic member is suitable when the cable length is short because a plurality of units need to be connected in series in the longitudinal direction.

なお、本発明は、上述した実施の形態に限定されるものではなく、本発明の要旨を逸脱しない範囲で適宜変更することが可能である。実施の形態1では、超電導導体層の1層目と2層目との間に磁場平滑化層を設けた例を説明したが、例えば超電導導体層が3層以上の多層構造である場合、各層間のいずれかに磁場平滑化層を設ければ、本発明による交流損失の低減効果が得られる。また、各層間の全てに磁場平滑化層を設ければ、交流損失の低減効果が大きい。   Note that the present invention is not limited to the above-described embodiment, and can be modified as appropriate without departing from the gist of the present invention. In the first embodiment, the example in which the magnetic field smoothing layer is provided between the first layer and the second layer of the superconducting conductor layer has been described. For example, when the superconducting conductor layer has a multilayer structure of three or more layers, If a magnetic field smoothing layer is provided in any of the layers, the AC loss reduction effect according to the present invention can be obtained. Further, if a magnetic field smoothing layer is provided in all layers, the effect of reducing AC loss is great.

本発明の超電導ケーブルは、交流超電導送電の分野に好適に利用可能である。   The superconducting cable of the present invention can be suitably used in the field of AC superconducting power transmission.

100 超電導ケーブル
10 ケーブルコア
11 フォーマ 12 超電導導体層 13 絶縁層
14 超電導シールド層 15 常電導保護層
20 断熱管
21 内管 22 外管 23 断熱材 24 防食層
120 超電導線材
12a 内周側の層 12b 外周側の層
12i 層間絶縁層 12m 磁場平滑化層
g ギャップ
M1,M2 磁性テープ m 磁性材料 s 基材
100 superconducting cable
10 Cable core
11 Former 12 Superconducting conductor layer 13 Insulating layer
14 Superconducting shield layer 15 Normal conducting protective layer
20 Insulated pipe
21 Inner pipe 22 Outer pipe 23 Insulation 24 Anticorrosion layer
120 Superconducting wire
12a Inner layer 12b Outer layer
12i Interlayer insulation layer 12m Magnetic field smoothing layer
g gap
M1, M2 Magnetic tape m Magnetic material s Base material

Claims (6)

フォーマの外周に複数の超電導線材をスパイラル巻きして形成された超電導導体層を有するケーブルコアを備える超電導ケーブルであって、
前記超電導導体層は、ケーブルコアの径方向に超電導線材が積層された多層構造であり、
前記超電導導体層において、内周側の層と外周側の層との間に磁性材料からなる磁場平滑化層が設けられていることを特徴とする超電導ケーブル。
A superconducting cable comprising a cable core having a superconducting conductor layer formed by spirally winding a plurality of superconducting wires around the former,
The superconducting conductor layer has a multilayer structure in which superconducting wires are laminated in the radial direction of the cable core,
In the superconducting conductor layer, a magnetic field smoothing layer made of a magnetic material is provided between an inner peripheral layer and an outer peripheral layer.
前記磁性材料の比透磁率が、10以上であることを特徴とする請求項1に記載の超電導ケーブル。   The superconducting cable according to claim 1, wherein the magnetic material has a relative permeability of 10 or more. 前記磁性材料が、軟磁性材料であることを特徴とする請求項1又は2に記載の超電導ケーブル。   The superconducting cable according to claim 1, wherein the magnetic material is a soft magnetic material. 前記磁性材料の比透磁率が、前記超電導線材を構成するいずれの材料の比透磁率より高いことを特徴とする請求項1〜3のいずれか一項に記載の超電導ケーブル。   The superconducting cable according to any one of claims 1 to 3, wherein a relative permeability of the magnetic material is higher than a relative permeability of any material constituting the superconducting wire. 前記磁場平滑化層の厚みが、0.5μm以上2μm以下であることを特徴とする請求項1〜4のいずれか一項に記載の超電導ケーブル。   The thickness of the said magnetic field smoothing layer is 0.5 micrometer or more and 2 micrometers or less, The superconducting cable as described in any one of Claims 1-4 characterized by the above-mentioned. 前記超電導線材が、薄膜線材であることを特徴とする請求項1〜5のいずれか一項に記載の超電導ケーブル。   The superconducting cable according to any one of claims 1 to 5, wherein the superconducting wire is a thin film wire.
JP2009146883A 2009-06-19 2009-06-19 Superconducting cable Expired - Fee Related JP5397994B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009146883A JP5397994B2 (en) 2009-06-19 2009-06-19 Superconducting cable

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009146883A JP5397994B2 (en) 2009-06-19 2009-06-19 Superconducting cable

Publications (2)

Publication Number Publication Date
JP2011003468A true JP2011003468A (en) 2011-01-06
JP5397994B2 JP5397994B2 (en) 2014-01-22

Family

ID=43561272

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009146883A Expired - Fee Related JP5397994B2 (en) 2009-06-19 2009-06-19 Superconducting cable

Country Status (1)

Country Link
JP (1) JP5397994B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150050515A (en) * 2013-10-31 2015-05-08 엘에스전선 주식회사 Superconducting cable
JP5724029B2 (en) * 2012-02-23 2015-05-27 株式会社フジクラ Superconducting current lead, superconducting current lead device, and superconducting magnet device
WO2015133204A1 (en) * 2014-03-06 2015-09-11 住友電気工業株式会社 Superconducting cable line and heat insulated pipeline
JP5936130B2 (en) * 2010-12-01 2016-06-15 学校法人中部大学 Superconducting cable and bus bar

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007305386A (en) * 2006-05-10 2007-11-22 Sumitomo Electric Ind Ltd Superconducting wire rod, superconductor, superconducting apparatus, manufacturing method of the superconducting wire rod, and manufacturing method of the superconductor
JP2008047519A (en) * 2006-07-20 2008-02-28 Furukawa Electric Co Ltd:The Superconductor and superconductive cable equipped with superconductor

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007305386A (en) * 2006-05-10 2007-11-22 Sumitomo Electric Ind Ltd Superconducting wire rod, superconductor, superconducting apparatus, manufacturing method of the superconducting wire rod, and manufacturing method of the superconductor
JP2008047519A (en) * 2006-07-20 2008-02-28 Furukawa Electric Co Ltd:The Superconductor and superconductive cable equipped with superconductor

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5936130B2 (en) * 2010-12-01 2016-06-15 学校法人中部大学 Superconducting cable and bus bar
JP5724029B2 (en) * 2012-02-23 2015-05-27 株式会社フジクラ Superconducting current lead, superconducting current lead device, and superconducting magnet device
US10062488B2 (en) 2012-02-23 2018-08-28 Fujikura Ltd. Superconducting current lead, superconducting current lead device, and superconducting magnet device
KR20150050515A (en) * 2013-10-31 2015-05-08 엘에스전선 주식회사 Superconducting cable
KR102241808B1 (en) 2013-10-31 2021-04-19 엘에스전선 주식회사 Superconducting cable
WO2015133204A1 (en) * 2014-03-06 2015-09-11 住友電気工業株式会社 Superconducting cable line and heat insulated pipeline
JP2015181094A (en) * 2014-03-06 2015-10-15 住友電気工業株式会社 Superconducting cable line and heat insulated pipeline

Also Published As

Publication number Publication date
JP5397994B2 (en) 2014-01-22

Similar Documents

Publication Publication Date Title
JP5663127B2 (en) System for transmitting current including magnetically separated superconducting conductors
JP5192741B2 (en) Superconducting conductor and superconducting cable with superconducting conductor
CN101361143B (en) Superconducting cable
US20140302997A1 (en) Superconducting Power Cable
KR20120089568A (en) Superconductor cable and ac power transmission cable
EP1467382A2 (en) Superconducting cable
JP5397994B2 (en) Superconducting cable
JP5240008B2 (en) DC superconducting cable
JP5320098B2 (en) Superconducting wire and superconducting cable using the same
JP5385746B2 (en) Superconducting cable
CN217061586U (en) Stepped high-temperature superconducting CICC conductor with high current-carrying capacity
JP5604213B2 (en) Superconducting equipment
JP4986291B2 (en) Superconducting cable
JP2012256508A (en) Superconductive wire rod and superconductive cable
JP4662203B2 (en) Superconducting cable
JP2008124042A (en) Superconductor
JP5041414B2 (en) Superconducting wire and superconducting conductor
JP6163039B2 (en) Superconducting cable
JP2010080199A (en) Method of manufacturing superconductive cable, superconductive cable, and thin film superconductive wire
JP4844856B2 (en) Superconducting cable
JP4883379B2 (en) Superconducting cable
JP4674457B2 (en) Superconducting coil
WO1999007003A1 (en) A high temperature superconductor and method of making and using same
JP2012174669A (en) Normal temperature insulating type superconducting cable
JP2004063225A (en) Dislocation superconductivity tape unit and superconductive cable

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120222

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130430

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130514

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130702

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130802

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130910

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20130930

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131016

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131018

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees