WO2007080794A1 - Superconducting cable - Google Patents

Superconducting cable Download PDF

Info

Publication number
WO2007080794A1
WO2007080794A1 PCT/JP2006/326091 JP2006326091W WO2007080794A1 WO 2007080794 A1 WO2007080794 A1 WO 2007080794A1 JP 2006326091 W JP2006326091 W JP 2006326091W WO 2007080794 A1 WO2007080794 A1 WO 2007080794A1
Authority
WO
WIPO (PCT)
Prior art keywords
thin film
superconducting
superconducting thin
wire
cable
Prior art date
Application number
PCT/JP2006/326091
Other languages
French (fr)
Japanese (ja)
Inventor
Hiroyasu Yumura
Original Assignee
Sumitomo Electric Industries, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries, Ltd. filed Critical Sumitomo Electric Industries, Ltd.
Publication of WO2007080794A1 publication Critical patent/WO2007080794A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B12/00Superconductive or hyperconductive conductors, cables, or transmission lines
    • H01B12/02Superconductive or hyperconductive conductors, cables, or transmission lines characterised by their form
    • H01B12/06Films or wires on bases or cores
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Definitions

  • the present invention relates to a superconducting cable.
  • it relates to superconducting cables using RE (rare earth) superconducting thin film wires.
  • Bi-based superconducting wires represented by BSCCO (Bi-Sr-Ca-Cu-O) tape wires are being put into practical use as superconducting wires.
  • the BSCCO tape wire is a tape wire having a structure in which a plurality of superconducting filaments made of, for example, Bi2223 phase are embedded in a stable brazing material such as silver.
  • This Bi-based superconducting wire has the advantage that it can be easily processed into a wire, and although it has been proposed to be applied to superconducting cables, superconducting motors, superconducting transformers, etc., it has an even higher field current density (Jc). Improvement is desired.
  • RE-based superconducting thin film wires are being developed as next-generation superconducting wires (for example, Patent Document 1).
  • Figure 6 shows a typical configuration of RE-based superconducting thin film wires.
  • the wire 3 is a tape wire in which an intermediate layer 32, a superconducting thin film 33, and a protective layer 34 are sequentially laminated on a tape-shaped metal substrate 31.
  • Specific examples include Hastelloy (registered trademark) as the metal substrate 31, YSZ as the intermediate layer 32, Y-type 123 (YBa Cu Oy) thin film as the superconducting thin film 33, and protective layer 34.
  • the intermediate layer 32 and the superconducting thin film 33 are formed only on one side of the substrate 31 by laser vapor deposition or the like.
  • Such a RE-based superconducting thin film wire has a higher critical current density (Jc) than that of a Bi-based superconducting wire, and a decrease in critical current (Ic) due to a magnetic field is excellent. It is expected to be used as a next-generation wire following conductive wires.
  • Patent Document 1 Japanese Patent Laid-Open No. 2001-31418
  • a superconducting cable has a structure in which one or more cores are housed in a heat insulating tube.
  • the core includes a core material and a superconducting wire wound around the outer periphery of the core material to form a conductor layer.
  • a RE superconducting thin film wire having a superconducting thin film on one side of the substrate is wound as a superconducting wire, the superconducting thin film is wound inside, that is, on the core material side. This is because when a superconducting thin film wire is wound, a compressive strain is generated inside the bend and a bow I tension strain is generated outside the bend. This is because it is better in bending characteristics to arrange the inside.
  • connection member such as a copper sleeve outside the conductor layer of the abutted cable and soldering between the conductor layer and the connection member.
  • the substrate side is located outside the conductor layer.
  • the present invention has been made in view of the above circumstances, and one of its purposes is to provide a superconducting cable capable of reducing the resistance of a connection point.
  • the above object is achieved by devising the winding method.
  • the superconducting cable of the present invention is a superconducting cable comprising a core material and a conductor layer made of a superconducting thin film wire wound thereon.
  • the superconducting thin film wire has a metal substrate and a RE superconducting thin film formed only on one side of the substrate.
  • the wire is wound so that the surface on which the RE-based superconducting thin film is formed faces outward with respect to the core material.
  • connection member is fitted on the outer periphery of the superconducting thin film wire. In this case, the connection resistance at the connection location can be reduced.
  • the cable of the present invention may have a configuration having a superconducting shield layer. That is, a superconducting thin film having an insulating layer and a superconducting shield layer sequentially on the outside of the conductor layer, the superconducting shield layer having a metal substrate and an RE-based superconducting thin film formed only on one side of the substrate. Use wire. Then, the superconducting thin film wire is wound so that the surface on which the superconducting thin film is formed faces outward with respect to the insulating layer.
  • the RE-based superconducting thin film of the superconducting thin film wire used in the cable of the present invention is preferably composed of a Ho-based superconductor or a Y-based superconductor.
  • the Ho-based superconductor or the Y-based superconductor has a high deviation and can obtain a current density, and is a material suitable for forming a conductor layer and a shield layer of a superconducting cable.
  • Ho-based superconductors are more resistant to moisture degradation than Y-based superconductors.
  • a normal conducting connecting member electrically connected to the superconducting thin film wire at the end is provided at the end of the superconducting cable, and the normal conducting connecting member and the superconducting thin film wire are provided. It is also preferable that the connection length in the longitudinal direction of the cable with the conductor layer is 20 mm or more.
  • connection length is the length in the longitudinal direction of the cable at a location where the superconducting thin film wire and the normal conducting connecting member are electrically connected by solder.
  • the thin film side is wound on the outer peripheral side of the cable by winding the superconducting thin film wire so that the surface on which the RE-based superconducting thin film is formed faces outward with respect to the core material. Can be located.
  • FIG. 1 is a cross-sectional view of the superconducting cable of the present invention.
  • FIG. 2 is a schematic perspective view showing an end portion of a core of the cable of the present invention.
  • FIG. 3 is a cross-sectional view of an RE-based superconducting thin film wire used in the cable of the present invention.
  • FIG. 4 is an explanatory diagram showing a test method for a resistance measurement test.
  • FIG. 5 is a graph showing the measurement results of a resistance measurement test.
  • FIG. 6 is a schematic perspective view showing a configuration of a RE-based superconducting thin film wire.
  • the superconducting cable of the present invention typically has a structure in which a core 2 is accommodated in a heat insulating tube 1 as shown in FIG.
  • the core 2 includes a former 21, a superconducting layer 22, an insulating layer 23, a superconducting shield layer 24, and an outer layer 25 in this order.
  • the superconducting thin film wire 3 is used for the superconducting conductor layer 22 and the superconducting shield layer 24.
  • the superconducting thin film wire 3 has a substrate 31, an intermediate layer 32, a RE-based superconducting thin film 33, a protective layer 34, and a stable layer 35.
  • the intermediate layer 32, the superconducting thin film 33, and the protective layer 34 are sequentially laminated on the upper surface side of the substrate 31, and the protective layer 34 is also formed on the lower surface side of the substrate 31, so that the entire stacked structure is formed. Cover with stabilizing layer 35.
  • FIG. 2 shows the case where the conductor layer 22 is composed of four layers of superconducting thin film wire 3 and the shield layer 24 is composed of two layers of superconducting thin film wire 3. These superconducting thin film wires are spirally wound in multiple layers, and an interlayer insulation 26 is provided between each wire layer.
  • the superconducting thin film side of the wire is positioned on the outer peripheral side of both the conductor layer 22 and the shield layer 24.
  • connection portion with a low connection resistance can be formed by flowing solder between the conductor layer 22 and the conductor layer 22 (shield layer 24).
  • a connection member a Cu sleeve or the like is used for the connection of the conductor layer 22, and a Cu braided material or a Cu sleeve is used for the connection of the shield layer 24.
  • the substrate 31 is made of a metal material (Fig. 3).
  • a metal material Fig. 3
  • preferable metals include nickel alloys (Northernloy (registered trademark)), stainless steel, nickel and the like.
  • the substrate 31 may be a single material force or a composite material.
  • the substrate 31 made of a composite material include those obtained by laminating a silver foil on a stainless steel foil.
  • a tape material is preferably used as the form of the substrate 31, a tape material is preferably used.
  • the intermediate layer 32 plays a role of preventing deterioration of superconducting characteristics by diffusion of components in the substrate 31 to the superconducting thin film 33, but is not an essential configuration.
  • the intermediate layer 32 can be omitted.
  • the intermediate layer 32 may be made of cerium oxide, yttria stable zirconia (YSZ), magnesium oxide, yttrium oxide, ytterbium oxide, norium zirconia, or the like.
  • a high-conductivity superconducting wire can be obtained by imparting orientation to the crystals of the intermediate layer 32.
  • a laser vapor deposition method or the like can be suitably used as a method for forming the intermediate layer 32.
  • the superconducting thin film 33 is of RE type. Typically, an oxide superconductor thin film having a structure of RE Ba Cu O is used. “RE” here is a rare earth element. Examples of rare earth elements include yttrium ( ⁇ ), neodymium (Nd), and gadolinium. ) And samarium (Sm). Specific examples of this superconducting thin film 33 include RE123, that is, YBa Cu O,
  • This superconducting thin film 33 is one of the front and back sides of the substrate 31. It is formed only on the surface.
  • a method for forming the superconducting thin film 33 a laser vapor deposition method or the like can be suitably used.
  • the protective layer 34 for example, Ag or an Ag alloy is preferably used. Silver is preferable because it has little reaction with the superconducting thin film 33.
  • the stable layer 35 Cu, Cu alloy, or the like can be suitably used.
  • the stable layer 35 can be formed by, for example, plating.
  • the force (FIG. 2) about the core 2 can be suitably used for the former 21 such as a hollow pipe or a copper stranded wire.
  • the former 21 such as a hollow pipe or a copper stranded wire.
  • the insulating layer 23 kraft paper or composite paper in which kraft paper and polyolefin film are laminated can be used.
  • the outer layer 25 protects the shield layer 24 and secures insulation against the heat insulating pipe 1 (FIG. 1), and various plastics such as polyethylene can be used.
  • heat insulating tube 1 (FIG. 1)
  • a vacuum structure using a double tube is preferably used as the heat insulating tube 1 (FIG. 1)
  • a vacuum is drawn between the inner pipe 11 and the outer pipe 12 and a super insulation (trade name) is arranged between the two pipes.
  • a bending test was conducted using the RE-based superconducting thin film wire shown in Fig. 3, and changes in the Ic characteristics were examined.
  • a wire sample is placed along an FRP bending jig with a specific bending diameter, bending strain is applied to the wire at room temperature, and the field current value (Ic) at the liquid nitrogen temperature before and after bending is measured.
  • the Ic retention rate after applying bending strain was determined, and the bending diameter at which Ic did not deteriorate was determined.
  • the definition of Ic degradation is that Ic has decreased by more than 5% compared to the initial value before bending.
  • the bending diameter was reduced by 50mm even at 5mm intervals.
  • the test was performed for each of the RE-based superconducting thin film wire material with the RE-based superconducting thin film inside and outside the bending.
  • Wire width approx. 4mm
  • wire thickness approx. 0.15mm
  • Substrate Hastely (registered trademark) thickness lOO / z m
  • Stabilization layer Cu thickness 20 m
  • connection resistance was measured by the following test assuming that the conductor layers are connected to each other through a connecting member.
  • the test method will be described with reference to FIG.
  • the RE-based superconducting thin film wire 3 used in the bending test was prepared, and at both ends of the wire 3, a copper plate 41 simulating a connecting member was connected to the surface on the YBCO side or substrate side with solder 42. deep.
  • a direct current power source 43 was connected to the copper plate 41 and energized, and the voltage between the copper plate 41 and the wire 3 was measured to obtain the resistance.
  • the resistance was measured by changing the length (corresponding to the connection length) in the longitudinal direction of the wire where soldering was performed to 10, 20, and 50 mm.
  • the same resistance measurement was performed using BSCCO superconducting wire instead of RE superconducting thin film wire.
  • the BSCCO superconducting wire has no front and back sides, the measurement is performed when a connecting member is connected to either side.
  • connection resistance is almost the same as when using the BSCCO superconducting wire, and the RE superconducting thin film It can be seen that the connection resistance is about 1/5 compared to the case where the connection member is soldered to the substrate side of the wire. In particular, it can be seen that the connection resistance decreases as the connection length exceeds 20 mm.
  • connection resistance of the connection portion can be reduced, and local heat generation at the connection portion can be suppressed.
  • the superconducting cable of the present invention can be used to construct a power transport line.
  • it can be suitably used for construction of a line in which the connection resistance between the connection points of the cables is reduced.

Landscapes

  • Superconductors And Manufacturing Methods Therefor (AREA)
  • Gas Or Oil Filled Cable Accessories (AREA)

Abstract

A superconducting cable comprising a core material (former), and a conductor layer composed of a superconducting thin film wire wound thereon, wherein the superconducting thin film wire has a metal substrate, and an RE based superconducting thin film formed only on one surface of the substrate. Since the superconducting thin film wire can be wound such that the surface on which the RE based superconducting thin film is formed directs outward with respect to the core material and the low resistance surface on the superconducting thin film side can be located on the outer circumferential side of the cable, connection resistance can be decreased at the joint when a connection member is fitted over the outer circumference of the superconducting thin film wire and joined, resulting in a superconducting cable in which resistance can be decreased at the joint.

Description

明 細 書  Specification
超電導ケーブル  Superconducting cable
技術分野  Technical field
[0001] 本発明は超電導ケーブルに関するものである。特に、 RE (希土類 (レアアース))系 超電導薄膜線材を用いた超電導ケーブルに関するものである。  [0001] The present invention relates to a superconducting cable. In particular, it relates to superconducting cables using RE (rare earth) superconducting thin film wires.
背景技術  Background art
[0002] 超電導線材として、 BSCCO (Bi-Sr-Ca-Cu-O)テープ線材に代表される Bi系超電 導線材が実用化されつつある。 BSCCOテープ線材は、例えば Bi2223相からなる複数 本の超電導フィラメントを銀などの安定ィ匕材中に埋設した構造のテープ線材である。 この Bi系超電導線材は、線材への加工が行いやすい利点を有し、超電導ケーブル、 超電導モータ、超電導変圧器などへの適用が提案されているものの、より一層の臨 界電流密度 (Jc)の向上が望まれている。  [0002] Bi-based superconducting wires represented by BSCCO (Bi-Sr-Ca-Cu-O) tape wires are being put into practical use as superconducting wires. The BSCCO tape wire is a tape wire having a structure in which a plurality of superconducting filaments made of, for example, Bi2223 phase are embedded in a stable brazing material such as silver. This Bi-based superconducting wire has the advantage that it can be easily processed into a wire, and although it has been proposed to be applied to superconducting cables, superconducting motors, superconducting transformers, etc., it has an even higher field current density (Jc). Improvement is desired.
[0003] 一方、次世代超電導線材として、 RE系超電導薄膜線材の開発が進められて ヽる ( 例えば特許文献 1)。 RE系超電導薄膜線材の代表的な構成を図 6に示す。この線材 3は、テープ状の金属基板 31上に順次中間層 32、超電導薄膜 33、保護層 34を積層し たテープ線材である。具体例としては、金属基板 31としてハステロィ (登録商標)、中 間層 32として YSZ、超電導薄膜 33として Y系 123構造 (YBa Cu Oy)薄膜、保護層 34とし  [0003] On the other hand, RE-based superconducting thin film wires are being developed as next-generation superconducting wires (for example, Patent Document 1). Figure 6 shows a typical configuration of RE-based superconducting thin film wires. The wire 3 is a tape wire in which an intermediate layer 32, a superconducting thin film 33, and a protective layer 34 are sequentially laminated on a tape-shaped metal substrate 31. Specific examples include Hastelloy (registered trademark) as the metal substrate 31, YSZ as the intermediate layer 32, Y-type 123 (YBa Cu Oy) thin film as the superconducting thin film 33, and protective layer 34.
2 3  twenty three
て銀が利用されている。通常、これら中間層 32や超電導薄膜 33はレーザ蒸着などに より基板 31の片面のみに形成されている。  Silver is used. Usually, the intermediate layer 32 and the superconducting thin film 33 are formed only on one side of the substrate 31 by laser vapor deposition or the like.
[0004] このような RE系超電導薄膜線材は、 Bi系超電導線材に比べて臨界電流密度 (Jc) が高ぐまた磁場による臨界電流 (Ic)の低下が少なく磁場特性に優れるため、 Bi系超 電導線材に続く次世代線材としての利用が期待されている。 [0004] Such a RE-based superconducting thin film wire has a higher critical current density (Jc) than that of a Bi-based superconducting wire, and a decrease in critical current (Ic) due to a magnetic field is excellent. It is expected to be used as a next-generation wire following conductive wires.
[0005] 特許文献 1 :特開 2001-31418号公報 Patent Document 1: Japanese Patent Laid-Open No. 2001-31418
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0006] しかし、上記の RE系超電導薄膜線材を超電導ケーブルに適用する場合、ケーブル の接続箇所で抵抗が大きくなるということが判明した。 [0007] 一般に、超電導ケーブルは、断熱管内に 1本以上のコアを収納した構造である。こ のコアは、心材と、心材の外周に卷回されて導体層を構成する超電導線材とを具備 する。ここで、超電導線材として基板の片側に超電導薄膜を有する RE系超電導薄膜 線材を卷回する場合、超電導薄膜を内側、つまり心材側となるように卷回を行ってい る。これは、超電導薄膜線材を卷回すると、曲げの内側では圧縮歪みが、外側では 弓 I張歪みが線材に発生するため、圧縮歪みに対する Icの低下程度が引張り歪みに 対するそれよりも低い超電導薄膜を内側に配置した方が曲げ特性に優れるからであ る。 [0006] However, when the above RE-based superconducting thin film wire is applied to a superconducting cable, it has been found that the resistance increases at the connection point of the cable. [0007] In general, a superconducting cable has a structure in which one or more cores are housed in a heat insulating tube. The core includes a core material and a superconducting wire wound around the outer periphery of the core material to form a conductor layer. Here, when a RE superconducting thin film wire having a superconducting thin film on one side of the substrate is wound as a superconducting wire, the superconducting thin film is wound inside, that is, on the core material side. This is because when a superconducting thin film wire is wound, a compressive strain is generated inside the bend and a bow I tension strain is generated outside the bend. This is because it is better in bending characteristics to arrange the inside.
[0008] ところが、超電導ケーブルで線路を構築するには、ケーブル同士の接続箇所にお いて導体層を接続する必要がある。通常、この接続は、突き合わせたケーブルの導 体層の外側に銅スリーブなどの接続部材をはめ込み、導体層と接続部材との間を半 田付けすることで行われる。その際、導体層を構成する超電導薄膜線材は、超電導 薄膜を内側として卷回されているため、導体層の外側には基板側が位置することに なる。本発明者らは、この状態での接続箇所の接続抵抗について後述するように試 験'検討を行った結果、接続部材と超電導薄膜線材の基板側の面とが半田を介して 接続される場合、接続抵抗が大きくなるとの知見を得た。  However, in order to construct a line with a superconducting cable, it is necessary to connect a conductor layer at a connection point between the cables. Usually, this connection is performed by fitting a connection member such as a copper sleeve outside the conductor layer of the abutted cable and soldering between the conductor layer and the connection member. At that time, since the superconducting thin film wire constituting the conductor layer is wound with the superconducting thin film inside, the substrate side is located outside the conductor layer. As a result of conducting a test 'examination as will be described later on the connection resistance of the connection portion in this state, the present inventors have found that the connection member and the surface of the superconducting thin film wire are connected via solder. The knowledge that connection resistance becomes large was obtained.
[0009] 本発明は上記の事情に鑑みてなされたもので、その目的の一つは、接続箇所の抵 抗を低減することができる超電導ケーブルを提供することにある。  [0009] The present invention has been made in view of the above circumstances, and one of its purposes is to provide a superconducting cable capable of reducing the resistance of a connection point.
課題を解決するための手段  Means for solving the problem
[0010] 本発明は、片面のみ超電導薄膜を有する超電導線材として RE系超電導薄膜を用 いる場合、その卷回の仕方に工夫を施すことで上記の目的を達成する。 [0010] In the present invention, when the RE-based superconducting thin film is used as a superconducting wire having a superconducting thin film only on one side, the above object is achieved by devising the winding method.
[0011] 本発明超電導ケーブルは、心材と、その上に卷回した超電導薄膜線材で構成され る導体層とを具備する超電導ケーブルである。この超電導薄膜線材は、金属基板と、 この基板の片面上のみに形成された RE系超電導薄膜とを有する。そして、本発明はThe superconducting cable of the present invention is a superconducting cable comprising a core material and a conductor layer made of a superconducting thin film wire wound thereon. The superconducting thin film wire has a metal substrate and a RE superconducting thin film formed only on one side of the substrate. And this invention is
、この線材を、 RE系超電導薄膜の形成された面が心材に対して外向きとなるように卷 回していることを特徴とする。 The wire is wound so that the surface on which the RE-based superconducting thin film is formed faces outward with respect to the core material.
[0012] この構成により、抵抗の小さい超電導薄膜側の面がケーブルの外周側に位置する ようにできるため、接続部材を超電導薄膜線材の外周にはめ込んで接続を行った場 合、接続箇所の接続抵抗を低減することができる。 [0012] With this configuration, since the surface on the superconducting thin film side having a low resistance can be positioned on the outer peripheral side of the cable, the connection member is fitted on the outer periphery of the superconducting thin film wire. In this case, the connection resistance at the connection location can be reduced.
[0013] 本発明ケーブルでは、超電導シールド層を有する構成としても良 、。つまり、導体 層の外側に順次絶縁層、超電導シールド層を具備し、この超電導シールド層には、 金属基板と、この基板の片面上のみに形成された RE系超電導薄膜とを有する超電 導薄膜線材を用いる。そして、その超電導薄膜線材を、超電導薄膜の形成された面 が絶縁層に対して外向きとなるように卷回する。  [0013] The cable of the present invention may have a configuration having a superconducting shield layer. That is, a superconducting thin film having an insulating layer and a superconducting shield layer sequentially on the outside of the conductor layer, the superconducting shield layer having a metal substrate and an RE-based superconducting thin film formed only on one side of the substrate. Use wire. Then, the superconducting thin film wire is wound so that the surface on which the superconducting thin film is formed faces outward with respect to the insulating layer.
[0014] この構成によれば、導体層に交流を流した場合に、超電導シールド層に逆方向の 電流が誘導されて両層で生じる磁場がキャンセルされるため、交流ケーブルとして利 用する場合に好ましい。また、突き合わせたケーブルにおける超電導シールド層同 士の接続箇所における接続抵抗も低減することができる。  [0014] According to this configuration, when alternating current is passed through the conductor layer, a reverse current is induced in the superconducting shield layer and the magnetic field generated in both layers is canceled. preferable. In addition, the connection resistance at the connection point of the superconducting shield layer in the butt cable can be reduced.
[0015] 本発明ケーブルで用いる超電導薄膜線材の RE系超電導薄膜は、 Ho系超電導体 または Y系超電導体で構成されることが好ま ヽ。 [0015] The RE-based superconducting thin film of the superconducting thin film wire used in the cable of the present invention is preferably composed of a Ho-based superconductor or a Y-based superconductor.
[0016] Ho系超電導体または Y系超電導体は 、ずれも高!、電流密度を得ることができ、超 電導ケーブルの導体層やシールド層を構成するのに適した材料である。特に、 Ho系 超電導体は水分による劣化に対して Y系超電導体よりも高い耐久性を有する。 [0016] The Ho-based superconductor or the Y-based superconductor has a high deviation and can obtain a current density, and is a material suitable for forming a conductor layer and a shield layer of a superconducting cable. In particular, Ho-based superconductors are more resistant to moisture degradation than Y-based superconductors.
[0017] さらに本発明ケーブルにおいては、超電導ケーブルの端部に超電導薄膜線材と半 田で電気的に接続される常電導接続部材を具備し、この常電導接続部材と超電導 薄膜線材カゝらなる導体層とのケーブル長手方向の接続長を 20mm以上とすることも好 ましい。 [0017] Further, in the cable of the present invention, a normal conducting connecting member electrically connected to the superconducting thin film wire at the end is provided at the end of the superconducting cable, and the normal conducting connecting member and the superconducting thin film wire are provided. It is also preferable that the connection length in the longitudinal direction of the cable with the conductor layer is 20 mm or more.
[0018] この接続長を 20mm以上とすることで、超電導薄膜線材と接続部材との接触長を確 保でき、接続抵抗を十分に小さくすることができる。なお、接続長とは、超電導薄膜線 材と常電導接続部材とが半田で電気的に接続される箇所におけるケーブル長手方 向への長さのことである。  [0018] By setting the connection length to 20 mm or more, the contact length between the superconducting thin film wire and the connection member can be secured, and the connection resistance can be sufficiently reduced. The connection length is the length in the longitudinal direction of the cable at a location where the superconducting thin film wire and the normal conducting connecting member are electrically connected by solder.
発明の効果  The invention's effect
[0019] 本発明超電導ケーブルによれば、 RE系超電導薄膜の形成された面が心材に対し て外向きとなるように超電導薄膜線材を卷回することで、この薄膜側をケーブルの外 周側に位置させることができる。それに伴い、導体層の外側に接続部材を配して接 続構造を形成した場合の接続抵抗を低減することができる。 図面の簡単な説明 According to the superconducting cable of the present invention, the thin film side is wound on the outer peripheral side of the cable by winding the superconducting thin film wire so that the surface on which the RE-based superconducting thin film is formed faces outward with respect to the core material. Can be located. Along with this, it is possible to reduce connection resistance when a connection structure is formed by arranging a connection member outside the conductor layer. Brief Description of Drawings
[0020] [図 1]図 1は、本発明超電導ケーブルの横断面図である。  FIG. 1 is a cross-sectional view of the superconducting cable of the present invention.
[図 2]図 2は、本発明ケーブルのコアの端部を示す模式斜視図である。  FIG. 2 is a schematic perspective view showing an end portion of a core of the cable of the present invention.
[図 3]図 3は、本発明ケーブルに用いる RE系超電導薄膜線材の横断面図である。  FIG. 3 is a cross-sectional view of an RE-based superconducting thin film wire used in the cable of the present invention.
[図 4]図 4は、抵抗測定試験の試験方法を示す説明図である。  FIG. 4 is an explanatory diagram showing a test method for a resistance measurement test.
[図 5]図 5は、抵抗測定試験の測定結果を示すグラフである。  FIG. 5 is a graph showing the measurement results of a resistance measurement test.
[図 6]図 6は、 RE系超電導薄膜線材の構成を示す概略斜視図である。  FIG. 6 is a schematic perspective view showing a configuration of a RE-based superconducting thin film wire.
符号の説明  Explanation of symbols
[0021] 1 断熱管 11 内管 12 外管 [0021] 1 Heat insulation pipe 11 Inner pipe 12 Outer pipe
2 コア  2 core
21 フォーマ 22 超電導導体層 23 絶縁層  21 Former 22 Superconducting conductor layer 23 Insulating layer
24 超電導シールド層 25 外層 26 層間絶縁  24 Superconducting shield layer 25 Outer layer 26 Interlayer insulation
3 RE系超電導薄膜線材  3 RE-based superconducting thin film wire
31 (金属)基板 32 中間層 33 超電導薄膜 34 保護層 35 安定化層 41  31 (Metal) substrate 32 Intermediate layer 33 Superconducting thin film 34 Protective layer 35 Stabilization layer 41
銅板 42 半田 43 直流電源  Copper plate 42 Solder 43 DC power supply
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0022] 以下、本発明の実施の形態を説明する。以下、図面において同一符号は、同一物 を示す。図面の寸法比率は、説明のものと必ずしも一致していない。  Hereinafter, embodiments of the present invention will be described. Hereinafter, the same reference numerals in the drawings denote the same items. The dimensional ratios in the drawings do not necessarily match those described.
[0023] 本発明超電導ケーブルは、代表的には、図 1に示すように、断熱管 1内にコア 2を収 納した構造である。コア 2は、図 2に示すように、中心力も順に、フォーマ 21、超電導導 体層 22、絶縁層 23、超電導シールド層 24、外層 25を具備する。そして、超電導導体 層 22、超電導シールド層 24に超電導薄膜線材 3が用いられる。  The superconducting cable of the present invention typically has a structure in which a core 2 is accommodated in a heat insulating tube 1 as shown in FIG. As shown in FIG. 2, the core 2 includes a former 21, a superconducting layer 22, an insulating layer 23, a superconducting shield layer 24, and an outer layer 25 in this order. The superconducting thin film wire 3 is used for the superconducting conductor layer 22 and the superconducting shield layer 24.
[0024] 超電導薄膜線材 3は、図 3に示すように、基板 31、中間層 32、 RE系超電導薄膜 33、 保護層 34、安定ィ匕層 35を有する。ここでは、基板 31の上面側に順次中間層 32、超電 導薄膜 33、保護層 34を積層し、基板 31の下面側にも保護層 34を形成して、これら積 層構造体の全体を安定化層 35で被覆して ヽる。  As shown in FIG. 3, the superconducting thin film wire 3 has a substrate 31, an intermediate layer 32, a RE-based superconducting thin film 33, a protective layer 34, and a stable layer 35. Here, the intermediate layer 32, the superconducting thin film 33, and the protective layer 34 are sequentially laminated on the upper surface side of the substrate 31, and the protective layer 34 is also formed on the lower surface side of the substrate 31, so that the entire stacked structure is formed. Cover with stabilizing layer 35.
[0025] このような線材を、基板が内側、超電導薄膜が外側となるように心材上に卷回する。 図 2では、 4層の超電導薄膜線材 3で導体層 22を構成し、 2層の超電導薄膜線材 3で シールド層 24を構成した場合を示して ヽる。これらの超電導薄膜線材は螺旋状に多 層に卷回し、各線材層の間には層間絶縁 26を設けている。この線材 3の卷回により、 導体層 22、シールド層 24のいずれも、外周側に線材の超電導薄膜側が位置すること になる。そのため、超電導ケーブル同士を接続する場合、あるいは超電導ケーブルと 他の機器とを接続する場合、ケーブル端部の導体層 22やシールド層 24の外側に接 続部材(図示せず)をはめ込み、接続部材と導体層 22 (シールド層 24)の間に半田を 流し込んで接続することで、接続抵抗の小さな接続部を形成することができる。接続 部材には、導体層 22の接続の場合、 Cuスリーブなどが利用され、シールド層 24の接 続には Cu編組材や Cuスリーブなどが利用される。 [0025] Such a wire is wound on the core so that the substrate is on the inside and the superconducting thin film is on the outside. FIG. 2 shows the case where the conductor layer 22 is composed of four layers of superconducting thin film wire 3 and the shield layer 24 is composed of two layers of superconducting thin film wire 3. These superconducting thin film wires are spirally wound in multiple layers, and an interlayer insulation 26 is provided between each wire layer. By winding the wire 3, the superconducting thin film side of the wire is positioned on the outer peripheral side of both the conductor layer 22 and the shield layer 24. Therefore, when connecting superconducting cables, or when connecting a superconducting cable and another device, fit a connecting member (not shown) outside the conductor layer 22 or shield layer 24 at the end of the cable, A connection portion with a low connection resistance can be formed by flowing solder between the conductor layer 22 and the conductor layer 22 (shield layer 24). For the connection member, a Cu sleeve or the like is used for the connection of the conductor layer 22, and a Cu braided material or a Cu sleeve is used for the connection of the shield layer 24.
[0026] 以下、本発明超電導ケーブルの各構成部について好ましい構成を説明する。 [0026] Hereinafter, a preferable configuration of each component of the superconducting cable of the present invention will be described.
[0027] まず、超電導薄膜線材 3についてであるが、基板 31は金属材料で構成される(図 3) 。好ましい金属として、ニッケル合金 (ノヽステロイ (登録商標))、ステンレス、ニッケル などを挙げることができる。この基板 31は、単一の材料力もなるものであってもよぐ複 合材料カゝらなるものであってもよい。複合材料からなる基板 31として、ステンレス箔上 に銀箔を積層したものが挙げられる。また、基板 31の形態としては、テープ材が好適 に用いられる。 [0027] First, regarding the superconducting thin film wire 3, the substrate 31 is made of a metal material (Fig. 3). Examples of preferable metals include nickel alloys (Northernloy (registered trademark)), stainless steel, nickel and the like. The substrate 31 may be a single material force or a composite material. Examples of the substrate 31 made of a composite material include those obtained by laminating a silver foil on a stainless steel foil. As the form of the substrate 31, a tape material is preferably used.
[0028] 中間層 32は、基板 31中の成分が超電導薄膜 33に拡散して超電導特性の劣化を防 ぐ役割を果たしているが必須の構成ではない。中間層 32を省略することもできる。こ の中間層 32には、酸ィ匕セリウム、イットリア安定ィ匕ジルコユア (YSZ)、酸化マグネシウム 、酸化イットリウム、酸化イッテルビウム、ノリウムジルコ-ァなどが利用できる。特に、 この中間層 32の結晶に配向性を付与することで高特性の超電導線材を得ることがで きる。中間層 32の形成方法としては、レーザ蒸着法などが好適に利用できる。  [0028] The intermediate layer 32 plays a role of preventing deterioration of superconducting characteristics by diffusion of components in the substrate 31 to the superconducting thin film 33, but is not an essential configuration. The intermediate layer 32 can be omitted. The intermediate layer 32 may be made of cerium oxide, yttria stable zirconia (YSZ), magnesium oxide, yttrium oxide, ytterbium oxide, norium zirconia, or the like. In particular, a high-conductivity superconducting wire can be obtained by imparting orientation to the crystals of the intermediate layer 32. As a method for forming the intermediate layer 32, a laser vapor deposition method or the like can be suitably used.
[0029] 超電導薄膜 33は RE系とする。代表的には、 RE Ba Cu Oの構造を有する酸化物超 電導体の薄膜とする。ここでの「RE」は希土類元素である。希土類元素としては、例え ばイットリウム (γ)、ネオジム (Nd)、ガドリニウム ばホルミウム 。)、サマリウム (Sm)な どが含まれる。この超電導薄膜 33の具体例としては、 RE123系、つまり YBa Cu Oや、  [0029] The superconducting thin film 33 is of RE type. Typically, an oxide superconductor thin film having a structure of RE Ba Cu O is used. “RE” here is a rare earth element. Examples of rare earth elements include yttrium (γ), neodymium (Nd), and gadolinium. ) And samarium (Sm). Specific examples of this superconducting thin film 33 include RE123, that is, YBa Cu O,
2 3 7 2 3 7
HoBa Cu Oなどが挙げられる。この超電導薄膜 33は、基板 31の表裏のうち、一方の 面にのみ形成されている。超電導薄膜 33の形成方法としては、レーザ蒸着法などが 好適に利用できる。 HoBa Cu O and so on. This superconducting thin film 33 is one of the front and back sides of the substrate 31. It is formed only on the surface. As a method for forming the superconducting thin film 33, a laser vapor deposition method or the like can be suitably used.
[0030] 保護層 34は、例えば Agや Ag合金が好適に用いられる。銀は超電導薄膜 33との反 応が少なく好ましい。  [0030] For the protective layer 34, for example, Ag or an Ag alloy is preferably used. Silver is preferable because it has little reaction with the superconducting thin film 33.
[0031] 安定ィ匕層 35は、 Cuや Cu合金などが好適に利用できる。この安定ィ匕層 35は、例えば めっきなどにより形成できる。  [0031] For the stable layer 35, Cu, Cu alloy, or the like can be suitably used. The stable layer 35 can be formed by, for example, plating.
[0032] 次に、コア 2についてである力 (図 2)、フォーマ 21には、中空パイプや銅撚り線など が好適に利用できる。絶縁層 23には、クラフト紙や、クラフト紙とポリオレフインフィルム をラミネートした複合紙が利用できる。さらに、外層 25は、シールド層 24を保護すると 共に断熱管 1 (図 1)に対する絶縁を確保するもので、各種プラスチック、例えばポリエ チレンが利用できる。  [0032] Next, the force (FIG. 2) about the core 2 can be suitably used for the former 21 such as a hollow pipe or a copper stranded wire. For the insulating layer 23, kraft paper or composite paper in which kraft paper and polyolefin film are laminated can be used. Further, the outer layer 25 protects the shield layer 24 and secures insulation against the heat insulating pipe 1 (FIG. 1), and various plastics such as polyethylene can be used.
[0033] さらに、断熱管 1は(図 1)、二重管を用いた真空構造のものが好適に利用される。  [0033] Further, as the heat insulating tube 1 (FIG. 1), a vacuum structure using a double tube is preferably used.
例えば、内管 11と外管 12との間を真空引きし、両管の間にスーパーインシュレーショ ン (商品名)を配したものが断熱管 1に用いられる。  For example, a vacuum is drawn between the inner pipe 11 and the outer pipe 12 and a super insulation (trade name) is arranged between the two pipes.
[0034] (試験例)  [0034] (Test example)
<曲げ試験 >  <Bending test>
図 3に示す RE系超電導薄膜線材を用いて曲げ試験を行い、 Ic特性の変化を調べ てみた。この試験では、特定の曲げ直径を有する FRP製の曲げジグに線材サンプル を沿わせ、常温で曲げ歪みを線材に加え、曲げ前後における液体窒素温度での臨 界電流値 (Ic)を測定する。そして、曲げ歪み印加後の Ic保持率を求め、 Icの劣化が起 こらない曲げ直径を求めた。 Ic劣化の定義としては、 Icが曲げ前の初期値に比べ 5% 以上低下した場合とした。曲げ直径は 50mm力も 5mm間隔で小さくした。この際、試験 は RE系超電導薄膜線材における RE系超電導薄膜を曲げの内側にする場合と外側 にする場合の各々について行った。  A bending test was conducted using the RE-based superconducting thin film wire shown in Fig. 3, and changes in the Ic characteristics were examined. In this test, a wire sample is placed along an FRP bending jig with a specific bending diameter, bending strain is applied to the wire at room temperature, and the field current value (Ic) at the liquid nitrogen temperature before and after bending is measured. The Ic retention rate after applying bending strain was determined, and the bending diameter at which Ic did not deteriorate was determined. The definition of Ic degradation is that Ic has decreased by more than 5% compared to the initial value before bending. The bending diameter was reduced by 50mm even at 5mm intervals. At this time, the test was performed for each of the RE-based superconducting thin film wire material with the RE-based superconducting thin film inside and outside the bending.
[0035] 試験に供した線材の仕様は次の通りである。 [0035] The specifications of the wire used for the test are as follows.
線材幅:約 4mm、線材厚さ:約 0.15mm  Wire width: approx. 4mm, wire thickness: approx. 0.15mm
基板:ハステロィ (登録商標) 厚さ lOO /z m  Substrate: Hastely (registered trademark) thickness lOO / z m
中間層: YSZ 厚さ 超電導薄膜: YBCO 厚さ l /z m Intermediate layer: YSZ thickness Superconducting thin film: YBCO thickness l / zm
保護層: Ag 厚さ  Protective layer: Ag thickness
安定化層: Cu 厚さ 20 m  Stabilization layer: Cu thickness 20 m
[0036] その結果は次の通りである。 [0036] The results are as follows.
YBCOを曲げの内側:曲げ直径 10mmまで Icの低下なし、 5mmで Ic低下  Inside of bending YBCO: Bending diameter up to 10mm No reduction in Ic, Ic reduction at 5mm
YBCOを曲げの外側:曲げ直径 25mmまで Icの低下なし、 20mmで Ic低下  Outside YBCO bending: bending diameter up to 25mm, no decrease in Ic, decrease in Ic at 20mm
[0037] この結果から明らかなように、 YBCOを曲げの内側となるように線材を卷回した場合 、 YBCOには圧縮歪みが加わり、逆向きに線材を卷回した場合に比べて Icが低下し にくいことがわかる。つまり、 YBCOを曲げの内側にした場合は、逆向きの場合に比べ て限界曲げ径を小さくすることができ、より小径の心材に短ピッチで線材を巻き付ける ことができる。 [0037] As is clear from this result, when the wire is wound so that YBCO is inside the bend, YBCO is subjected to compressive strain, and Ic is lower than when the wire is wound in the opposite direction. It turns out that it is difficult to do. In other words, when YBCO is placed inside the bend, the limit bend diameter can be made smaller than in the reverse case, and the wire can be wound around the smaller diameter core material at a short pitch.
[0038] <抵抗測定試験 > [0038] <Resistance measurement test>
次に、図 1、図 2に示すような超電導ケーブルにおいて、導体層同士を接続部材を 介して接続する場合を想定して、その接続抵抗を次の試験により測定した。  Next, in the superconducting cable as shown in FIG. 1 and FIG. 2, the connection resistance was measured by the following test assuming that the conductor layers are connected to each other through a connecting member.
[0039] 試験方法を図 4に基づいて説明する。この試験では、前記曲げ試験で用いた RE系 超電導薄膜線材 3を用意し、この線材 3の両端部において、 YBCO側または基板側の 面に接続部材を模擬した銅板 41を半田 42で接続しておく。そして、この銅板 41に直 流電源 43を接続して通電し、銅板 41と線材 3との間の電圧を測定して抵抗を求めた。 その際、半田付けが行われた箇所の線材長手方向の長さ (接続長相当分)を 10、 20 、 50mmと変えて抵抗の測定を行った。また、比較のため、 RE系超電導薄膜線材の代 わりに BSCCO超電導線材を用いて同様の抵抗測定を行った。ただし、 BSCCO超電 導線材は裏表がないため、どちらか一方の面に接続部材を接続した場合について 測定を行っている。 [0039] The test method will be described with reference to FIG. In this test, the RE-based superconducting thin film wire 3 used in the bending test was prepared, and at both ends of the wire 3, a copper plate 41 simulating a connecting member was connected to the surface on the YBCO side or substrate side with solder 42. deep. Then, a direct current power source 43 was connected to the copper plate 41 and energized, and the voltage between the copper plate 41 and the wire 3 was measured to obtain the resistance. At that time, the resistance was measured by changing the length (corresponding to the connection length) in the longitudinal direction of the wire where soldering was performed to 10, 20, and 50 mm. For comparison, the same resistance measurement was performed using BSCCO superconducting wire instead of RE superconducting thin film wire. However, since the BSCCO superconducting wire has no front and back sides, the measurement is performed when a connecting member is connected to either side.
[0040] その結果を図 5のグラフに示す。このグラフから明らかなように、 RE系超電導薄膜線 材の超電導薄膜側に接続部材を半田付けした場合は、 BSCCO超電導線材を用い た場合とほぼ同等の接続抵抗となっており、 RE系超電導薄膜線材の基板側に接続 部材を半田付けした場合に比べて、接続抵抗が約 1/5になっていることがわかる。特 に、接続長が 20mm以上になると接続抵抗が小さくなつていることがわかる。 [0041] <まとめ > [0040] The results are shown in the graph of FIG. As is apparent from this graph, when the connecting member is soldered to the superconducting thin film side of the RE superconducting thin film wire, the connection resistance is almost the same as when using the BSCCO superconducting wire, and the RE superconducting thin film It can be seen that the connection resistance is about 1/5 compared to the case where the connection member is soldered to the substrate side of the wire. In particular, it can be seen that the connection resistance decreases as the connection length exceeds 20 mm. [0041] <Summary>
以上の曲げ試験および抵抗測定試験の結果をまとめると、曲げ歪みに伴う Icの低 下の点を考慮すれば、 RE系超電導薄膜線材は超電導薄膜を内側にして卷回するこ とが好ま ヽが、超電導ケーブルの接続部を形成する場合の接続抵抗を考慮すれ ば、 RE系超電導薄膜線材は超電導薄膜を外側にして卷回することが好ましい。これ により、接続部の接続抵抗を小さくでき、接続部での局所的な発熱を抑制することが できる。  To summarize the results of the above bending test and resistance measurement test, it is preferable to wind the RE superconducting thin film wire with the superconducting thin film inside, considering the decrease in Ic due to bending strain. Considering the connection resistance when forming the connection part of the superconducting cable, it is preferable to wind the RE superconducting thin film wire with the superconducting thin film outside. As a result, the connection resistance of the connection portion can be reduced, and local heat generation at the connection portion can be suppressed.
[0042] 今回開示された実施の形態は、すべての点で例示であって制限的なものではな!/、と 考えられるべきである。本発明の範囲は上記した実施の形態ではなくて特許請求の 範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変 更が含まれることが意図される。  [0042] The embodiment disclosed this time should be considered as illustrative in all points and not restrictive! The scope of the present invention is shown not by the above-described embodiment but by the scope of claims for patent, and it is intended that all modifications within the meaning and scope equivalent to the scope of claims for patent are included.
産業上の利用可能性  Industrial applicability
[0043] 本発明超電導ケーブルは、電力輸送線路の構築に利用することができる。特に、ケ 一ブル同士の接続箇所の接続抵抗を低減した線路の構築に好適に利用できる。 [0043] The superconducting cable of the present invention can be used to construct a power transport line. In particular, it can be suitably used for construction of a line in which the connection resistance between the connection points of the cables is reduced.

Claims

請求の範囲 The scope of the claims
[1] 心材と、その上に卷回した超電導薄膜線材で構成される導体層とを具備する超電 導ケープノレであって、  [1] A superconducting cape nore comprising a core material and a conductor layer made of a superconducting thin film wire wound thereon,
前記超電導薄膜線材は、  The superconducting thin film wire is
金属基板と、この基板の片面上のみに形成された RE系超電導薄膜とを有し、 この超電導薄膜の形成された面が心材に対して外向きとなるように卷回されて 、 ることを特徴とする超電導ケーブル。  It has a metal substrate and an RE-based superconducting thin film formed only on one side of the substrate, and is wound so that the surface on which the superconducting thin film is formed faces outward with respect to the core material. Features superconducting cable.
[2] さらに導体層の外側に順次絶縁層、超電導シールド層を具備し、 [2] Further, an outer insulating layer and a superconducting shield layer are sequentially provided outside the conductor layer.
この超電導シールド層には、金属基板と、この基板の片面上のみに形成された RE 系超電導薄膜とを有する超電導薄膜線材が用いられ、  For this superconducting shield layer, a superconducting thin film wire having a metal substrate and an RE-based superconducting thin film formed only on one side of the substrate is used.
その超電導薄膜線材は、超電導薄膜の形成された面が絶縁層に対して外向きとな るように卷回されて 、ることを特徴とする請求項 1に記載の超電導ケーブル。  2. The superconducting cable according to claim 1, wherein the superconducting thin film wire is wound so that a surface on which the superconducting thin film is formed faces outward with respect to the insulating layer.
[3] 前記超電導薄膜線材の RE系超電導薄膜が、 Ho系超電導体または Y系超電導体で 構成されることを特徴とする請求項 1または 2に記載の超電導ケーブル。 [3] The superconducting cable according to claim 1 or 2, wherein the RE-based superconducting thin film of the superconducting thin-film wire is composed of a Ho-based superconductor or a Y-based superconductor.
[4] さらに前記超電導ケーブルの端部には、超電導薄膜線材と半田で電気的に接続さ れる常電導接続部材を具備し、 [4] Further, the end portion of the superconducting cable is provided with a normal conducting connecting member electrically connected to the superconducting thin film wire by solder,
この常電導接続部材と導体層とのケーブル長手方向の接続長が 20mm以上である ことを特徴とする請求項 1〜3のいずれかに記載の超電導ケーブル。  The superconducting cable according to any one of claims 1 to 3, wherein a connection length in a longitudinal direction of the cable between the normal conductive connecting member and the conductor layer is 20 mm or more.
PCT/JP2006/326091 2006-01-16 2006-12-27 Superconducting cable WO2007080794A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006007960A JP5115778B2 (en) 2006-01-16 2006-01-16 Superconducting cable
JP2006-007960 2006-01-16

Publications (1)

Publication Number Publication Date
WO2007080794A1 true WO2007080794A1 (en) 2007-07-19

Family

ID=38256205

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/326091 WO2007080794A1 (en) 2006-01-16 2006-12-27 Superconducting cable

Country Status (3)

Country Link
JP (1) JP5115778B2 (en)
TW (1) TW200735128A (en)
WO (1) WO2007080794A1 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4936858B2 (en) * 2006-11-08 2012-05-23 株式会社東芝 Superconducting current lead and manufacturing method thereof
JP4986291B2 (en) * 2007-08-13 2012-07-25 住友電気工業株式会社 Superconducting cable
JP5041414B2 (en) * 2007-10-26 2012-10-03 古河電気工業株式会社 Superconducting wire and superconducting conductor
EP2202762B1 (en) * 2008-12-15 2011-02-09 Nexans Arrangement with a superconducting cable
JP5363185B2 (en) * 2009-05-07 2013-12-11 住友電気工業株式会社 Superconducting cable terminal structure
JP5385746B2 (en) * 2009-09-30 2014-01-08 住友電気工業株式会社 Superconducting cable
JP5027896B2 (en) * 2010-01-29 2012-09-19 住友電気工業株式会社 Thin film superconducting wire and manufacturing method thereof
KR101992043B1 (en) * 2013-03-15 2019-06-21 후루카와 덴키 고교 가부시키가이샤 Method for manufacturing superconducting conductor and superconducting conductor

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03138817A (en) * 1989-03-31 1991-06-13 Sumitomo Electric Ind Ltd Oxide superconductive wire, its manufacture, and goods using it
JP2003141946A (en) * 2001-11-02 2003-05-16 Sumitomo Electric Ind Ltd Superconducting cable

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005253204A (en) * 2004-03-04 2005-09-15 Sumitomo Electric Ind Ltd Terminal structure of polyphase superconducting cable

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03138817A (en) * 1989-03-31 1991-06-13 Sumitomo Electric Ind Ltd Oxide superconductive wire, its manufacture, and goods using it
JP2003141946A (en) * 2001-11-02 2003-05-16 Sumitomo Electric Ind Ltd Superconducting cable

Also Published As

Publication number Publication date
JP5115778B2 (en) 2013-01-09
TW200735128A (en) 2007-09-16
JP2007188844A (en) 2007-07-26

Similar Documents

Publication Publication Date Title
US10943712B2 (en) Superconducting cables and methods of making the same
JP5663127B2 (en) System for transmitting current including magnetically separated superconducting conductors
JP5115778B2 (en) Superconducting cable
JP3342739B2 (en) Oxide superconducting conductor, method of manufacturing the same, and oxide superconducting power cable having the same
JP4201331B2 (en) Phase branching structure of multiphase superconducting cable
US11289640B2 (en) Second generation superconducting filaments and cable
JP2003141946A (en) Superconducting cable
JP4207223B2 (en) Superconducting cable and superconducting cable line using this superconducting cable
WO2015129272A1 (en) Terminal structure for superconducting cable and method for manufacturing same
JP2008234957A (en) Connecting method of thin-film superconductive wire and its connection structure
JP6040515B2 (en) Superconducting coil manufacturing method
JPH09306565A (en) Connection structure of superconductor
JP5240008B2 (en) DC superconducting cable
JP2010123621A (en) Superconducting coil of induction apparatus
JP2014143840A (en) Terminal structure of tape like superconducting wire material and manufacturing method of the same
WO2007122670A1 (en) Superconducting cable
JP2012256744A (en) Superconductive coil
WO2013077128A1 (en) Method for measuring critical current of superconductive cable
JPH10214713A (en) Superconducting coil
JP3283106B2 (en) Structure of current supply terminal for oxide superconducting conductor
JP5604213B2 (en) Superconducting equipment
JP5677116B2 (en) High temperature superconducting coil
JP2009048792A (en) Superconducting cable
JP4634954B2 (en) Superconducting device
JP5115245B2 (en) Superconducting current lead

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06843473

Country of ref document: EP

Kind code of ref document: A1