JP2008234957A - Connecting method of thin-film superconductive wire and its connection structure - Google Patents

Connecting method of thin-film superconductive wire and its connection structure Download PDF

Info

Publication number
JP2008234957A
JP2008234957A JP2007071919A JP2007071919A JP2008234957A JP 2008234957 A JP2008234957 A JP 2008234957A JP 2007071919 A JP2007071919 A JP 2007071919A JP 2007071919 A JP2007071919 A JP 2007071919A JP 2008234957 A JP2008234957 A JP 2008234957A
Authority
JP
Japan
Prior art keywords
thin film
superconducting wire
film superconducting
layer
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007071919A
Other languages
Japanese (ja)
Other versions
JP4845040B2 (en
Inventor
Shinichi Mukoyama
晋一 向山
Masashi Yagi
正史 八木
Hirao Hirata
平雄 平田
Toru Shiobara
融 塩原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
International Superconductivity Technology Center
Original Assignee
Furukawa Electric Co Ltd
International Superconductivity Technology Center
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd, International Superconductivity Technology Center filed Critical Furukawa Electric Co Ltd
Priority to JP2007071919A priority Critical patent/JP4845040B2/en
Publication of JP2008234957A publication Critical patent/JP2008234957A/en
Application granted granted Critical
Publication of JP4845040B2 publication Critical patent/JP4845040B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Abstract

<P>PROBLEM TO BE SOLVED: To provide a connection method and a connection structure which easily connects a thin-film superconductive wire even at such an actual site as inside a manhole, without jeopardizing various characteristics required of its connecting part for use in a practical equipment. <P>SOLUTION: At least two of first thin-film superconductive wires each with a superconductive layer (1), a metal protection layer (1), and a stabilized metal layer formed on a substrate (1) with a part peeled of each stabilized metal layer in the vicinity of a connecting end ready for connection, and at least one second thin-film superconductive wire with a superconductive layer (2), and a metal protection layer (2) formed on a substrate (2), are prepared in the connection method of the thin-film superconductive wires. The connecting ends of the first thin-film superconductive wires are arranged in opposition, the metal protection layer (2) of the second thin-film superconductive wire and the metal protection layer (1) of the first thin-film superconductive wire with the stabilized metal layer peeled off and exposed are arranged in opposition, and the metal protection layer (1) of the first thin-film superconductive wire and the metal protection layer (2) of the second thin-film superconductive wire are connected. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、超電導電力ケーブル、超電導マグネット、超電導エネルギー貯蔵装置、超電導変圧器、超電導限流器、MRI装置などの超電導機器に用いられる薄膜超電導線の接続方法及びその接続構造体に関する。   The present invention relates to a method for connecting a thin film superconducting wire used in superconducting equipment such as a superconducting power cable, a superconducting magnet, a superconducting energy storage device, a superconducting transformer, a superconducting fault current limiter, and an MRI apparatus, and a connecting structure thereof.

超電導機器で用いられる薄膜超電導線は、ハステロイやNi合金などの金属基板上に、酸化セリウムなどの中間層が形成され、その上に超電導状態で電流を流す酸化物超電導層が、更に水などが酸化物超電導層と反応して性能を劣化する現象を防ぐための遮水機能を持つ金属保護層と、超電導層に過大電流が流れたときに超電導層が焼損することを防ぐために電流をバイパスする金属安定化層が形成されている。   The thin film superconducting wire used in superconducting equipment has an oxide superconducting layer that allows current to flow in a superconducting state on an intermediate layer such as cerium oxide on a metal substrate such as Hastelloy or Ni alloy. A metal protective layer with a water-blocking function to prevent the phenomenon that the performance deteriorates by reacting with the oxide superconducting layer, and the current is bypassed to prevent the superconducting layer from burning when an excessive current flows in the superconducting layer. A metal stabilization layer is formed.

この薄膜超電導線同士を接続させる方法のひとつの例としては、特許文献1に示されるように、テープ状の基材上に銀が添加された酸化物超電導層上に安定化銀層が形成されている複数本の酸化物超電導体の安定化銀層側の表面を対向させ、半田を介してこれら安定化銀層同士を接続する方法が提案されている。   As an example of a method for connecting the thin film superconducting wires, a stabilized silver layer is formed on an oxide superconducting layer to which silver is added on a tape-like substrate as shown in Patent Document 1. A method has been proposed in which the surfaces of the plurality of oxide superconductors on the side of the stabilized silver layer are opposed to each other and the stabilized silver layers are connected to each other via solder.

また、特許文献2にある接続方法では、接続する2本の薄膜超電導線の端部で、その端部の酸化物超電導層を除去して基板の一部を露出させ、各酸化物超電導体の露出した基材同士を突き合わせて接合し、この基材の接合部分上と露出部分上と各酸化物超電導層上にまたがるようにして各酸化物超電導層を接続するための接続用酸化物超電導層を形成し、更に、酸化物超電導層上と接続用酸化物超電導層上に表面保護層を形成する方法が提案されている。   Further, in the connection method disclosed in Patent Document 2, at the end portions of two thin film superconducting wires to be connected, the oxide superconducting layer at the end portions is removed to expose a part of the substrate, and each oxide superconductor Oxide superconducting layers for connection for connecting exposed oxide substrates to each other and connecting each oxide superconducting layer so as to straddle the bonded portions of the substrates, the exposed portions, and the oxide superconducting layers. And a method of forming a surface protective layer on the oxide superconducting layer and the connecting oxide superconducting layer has been proposed.

更に、特許文献3の方法では、基材上に超電導薄膜が形成された2本の超電導板状体の超電導薄膜表面の一部が互いに接触するように対面で接触させ、接触した双方の超電導薄膜の結晶方位がほぼ一致するように位置調整した後、超電導薄膜が接触している部分に続く薄膜面に、前記超電導薄膜と同種の超電導薄膜を堆積させる接続方法が提案されている。   Furthermore, in the method of Patent Document 3, the superconducting thin film surfaces of two superconducting thin films on which a superconducting thin film is formed are brought into contact with each other so that parts of the superconducting thin film surfaces are in contact with each other. There has been proposed a connection method in which the superconducting thin film of the same kind as the superconducting thin film is deposited on the thin film surface following the portion in contact with the superconducting thin film after the position is adjusted so that the crystal orientations thereof substantially coincide.

特開2000−133067号公報JP 2000-133067 A 特開2001−319750号公報JP 2001-319750 A 特開2005−63695号公報JP 2005-63695 A

しかしながら、特許文献1では、銀層が非常に薄いために、接続された 2本の超電導線に引張り応力や曲げ応力が加わると、銀層と超電導層の間で剥離が起きたり、銀層が切れたりし、機械的に弱い問題があった。また、線材の臨界電流に近い電流が流れると、2本の線材間の接続抵抗によって発熱し、接続部から超電導破壊を起こして、接続部が焼損する問題があった。 However, in Patent Document 1, since the silver layer is very thin, if tensile stress or bending stress is applied to the two connected superconducting wires, peeling occurs between the silver layer and the superconducting layer, or the silver layer is There was a problem of mechanical weakness. In addition, when a current close to the critical current of the wire flows, heat is generated due to the connection resistance between the two wires, causing superconducting breakdown from the connection portion, causing a problem that the connection portion is burned.

特許文献2では、機械的な強度は十分にあるものの、接続用酸化物超電導層をCVD法により形成するため、結晶方位を揃えた酸化物超電導層を形成するためには、CVD法を始めとして、高価で大型の成膜装置が必要となる。また、例えば超電導ケーブルの接続の用にマンホール等の現場で接続を行う際には、設備を狭い空間に持ち込む必要があり、成膜時間も数時間と長い時間を必要とするため、さらに数百本の接続を行うには1000時間近い時間が必要となるため、ひとつのケーブル接続をするには非現実的な方法である。   In Patent Document 2, although the mechanical strength is sufficient, the oxide superconducting layer for connection is formed by the CVD method. Therefore, in order to form the oxide superconducting layer having the same crystal orientation, the CVD method is first used. An expensive and large-sized film forming apparatus is required. In addition, when connecting on the site such as a manhole for connecting a superconducting cable, for example, it is necessary to bring the equipment into a narrow space, and the film formation time requires a long time of several hours. Since it takes about 1000 hours to connect the books, it is an unrealistic way to connect one cable.

特許文献3では、接続部に超電導薄膜を堆積させる方法として、RFスパッタリング法が行われているが、RFスパッタリング法を実施する場合、真空チャンバーに接続部を入れて真空状態にしてスパッタリングする必要があり、更に高価で大型の設備を準備する必要がある。また、その成膜には特許文献2のCVDと同様に時間がかかり、現場で簡易に接続できるような技術ではない。   In Patent Document 3, an RF sputtering method is used as a method for depositing a superconducting thin film on a connection portion. However, when performing the RF sputtering method, it is necessary to put the connection portion in a vacuum chamber and perform sputtering in a vacuum state. There is also a need for expensive and large equipment. Further, the film formation takes time similarly to the CVD of Patent Document 2, and is not a technique that can be easily connected on site.

本発明は、かかる点に鑑みてなされたものであり、実用機器に用いられる薄膜超電導線の接続部に要求される諸特性を損なわず、マンホール内などの現場環境でも簡易に接続ができる接続方法および接続構造体を提供することを目的とする。   The present invention has been made in view of the above points, and does not impair various characteristics required for a connection portion of a thin film superconducting wire used in practical equipment, and can be easily connected even in a field environment such as a manhole. And it aims at providing a connection structure.

第1の発明である薄膜超電導線の接続方法の第1の態様は、 接続しようとする接続端近傍の安定化金属層の一部を剥がした、基板(1)上方に超電導層(1)と金属保護層(1)と安定化金属層が形成されている少なくとも2つの第1の薄膜超電導線、および、基板(2)上方に超電導層(2)と金属保護層(2)が形成されている少なくとも1つの第2の薄膜超電導線を調製し、
前記第1の薄膜超電導線の前記接続端部を対向配置し、
前記第2の薄膜超電導線の前記金属保護層(2)と、前記第1の薄膜超電導線の前記安定化金属層を剥がして露出した前記金属保護層(1)とを対向配置し、
前記第1の薄膜超電導線の前記金属保護層(1)と前記第2の薄膜超電導線の前記金属保護層(2)とを接続する、薄膜超電導線の接続方法である。
The first aspect of the thin-film superconducting wire connection method according to the first aspect of the present invention is that a part of the stabilizing metal layer in the vicinity of the connection end to be connected is peeled off and the superconducting layer (1) is disposed above the substrate (1). At least two first thin film superconducting wires on which a metal protective layer (1) and a stabilizing metal layer are formed, and a superconducting layer (2) and a metal protective layer (2) are formed above the substrate (2). Preparing at least one second thin film superconducting wire comprising:
Disposing the connection end of the first thin film superconducting wire oppositely,
The metal protective layer (2) of the second thin film superconducting wire and the metal protective layer (1) exposed by peeling off the stabilizing metal layer of the first thin film superconducting wire are opposed to each other.
A method for connecting a thin film superconducting wire, wherein the metal protective layer (1) of the first thin film superconducting wire and the metal protective layer (2) of the second thin film superconducting wire are connected.

なお、それぞれの薄膜超電導線においては基板と超電導層の間に中間層を設けてもよい。この態様によれば、超電導層に過大電流が流れたときに超電導層が焼損することを防ぐために電流をバイパスする金属安定化層が接続されていることにより、接続部の強度を維持しつつ、臨界電流を越える電流が流れた場合にも線材が焼損せず、安定した電流を流すことができる薄膜超電導線を可能とする。   In each thin film superconducting wire, an intermediate layer may be provided between the substrate and the superconducting layer. According to this aspect, the metal stabilization layer that bypasses the current to prevent the superconducting layer from burning out when an excessive current flows through the superconducting layer is connected, while maintaining the strength of the connection portion, Even when a current exceeding the critical current flows, the thin film superconducting wire capable of flowing a stable current without burning the wire is made possible.

第1の発明である薄膜超電導線の接続方法の第2の態様は、
前記第1の薄膜超電導線を調製する際に前記金属保護層(1)と前記安定化金属層の貼り合わせに用いられる第1の低融点金属の融点と同等もしくは低い温度の融点を有する第2の低融点金属を用いて、前記金属保護層(1)と前記金属保護層(2)が接続されることを特徴とする薄膜超電導線の接続方法である。
この態様によれば、薄膜超電導線を形成する金属保護層と安定化金属層間の電気的および機械的接続を保持しつつ、接続部の電気的および機械的接続を確実に行うことができる。
The second aspect of the thin film superconducting wire connection method according to the first invention is:
The second thin film superconducting wire having a melting point equal to or lower than the melting point of the first low melting point metal used for bonding the metal protective layer (1) and the stabilizing metal layer when preparing the first thin film superconducting wire. The metal protective layer (1) and the metal protective layer (2) are connected using a low-melting-point metal of the thin film superconducting wire.
According to this aspect, the electrical and mechanical connection of the connecting portion can be reliably performed while maintaining the electrical and mechanical connection between the metal protective layer forming the thin film superconducting wire and the stabilizing metal layer.

第1の発明である薄膜超電導線の接続方法の第3の態様は、
接続される少なくとも2つの前記第1の薄膜超電導線のそれぞれの前記安定化金属層(1)が接合部を介して接続され、前記安定化金属層は前記第2の低融点金属を用いて接続されることを特徴とする薄膜超電導線の接続方法である。
この態様によれば、薄膜超電導線を形成する金属保護層と安定化金属層間と、接続部の電気的および機械的接続を保持しつつ、接続部の電気的および機械的接続を確実に行うことができる。
The third aspect of the method for connecting thin film superconducting wires according to the first invention is:
The stabilizing metal layer (1) of each of the at least two first thin film superconducting wires to be connected is connected via a joint, and the stabilizing metal layer is connected using the second low melting point metal. The thin film superconducting wire connecting method is characterized in that:
According to this aspect, the electrical and mechanical connection of the connection part is reliably performed while maintaining the electrical and mechanical connection of the metal protective layer and the stabilizing metal layer forming the thin film superconducting wire and the connection part. Can do.

第1の発明である薄膜超電導線の接続方法の第4の態様は、
少なくとも2つの前記安定化金属層が、良導性金属テープによって少なくとも2箇所の接合部を介して接合されていることを特徴とする薄膜超電導線の接続方法である。
なお、良導性金属テープとして、前記安定化金属層と同じテープを用いてもよい。
The 4th aspect of the connection method of the thin film superconducting wire which is 1st invention is as follows.
The thin-film superconducting wire connection method is characterized in that at least two of the stabilizing metal layers are joined to each other by at least two joints with a highly conductive metal tape.
Note that the same tape as the stabilizing metal layer may be used as the highly conductive metal tape.

この態様によれば、接続端近傍の安定化金属層を剥がす長さを短くすることが出来、作業を楽に行うことができる。また、安定化金属層の厚さが異なる2つの薄膜超電導線を接続する場合には、接続部における安定化金属層の厚さが均一ではなく、薄い安定化金属層と厚い安定化金属層ができてしまう。このとき、安定化金属層を流れる電流は薄い安定化金属層によって臨界電流を越える電流が制約され、厚い安定化金属層を有する薄膜超電導線から見ると安定化が過少となってしまう。そこで、厚い安定化金属層で接続部を覆うと、接続部の特性を制約することないことから、接続部に適した厚さのテープを使用することができる。   According to this aspect, the length for peeling the stabilizing metal layer in the vicinity of the connection end can be shortened, and the work can be easily performed. In addition, when connecting two thin film superconducting wires having different thicknesses of the stabilizing metal layer, the thickness of the stabilizing metal layer at the connecting portion is not uniform, and a thin stabilizing metal layer and a thick stabilizing metal layer are I can do it. At this time, the current flowing through the stabilizing metal layer is restricted by the thin stabilizing metal layer to exceed the critical current, and the stabilization becomes insufficient when viewed from the thin film superconducting wire having the thick stabilizing metal layer. Therefore, if the connection part is covered with a thick stabilizing metal layer, the characteristic of the connection part is not restricted, and therefore a tape having a thickness suitable for the connection part can be used.

第1の発明である薄膜超電導線の接続方法の第5の態様は、
前記第2の薄膜超電導線の基板(2)に、非磁性体または極低磁性体を用いることを特徴とする薄膜超電導線の接続方法である。
この態様によれば、第2の薄膜超電導線部分の交流損失を低減することができる。
The fifth aspect of the method for connecting thin film superconducting wires according to the first invention is:
A method of connecting thin film superconducting wires, characterized in that a nonmagnetic material or an extremely low magnetic material is used for the substrate (2) of the second thin film superconducting wire.
According to this aspect, the AC loss of the second thin film superconducting wire portion can be reduced.

第2の発明の薄膜超電導線の接続構造体の第1の態様は、
接続端近傍の安定化金属層の一部が剥がされた、基板(1)上方に超電導層(1)と金属保護層(1)と安定化金属層が形成されている少なくとも2つの第1の薄膜超電導線と、
基板(2)上方に超電導層(2)と金属保護層(2)が形成されている少なくとも1つの第2の薄膜超電導線と、
前記第1の薄膜超電導線および前記第2の薄膜超電導線の前記金属保護層が接続して形成される接続部と
前記第2の薄膜超電導線の前記接続部と反対側の外表面を覆う部材によって形成される接合部とを備え、
前記第1の薄膜超電導線の前記接続端部が対向配置され、前記第2の薄膜超電導線の前記金属保護層(2)と、前記第1の薄膜超電導線の前記安定化金属層を剥がして露出した前記金属保護層(1)とが対向配置され、前記第1の薄膜超電導線および前記第2の薄膜超電導線が、前記接続部を介して接続され、前記第2の薄膜超電導線の前記外表面を覆う部材が少なくとも1箇所の前記接合部を介して接続されている、薄膜超電導線の接続構造体である。
The first aspect of the connection structure of the thin film superconducting wire of the second invention is:
A superconducting layer (1), a metal protective layer (1), and a stabilizing metal layer are formed above the substrate (1) from which a part of the stabilizing metal layer near the connection end has been peeled off. A thin film superconducting wire,
At least one second thin film superconducting wire having a superconducting layer (2) and a metal protective layer (2) formed above the substrate (2);
A connecting portion formed by connecting the metal protective layer of the first thin film superconducting wire and the second thin film superconducting wire; and a member covering an outer surface of the second thin film superconducting wire on the opposite side to the connecting portion. A joint formed by
The connection end of the first thin film superconducting wire is disposed oppositely, and the metal protective layer (2) of the second thin film superconducting wire and the stabilizing metal layer of the first thin film superconducting wire are peeled off. The exposed metal protective layer (1) is disposed oppositely, the first thin film superconducting wire and the second thin film superconducting wire are connected via the connecting portion, and the second thin film superconducting wire A thin film superconducting wire connection structure in which a member covering an outer surface is connected via at least one joint.

この態様によれば、超電導層に過大電流が流れたときに超電導層が焼損することを防ぐために電流をバイパスする金属安定化層が接続されていることにより、接続部の強度を維持しつつ、臨界電流を越える電流が流れた場合にも線材が焼損せず、安定した電流を流すことができる。   According to this aspect, the metal stabilization layer that bypasses the current to prevent the superconducting layer from burning out when an excessive current flows through the superconducting layer is connected, while maintaining the strength of the connection portion, Even when a current exceeding the critical current flows, the wire rod does not burn, and a stable current can flow.

第2の発明の薄膜超電導線の接続構造体の第2の態様は、
前記第2の薄膜超電導線の前記外表面を覆う部材が前記第1の薄膜超電導線の前記安定化金属層からなっており、前記安定化金属層同士が直接接続されていることを特徴とする請求項6に記載の薄膜超電導線の接続構造体である。
この態様によれば、部品点数を増やすことなく接続を行うことができる。
The second aspect of the connection structure of the thin film superconducting wire of the second invention is:
The member covering the outer surface of the second thin film superconducting wire is made of the stabilizing metal layer of the first thin film superconducting wire, and the stabilizing metal layers are directly connected to each other. A connection structure for a thin film superconducting wire according to claim 6.
According to this aspect, connection can be performed without increasing the number of parts.

第2の発明の薄膜超電導線の接続構造体の第3の態様は、
前記第2の薄膜超電導線の前記外表面を覆う部材が良導性金属テープからなっており、前記良導性金属テープと前記安定化金属層とが接続されていることを特徴とする薄膜超電導線の接続構造体である。
The third aspect of the connection structure of the thin film superconducting wire of the second invention is:
A member covering the outer surface of the second thin film superconducting wire is made of a highly conductive metal tape, and the highly conductive metal tape and the stabilizing metal layer are connected to each other. A connection structure of lines.

この態様によれば、接続端近傍の安定化金属層を剥がす長さを短くすることが出来、作業を楽に行うことができる。また、安定化金属層の厚さが異なる2つの薄膜超電導線を接続する場合には、接続部における安定化金属層の厚さが均一ではなく、薄い安定化金属層と厚い安定化金属層ができてしまう。このとき、安定化金属層を流れる電流は薄い安定化金属層によって臨界電流を越える電流が制約され、厚い安定化金属層を有する薄膜超電導線から見ると安定化が過少となってしまう。そこで、厚い安定化金属層で接続部を覆うと、接続部の特性を制約することないことから、接続部に適した厚さのテープを使用することができる。   According to this aspect, the length for peeling the stabilizing metal layer in the vicinity of the connection end can be shortened, and the work can be easily performed. In addition, when connecting two thin film superconducting wires having different thicknesses of the stabilizing metal layer, the thickness of the stabilizing metal layer at the connecting portion is not uniform, and a thin stabilizing metal layer and a thick stabilizing metal layer are I can do it. At this time, the current flowing through the stabilizing metal layer is restricted by the thin stabilizing metal layer to exceed the critical current, and the stabilization becomes insufficient when viewed from the thin film superconducting wire having the thick stabilizing metal layer. Therefore, if the connection part is covered with a thick stabilizing metal layer, the characteristic of the connection part is not restricted, and therefore a tape having a thickness suitable for the connection part can be used.

本発明によれば、薄膜超電導線を形成する金属保護層と安定化金属層間の電気的および機械的接続を保持しつつ、接続部の電気的および機械的接続を確実に行うことができる。更に、すでに薄膜超電導線に形成された安定化金属層を接続部に用いることで、線材の臨界電流まで安定に電流を流すことができ、かつ簡易に接続を行うことができる。また、薄く形成された金属保護層を対面として接続部を形成することにより、低い接続抵抗のまま接続を行うことができるため、安定に電流を流すことができる。   According to the present invention, the electrical and mechanical connection of the connecting portion can be reliably performed while maintaining the electrical and mechanical connection between the metal protective layer forming the thin film superconducting wire and the stabilizing metal layer. Furthermore, by using the stabilizing metal layer already formed on the thin film superconducting wire as the connecting portion, it is possible to flow a current stably up to the critical current of the wire, and it is possible to easily connect. In addition, by forming the connection portion with the thin metal protective layer facing the connection portion, the connection can be performed with a low connection resistance, so that a current can flow stably.

図面を参照して本発明の好ましい実施の形態について詳細に説明する。なお、同一機能を有する各構成部については、図示及び説明簡略化のため、同一符号を付して示す。   A preferred embodiment of the present invention will be described in detail with reference to the drawings. In addition, about each structural part which has the same function, the same code | symbol is attached | subjected and shown for simplification of illustration and description.

図1は本発明の薄膜超電導線の接続の第1の実施形態を説明する工程の模式図である。図1(a)は、第1の薄膜超電導線10の長手方向における端部の安定化金属層15を剥がす工程、図1(b)は、2本の第1の薄膜超電導線10の間に第2の薄膜超電導線20を接続する工程、図1(c)は、第1の薄膜超電導線10の安定化金属層15同士を接合する工程、の模式図である。   FIG. 1 is a schematic diagram of a process for explaining a first embodiment of connection of a thin film superconducting wire of the present invention. FIG. 1A shows a step of removing the stabilizing metal layer 15 at the end in the longitudinal direction of the first thin film superconducting wire 10, and FIG. 1B shows a space between the two first thin film superconducting wires 10. The step of connecting the second thin film superconducting wire 20, FIG. 1C is a schematic diagram of the step of joining the stabilizing metal layers 15 of the first thin film superconducting wire 10.

基板(1)11上に、中間層(1)12、超電導層(1)13、金属保護層(1)14、安定化金属層15が順に形成されている第1の薄膜超電導線10と、基板(2)21上に、中間層(2)22、超電導層(2)23、金属保護層(2)24が順に形成されている第2の薄膜超電導線20を調製する。このとき、中間層(1)12、中間層(2)22は、基板(1)11、基板(2)21の種類によっては形成されてなくてもよい。例えば、基板(1)11、基板(2)21がNi合金などからなる場合には、超電導層(1)13、超電導層(2)23へNiが拡散するのを防ぐために、中間層(1)12、中間層(2)22が必要となるが、基板(1)11、基板(2)21がAg合金などからなる場合には、中間層(1)12、中間層(2)22は形成されていなくてもよい。   A first thin film superconducting wire 10 in which an intermediate layer (1) 12, a superconducting layer (1) 13, a metal protective layer (1) 14 and a stabilizing metal layer 15 are sequentially formed on a substrate (1) 11; A second thin film superconducting wire 20 in which an intermediate layer (2) 22, a superconducting layer (2) 23, and a metal protective layer (2) 24 are sequentially formed on a substrate (2) 21 is prepared. At this time, the intermediate layer (1) 12 and the intermediate layer (2) 22 may not be formed depending on the types of the substrate (1) 11 and the substrate (2) 21. For example, when the substrate (1) 11 and the substrate (2) 21 are made of Ni alloy or the like, the intermediate layer (1) is used to prevent Ni from diffusing into the superconducting layer (1) 13 and the superconducting layer (2) 23. ) 12 and the intermediate layer (2) 22 are required. When the substrate (1) 11 and the substrate (2) 21 are made of an Ag alloy or the like, the intermediate layer (1) 12 and the intermediate layer (2) 22 are It may not be formed.

第1の薄膜超電導線10の安定化金属層15は基板(1)11、中間層(1)12、超電導層(1)13、金属保護層(1)14の長さよりも長く形成され、端部16の断面部分である端面17よりも外に伸びている。第1の薄膜超電導線10の安定化金属層15を図1(a)のように剥がす。この安定化金属層15を剥がす長さは、図1(c)に示すように、長手方向長さDの第2の薄膜超電導線20を覆い、安定化金属層15同士が接合できる長さがあればよい。このとき、第2の薄膜超電導20の長さDは、好ましくは20mm≦D≦300mm、より好ましくは30mm≦D≦100mmである。安定化金属層15を剥がす方法としては、安定化金属層15と金属保護層(1)14の間が安定化金属層15の融点および金属保護層(1)14の融点よりも低い融点を有している第1の低融点金属Aによって貼り合わせられている場合には、熱を加えて低融点金属Aを溶かす方法を用いるとよい。   The stabilizing metal layer 15 of the first thin film superconducting wire 10 is formed to be longer than the length of the substrate (1) 11, the intermediate layer (1) 12, the superconducting layer (1) 13, and the metal protective layer (1) 14. It extends outside the end surface 17 which is a cross-sectional portion of the portion 16. The stabilizing metal layer 15 of the first thin film superconducting wire 10 is peeled off as shown in FIG. As shown in FIG. 1C, the length of peeling the stabilizing metal layer 15 covers the second thin film superconducting wire 20 having a length D in the longitudinal direction so that the stabilizing metal layers 15 can be joined to each other. I just need it. At this time, the length D of the second thin film superconductor 20 is preferably 20 mm ≦ D ≦ 300 mm, more preferably 30 mm ≦ D ≦ 100 mm. As a method of peeling the stabilization metal layer 15, a gap between the stabilization metal layer 15 and the metal protective layer (1) 14 has a melting point lower than the melting point of the stabilization metal layer 15 and the melting point of the metal protection layer (1) 14. In the case where the first low melting point metal A is bonded, a method of melting the low melting point metal A by applying heat may be used.

次に、少なくとも2本の第1の薄膜超電導線10の端面17同士を対向させて上面に安定化金属層15が来るように配置する。更に、図1(b)のように、第1の薄膜超電導線10の金属保護層(1)14と第2の薄膜超電導線20の金属保護層(2)24が対面となるように、第1の薄膜超電導線10と第2の薄膜超電導線20を接続させ、第1の薄膜超電導線10と第2の薄膜超電導線20が接触している接続部18を形成する。この接続部18の接続方法は、安定化金属層15と金属保護層(1)14の貼り合わせに第1の低融点金属Aが用いられている場合には、第1の低融点金属Aと同等もしくは低い温度の融点を有する第2の低融点金属Bを用いて接続を行うとよい。接続部18の長さ方向の距離mは、長くすると接続抵抗が小さくなる傾向があり、30mm以上で好ましい小さな接続抵抗となるが、50mm以上では接続抵抗が小さくなる傾向は小さくなり、100mm以上ではほとんど変わらないことがわかった。このことから、接続部18の距離mは30〜100mmが好ましく、より好ましくは30〜50mmである。   Next, it arrange | positions so that the end surface 17 of the at least 2 1st thin film superconducting wire 10 may oppose, and the stabilization metal layer 15 may come to an upper surface. Further, as shown in FIG. 1B, the metal protective layer (1) 14 of the first thin film superconducting wire 10 and the metal protective layer (2) 24 of the second thin film superconducting wire 20 face each other. The first thin film superconducting wire 10 and the second thin film superconducting wire 20 are connected to form a connection portion 18 in which the first thin film superconducting wire 10 and the second thin film superconducting wire 20 are in contact with each other. The connection method of the connecting portion 18 is such that when the first low melting point metal A is used for bonding the stabilizing metal layer 15 and the metal protective layer (1) 14, The connection may be made using the second low melting point metal B having the same or lower melting point. When the distance m in the length direction of the connecting portion 18 is increased, the connection resistance tends to be small, and a preferable small connection resistance is 30 mm or more. However, the tendency to decrease the connection resistance is small at 50 mm or more, and at 100 mm or more. I found it almost unchanged. Therefore, the distance m of the connecting portion 18 is preferably 30 to 100 mm, more preferably 30 to 50 mm.

そして、図1(c)に示すように安定化金属層15と第2の薄膜超電導線20の基板(2)21を接合させ、更に安定化金属層15同士を接合させて、接合部19を形成する。安定化金属層15と基板(2)21の接合方法と接合部19の接合方法は、接続部18の接続方法と同様に、第1の低融点金属Aと同等もしくは低い温度の融点を有する第2の低融点金属Bを用いて接合を行うとよい。このとき、基板(2)21上に接合された安定化金属層15の長手方向長さL1は、第2の薄膜超電導線20の長さDとの関係で表したD/2≦L1≦Dの範囲内である。好ましくは、D/2よりも50mm以上長いとよい。また、図1においては、第1の薄膜超電導線10間に隙間距離nを設けているが、n=0として、隙間を空けなくてもよい。   And as shown in FIG.1 (c), the stabilization metal layer 15 and the board | substrate (2) 21 of the 2nd thin film superconducting wire 20 are joined, Furthermore, the stabilization metal layer 15 is joined, and the junction part 19 is joined. Form. The method for joining the stabilizing metal layer 15 and the substrate (2) 21 and the method for joining the joint portion 19 are the same as those for the connection portion 18 and have a melting point at a temperature equal to or lower than that of the first low melting point metal A. Bonding may be performed using the low-melting-point metal B of 2. At this time, the length L1 in the longitudinal direction of the stabilizing metal layer 15 bonded on the substrate (2) 21 is expressed by D / 2 ≦ L1 ≦ D expressed in relation to the length D of the second thin film superconducting wire 20. Is within the range. Preferably, it is 50 mm or longer than D / 2. In FIG. 1, the gap distance n is provided between the first thin film superconducting wires 10, but it is not necessary to leave a gap by setting n = 0.

図2は本発明の薄膜超電導線の接続の第2の実施形態を説明する工程の模式図である。図2(a)は、第1の薄膜超電導線10の長手方向における端部16の安定化金属層15を剥がす工程の模式図である。図2(b)は、2本の第1の薄膜超電導線10の間に第2の薄膜超電導線20を接続する工程の模式図である。図2(c)は、良導性金属テープ25によって第2の薄膜超電導線20の基板(2)21を跨いで安定化金属層15間を接合させる工程の模式図である。   FIG. 2 is a schematic diagram of a process for explaining a second embodiment of connection of the thin film superconducting wire of the present invention. FIG. 2A is a schematic diagram of a process of peeling the stabilizing metal layer 15 at the end 16 in the longitudinal direction of the first thin film superconducting wire 10. FIG. 2B is a schematic diagram of a process of connecting the second thin film superconducting wire 20 between the two first thin film superconducting wires 10. FIG. 2C is a schematic diagram of a process of joining the stabilizing metal layers 15 across the substrate (2) 21 of the second thin film superconducting wire 20 with the highly conductive metal tape 25.

第1の実施形態と同様の構成を備えた第1の薄膜超電導線10と第2の薄膜超電導線20を調製する。第1の薄膜超電導線10の安定化金属層15は図2(a)のように、基板(1)11、中間層(1)12、超電導層(1)13、金属保護層(1)14の長さよりも短く形成され、端部16から露出長さL2だけ安定化金属層15が剥がされ、金属保護層(1)14が露出している。金属保護層(1)14を露出する方法としては、安定化金属層15と金属保護層(1)14の間が安定化金属層15の融点および金属保護層(1)14の融点よりも低い融点を有している第1の低融点金属Aによって貼り合わせられている場合には、熱を加えて低融点金属Aを溶かす方法を用いるとよい。このとき、L2の長さはm≦L2≦m+50mmであることが望ましい。   A first thin film superconducting wire 10 and a second thin film superconducting wire 20 having the same configuration as in the first embodiment are prepared. The stabilizing metal layer 15 of the first thin film superconducting wire 10 includes a substrate (1) 11, an intermediate layer (1) 12, a superconducting layer (1) 13, and a metal protective layer (1) 14 as shown in FIG. The stabilizing metal layer 15 is peeled off from the end portion 16 by the exposed length L2, and the metal protective layer (1) 14 is exposed. As a method of exposing the metal protective layer (1) 14, the space between the stabilized metal layer 15 and the metal protective layer (1) 14 is lower than the melting point of the stabilized metal layer 15 and the melting point of the metal protective layer (1) 14. In the case where the first low melting point metal A having a melting point is bonded, a method of melting the low melting point metal A by applying heat may be used. At this time, the length of L2 is preferably m ≦ L2 ≦ m + 50 mm.

次に、少なくとも2本の第1の薄膜超電導線10の端面17同士を対向させて上面に安定化金属層15が来るように配置する。更に、図2(b)のように、第1の薄膜超電導線10の金属保護層(1)14と第2の薄膜超電導線20の金属保護層(2)24が対面となるように、第1の薄膜超電導線10と第2の薄膜超電導線20を接続させ、第1の薄膜超電導線10と第2の薄膜超電導線20が接触している接続部18を形成する。この接続部18の接合方法は、安定化金属層15と金属保護層(1)14の接合に第1の低融点金属Aが用いられている場合には、第1の低融点金属Aと同等もしくは低い温度の融点を有する第2の低融点金属Bを用いて接続を行うとよい。接続部18の長さ方向の距離mは、長くすると接続抵抗が小さくなる傾向があり、30mm以上で好ましい小さな接続抵抗となるが、50mm以上では接続抵抗が小さくなる傾向は小さくなり、100mm以上ではほとんど変わらないことがわかった。このことから、接続部18の距離mは30〜100mmが好ましく、より好ましくは30〜50mmである。なお、露出長さL2は、接続部18の距離mよりも長ければよい。   Next, it arrange | positions so that the end surface 17 of the at least 2 1st thin film superconducting wire 10 may oppose, and the stabilization metal layer 15 may come to an upper surface. Further, as shown in FIG. 2B, the metal protective layer (1) 14 of the first thin film superconducting wire 10 and the metal protective layer (2) 24 of the second thin film superconducting wire 20 face each other. The first thin film superconducting wire 10 and the second thin film superconducting wire 20 are connected to form a connection portion 18 in which the first thin film superconducting wire 10 and the second thin film superconducting wire 20 are in contact with each other. The joining method of the connection portion 18 is equivalent to the first low melting point metal A when the first low melting point metal A is used for joining the stabilizing metal layer 15 and the metal protective layer (1) 14. Alternatively, the connection may be performed using the second low melting point metal B having a low melting point. When the distance m in the length direction of the connecting portion 18 is increased, the connection resistance tends to be small, and a preferable small connection resistance is 30 mm or more. However, the tendency to decrease the connection resistance is small at 50 mm or more, and at 100 mm or more. I found it almost unchanged. Therefore, the distance m of the connecting portion 18 is preferably 30 to 100 mm, more preferably 30 to 50 mm. In addition, the exposure length L2 should just be longer than the distance m of the connection part 18. FIG.

そして、図2(c)に示すように良導性金属テープ25を第2の薄膜超電導線20の基板(2)21を跨いで安定化金属層15間を接合させる。良導性金属テープ25と第2の薄膜超電導線20の基板(2)21とを接合させ、更に各々の安定化金属層15を接合させ、接合部19を2箇所形成する。安定化金属層15と基板(2)21の接合方法と接合部19の接合方法は、接続部18の接続方法と同様に、第1の低融点金属Aと同等もしくは低い温度の融点を有する第2の低融点金属Bを用いて接合を行うとよい。このとき、良導性金属テープ25は安定化金属層15と同様のテープであってもよい。図2においては、第1の薄膜超電導線10間に隙間距離nを設けているが、n=0として、隙間を空けなくてもよい。   Then, as shown in FIG. 2 (c), the highly conductive metal tape 25 is joined between the stabilizing metal layers 15 across the substrate (2) 21 of the second thin film superconducting wire 20. The highly conductive metal tape 25 and the substrate (2) 21 of the second thin film superconducting wire 20 are joined, and each stabilizing metal layer 15 is further joined to form two joints 19. The method for joining the stabilizing metal layer 15 and the substrate (2) 21 and the method for joining the joint portion 19 are the same as those for the connection portion 18 and have a melting point at a temperature equal to or lower than that of the first low melting point metal A. Bonding may be performed using the low-melting-point metal B of 2. At this time, the highly conductive metal tape 25 may be the same tape as the stabilizing metal layer 15. In FIG. 2, the gap distance n is provided between the first thin film superconducting wires 10, but it is not necessary to leave a gap with n = 0.

図3は、本発明の薄膜超電導線の接続構造の実施形態を説明する模式図である。図3(a)は図1に示した薄膜超電導線の接続方法において、n=0とした場合に形成された薄膜超電導線の接続構造の模式図である。図3(b)は図2に示した薄膜超電導線の接続方法において、n=0とした場合に形成された薄膜超電導線の接続構造の模式図である。図3(c)は図1に示した薄膜超電導線の接続方法において、接合部19を第2の薄膜超電導線20上ではなく、第1の薄膜超電導線10上に形成した場合の薄膜超電導線の接続構造の模式図である。同様に図3(d)は図1に示した薄膜超電導線の接続方法において、接合部19を第2の薄膜超電導線20上ではなく、第1の薄膜超電導線10上に形成し、n=0とした場合に形成された薄膜超電導線の接続構造の模式図である。図3(c)および図3(d)に示す薄膜超電導線の接続方法によると、安定化金属層15の接合が1箇所でよく、一方の安定化金属層15は一度金属保護層(1)14から剥がした後に再度接合などを行う必要がなく、作業がより簡易となる。更に、接合部19を第2の薄膜超電導線20上ではなく、第1の薄膜超電導線10上に形成するので、薄膜超電導線の接続部分の厚さを薄くすることができる。   FIG. 3 is a schematic diagram for explaining an embodiment of the connection structure of the thin film superconducting wire of the present invention. FIG. 3A is a schematic diagram of a connection structure of thin film superconducting wires formed when n = 0 in the thin film superconducting wire connecting method shown in FIG. FIG. 3B is a schematic diagram of a connection structure of thin film superconducting wires formed when n = 0 in the thin film superconducting wire connecting method shown in FIG. FIG. 3C shows a thin film superconducting wire in the case where the junction 19 is formed not on the second thin film superconducting wire 20 but on the first thin film superconducting wire 10 in the thin film superconducting wire connecting method shown in FIG. It is a schematic diagram of the connection structure. Similarly, FIG. 3D shows a connection method of the thin film superconducting wire shown in FIG. 1, in which the junction 19 is formed not on the second thin film superconducting wire 20 but on the first thin film superconducting wire 10 and n = It is a schematic diagram of the connection structure of the thin film superconducting wire formed when it is set to 0. According to the connection method of the thin film superconducting wire shown in FIG. 3C and FIG. 3D, the stabilizing metal layer 15 may be joined at one place, and one stabilizing metal layer 15 is once a metal protective layer (1). It is not necessary to perform joining again after peeling off from 14, and the work becomes easier. Furthermore, since the junction 19 is formed not on the second thin film superconducting wire 20 but on the first thin film superconducting wire 10, the thickness of the connecting portion of the thin film superconducting wire can be reduced.

図1および図2では、第1の薄膜超電導線10間に隙間距離nを設けているが、この場合、特に超電導電力ケーブルで使用される薄膜超電導線の接続時に適している。図4は一般的な超電導ケーブルの概略構造である。超電導ケーブル31の中心にあるケーブルコアは、金属製(例えば銅製)フォーマ32の周りにテープ状の薄膜超電導線33をらせん状に巻き付けて、その上に電気絶縁層34(材質は紙若しくは半合成紙)、次いで保護層35(例えば、導電性の紙あるいは銅の編組線からなる)から形成される。このケーブルコアは可撓性のある金属製(例えば、ステンレス製またはアルミニウム製)二重断熱管、即ち、内管36と外管38及び内管36と外管38の間に配置された断熱材37からなる二重断熱管の中に収納されている。このように、超電導電力ケーブルのような構造では、金属製フォーマ32の周りに薄膜超電導線33を巻きつけている。そのため、ケーブル接続の際に金属性フォーマ32間を溶接等で接続する際に、薄膜超電導線33間に隙間距離nがなく、接続部直上に薄膜超電導線33が存在してしまうと、金属製フォーマ32間の溶接による熱の影響によって薄膜超電導線33の性能が落ちてしまう。   In FIG. 1 and FIG. 2, a gap distance n is provided between the first thin film superconducting wires 10, but this case is particularly suitable when connecting thin film superconducting wires used in superconducting power cables. FIG. 4 is a schematic structure of a general superconducting cable. A cable core at the center of the superconducting cable 31 is formed by winding a tape-shaped thin film superconducting wire 33 around a metal (for example, copper) former 32 in a spiral shape, and an electric insulating layer 34 (material is paper or semi-synthetic). Paper) and then a protective layer 35 (eg made of conductive paper or copper braided wire). The cable core is a flexible metal (for example, stainless steel or aluminum) double insulation tube, that is, an insulation material disposed between the inner tube 36 and the outer tube 38 and between the inner tube 36 and the outer tube 38. It is housed in a double heat insulation pipe made of 37. Thus, in a structure such as a superconducting power cable, the thin film superconducting wire 33 is wound around the metal former 32. Therefore, when the metallic formers 32 are connected by welding or the like when connecting the cables, if there is no gap distance n between the thin film superconducting wires 33 and the thin film superconducting wires 33 are present immediately above the connecting portion, the metal The performance of the thin film superconducting wire 33 deteriorates due to the influence of heat caused by welding between the formers 32.

しかし、図1(c)、図2(c)および図3(d)のように、第1の薄膜超電導線10間に隙間距離nを設けておけば、金属製フォーマ32間の溶接を終えた後に、第2の薄膜超電導線20を新たに接続させることによって、金属製フォーマ32間の溶接などによる熱の影響を受けず、第1の薄膜超電導線10および第2の薄膜超電導線20の性能を落とすことなく、超電導ケーブル31内のケーブルコア接続が可能となる。このように、溶接などによる熱の影響を受けないためには、隙間距離nの距離は好ましくは200mm〜600mmであればよい。   However, if a gap distance n is provided between the first thin film superconducting wires 10 as shown in FIGS. 1C, 2C, and 3D, the welding between the metal formers 32 is completed. After that, by newly connecting the second thin film superconducting wire 20, the first thin film superconducting wire 10 and the second thin film superconducting wire 20 are not affected by heat due to welding between the metal formers 32. The cable core in the superconducting cable 31 can be connected without degrading the performance. Thus, in order not to be affected by heat due to welding or the like, the gap distance n is preferably 200 mm to 600 mm.

また、図3(a)、(b)および(d)のように隙間距離n=0として第1の薄膜超電導線10間の隙間を要さない場合は、超電導電力ケーブルのような金属でできたフォーマの外周に第1の薄膜超電導線10を巻きつける用途ではなく、薄膜超電導線10単体のみの接続の際に有効である。例としては、超電導マグネットのように、超電導線を用いたコイルの接続時などである。このような場合には、第1の薄膜超電導線10の端面17同士を対面で接する状態にし、端面17同士の接合も行い、更に第2の薄膜超電導線20に関しても接合を行うことによって、低い接続抵抗でかつ線材並みに強固な機械強度を有した接続構造を実現することができる。このとき、端面17同士の接合方法としては、接続部18の接続方法と同様に、第1の低融点金属Aと同等もしくは低い温度の融点を有する第2の低融点金属Bを用いて接合を行うとよい。
以下に、この発明の薄膜超電導線の接続方法を実施例によって更に詳細に説明する。
If the gap distance n = 0 and no gap between the first thin film superconducting wires 10 is required as shown in FIGS. 3 (a), (b) and (d), it can be made of a metal such as a superconducting power cable. This is effective not for the purpose of winding the first thin film superconducting wire 10 around the outer periphery of the former, but for connecting only the thin film superconducting wire 10 alone. An example is when connecting a coil using a superconducting wire, such as a superconducting magnet. In such a case, the end faces 17 of the first thin film superconducting wire 10 are brought into contact with each other, the end faces 17 are joined together, and the second thin film superconducting wire 20 is joined together to reduce the thickness. It is possible to realize a connection structure having a connection resistance and a mechanical strength that is as strong as a wire. At this time, as the joining method of the end faces 17, the joining is performed using the second low melting point metal B having a melting point equal to or lower than that of the first low melting point metal A, as in the connection method of the connecting portion 18. It is good to do.
Below, the connection method of the thin film superconducting wire of this invention is demonstrated in detail by an Example.

接続する第1の薄膜超電導線10としては、ハステロイ(登録商標:以下同様)(ニッケル−鉄合金)を圧延して、幅10mm、厚さ0.1mmにした基板(1)11の上に、イオンビームアシストスパッタリング法によりYSZ(イットリウム安定化ジルコニア)の中間層(1)12を0.5μm形成し、さらにその上にプラズマレーザー堆積法でYBCO(イットリウム−バリウム−銅−酸素)酸化物を1μm積層して超電導層(1)13を形成した。超電導層(1)13の劣化防止のために超電導層(1)13の上には、5μmの銀を真空蒸着法でつけ金属保護層(1)14を形成し、さらにその上に、低融点金属Aで厚さ0.1mmの銅テープを接合して銅からなる安定化金属層15を形成して第1の薄膜超電導線10を製作した。この第1の薄膜超電導線10を、液体窒素に入れて臨界電流を測定したところ200Aであり、さらに過電流に対する耐性として700Aの電流を2秒間流したが、焼損や臨界電流の低下などの劣化が全くなかった。また、この超電導線の引っ張り試験を室温で行ったところ、1000MPaで線材が破断した。   As the first thin film superconducting wire 10 to be connected, Hastelloy (registered trademark: the same applies hereinafter) (nickel-iron alloy) is rolled onto a substrate (1) 11 having a width of 10 mm and a thickness of 0.1 mm. An intermediate layer (1) 12 of YSZ (yttrium stabilized zirconia) 0.5 μm is formed by ion beam assisted sputtering, and further YBCO (yttrium-barium-copper-oxygen) oxide 1 μm is formed thereon by plasma laser deposition. The superconducting layer (1) 13 was formed by laminating. In order to prevent the superconducting layer (1) 13 from being deteriorated, a metal protective layer (1) 14 is formed on the superconducting layer (1) 13 by applying 5 μm of silver by a vacuum vapor deposition method. The first thin film superconducting wire 10 was manufactured by bonding a copper tape having a thickness of 0.1 mm with metal A to form a stabilized metal layer 15 made of copper. The first thin film superconducting wire 10 was put in liquid nitrogen and the critical current was measured to be 200 A. Further, as a resistance against overcurrent, a current of 700 A was passed for 2 seconds, but deterioration such as burnout and reduction of critical current occurred. There was no at all. Moreover, when the tensile test of this superconducting wire was conducted at room temperature, the wire broke at 1000 MPa.

最初に薄膜超電導線の接続手順として、接続する2本の第1の薄膜超電導線10の端部16を、2本の第1の薄膜超電導線10がつき合わされる位置となる中心点よりそれぞれ50mm長く切断する。それぞれの第1の薄膜超電導線10は、安定化金属層15をハンダゴテで熱を加えて安定化金属層15と金属保護層(1)14のあいだの低融点金属Aを溶かして剥がし、端部16より100mmの位置まで基板(1)11、中間層(1)12、超電導層(1)13、金属保護層(1)14からなる超電導線側と安定化金属層15側に分離する。分離した後の基板(1)11、中間層(1)12、超電導層(1)13、金属保護層(1)14からなる超電導線側の部分を端部16から30mmの部分で切断することで、2本の第1の薄膜超電導線10の端部16が、基板(2)21上に接合された安定化金属層15の長手方向長さL1のほぼ中心位置とすることができる。   First, as a connection procedure of the thin film superconducting wires, the end portions 16 of the two first thin film superconducting wires 10 to be connected are 50 mm from the center point where the two first thin film superconducting wires 10 are brought together. Cut long. Each of the first thin film superconducting wires 10 is heated by soldering the stabilizing metal layer 15 to melt and peel off the low melting point metal A between the stabilizing metal layer 15 and the metal protective layer (1) 14. 16 to 100 mm, the substrate (1) 11, the intermediate layer (1) 12, the superconducting layer (1) 13, and the metal protective layer (1) 14 are separated into the superconducting wire side and the stabilizing metal layer 15 side. The part on the superconducting wire side consisting of the substrate (1) 11, the intermediate layer (1) 12, the superconducting layer (1) 13, and the metal protective layer (1) 14 after being separated is cut at a part 30 mm from the end 16. Thus, the end portions 16 of the two first thin film superconducting wires 10 can be set substantially at the center position of the longitudinal length L1 of the stabilizing metal layer 15 bonded onto the substrate (2) 21.

このとき、L1は端部16より100mmの位置まで基板(1)11、中間層(1)12、超電導層(1)13、金属保護層(1)14からなる超電導線側と安定化金属層15側に分離したときの、安定化金属層15の長さとほぼ等しい。そして、2本の第1の薄膜超電導線10の端面17同士が接触する状態で対向配置させた。次に基板(2)21、中間層(2)22、超電導層(2)23、金属保護層(2)24からなる長さD=100mmの第2の薄膜超電導線20を準備する。これは、先に超電導機器に巻きつけた第1の薄膜超電導線10を長めに準備して、その端の部分から100mmの箇所を切断して、さらにその第1の薄膜超電導線10の安定化金属層15を剥がした状態のものを使用することも可能である。   At this time, L1 is a superconducting wire side composed of the substrate (1) 11, the intermediate layer (1) 12, the superconducting layer (1) 13, and the metal protective layer (1) 14 to the position of 100 mm from the end portion 16 and the stabilizing metal layer. It is almost equal to the length of the stabilizing metal layer 15 when separated to the 15 side. Then, the two first thin film superconducting wires 10 were arranged to face each other with the end faces 17 in contact with each other. Next, a second thin film superconducting wire 20 having a length D = 100 mm comprising a substrate (2) 21, an intermediate layer (2) 22, a superconducting layer (2) 23, and a metal protective layer (2) 24 is prepared. This is because the first thin film superconducting wire 10 previously wound around the superconducting device is prepared to be long, 100 mm from the end portion is cut, and the first thin film superconducting wire 10 is further stabilized. It is also possible to use one with the metal layer 15 peeled off.

第2の薄膜超電導線20の金属保護層(2)24と接続する第1の薄膜超電導線10の金属保護層(1)14をそれぞれ50mm重なるように配置して、ビスマスと錫を主とした融点が150℃以下の低融点金属Bをハンダとして用いて接続し、接続部18を形成する。なお、第2の薄膜超電導線20の基板(2)21の超電導層(2)23がついていない裏側については、接続部18の形成後または事前に、基板(2)21の裏側表面の酸化層を化学的または機械的に除去するか、事前にスパッタリング等によりハンダが乗りやすい銀層を形成してハンダが乗るようにしておく必要がある。第1の薄膜超電導線10と第2の薄膜超電導線20が接続部18で接続されている状態で、先に剥離させておいた安定化金属層15を元に戻すことで、両者の安定化金属層15は長さとしてL1が第2の薄膜超電導線20の長さDとほぼ等しい100mmを有しているため、両者の安定化金属層15同士は約100mm重なった状態、つまり接合部19の長さはと約100mmとなり、剥がした安定化金属層15と第2の薄膜超電導線20の基板間、更に2本の薄膜超電導線10の安定化金属層15で重なりあう部分である接合部19を全て低融点金属Bからなるハンダで隙間無く接合して、薄膜超電導線10の接続とする。   The metal protective layer (1) 14 of the first thin film superconducting wire 10 connected to the metal protective layer (2) 24 of the second thin film superconducting wire 20 is disposed so as to overlap each other by 50 mm, and bismuth and tin are mainly used. The low melting point metal B having a melting point of 150 ° C. or lower is connected using solder to form the connection portion 18. For the back side of the second thin film superconducting wire 20 on which the superconducting layer (2) 23 of the substrate (2) 21 is not attached, the oxide layer on the back side surface of the substrate (2) 21 is formed after the connection portion 18 is formed or in advance. It is necessary to remove the solder chemically or mechanically or to form a silver layer on which solder can be easily put by sputtering or the like in advance so that the solder can be put on. In the state where the first thin film superconducting wire 10 and the second thin film superconducting wire 20 are connected by the connecting portion 18, the stabilized metal layer 15 that has been peeled off first is returned to the original state, thereby stabilizing both. Since the metal layer 15 has a length L1 of 100 mm, which is substantially equal to the length D of the second thin film superconducting wire 20, the stabilized metal layers 15 overlap each other by about 100 mm, that is, the joint 19 The length of the joint is about 100 mm, and is a portion where the stabilized metal layer 15 peeled off and the substrate of the second thin film superconducting wire 20 are overlapped with the stabilizing metal layer 15 of the two thin film superconducting wires 10. The thin film superconducting wire 10 is connected by joining all 19 with solder made of low melting point metal B without any gap.

この接続構造を有する薄膜超電導線の特性の評価を行った。その結果、電流を流して1μV/cmの電圧が発生する電流は、元の線材(薄膜超電導線10)の臨界電流となる200Aに対して2A低い198Aであり、薄膜超電導線10とそん色ない通電特性を持っていた。また、接続抵抗を測定したところ0.1μΩと非常に小さく抑えることができた。さらに、液体窒素温度で700A 2秒の短時間過電流を流したが、接続構造部分で大きな発熱も無く線材は焼損することなく過大電流に耐えることができた。その後線材を室温まで戻して、引張り試験を行ったが、引張り試験の結果、1120MPaで接続構造部分から離れた部分で、破断してしまい接続構造部分自身はなんら機械的な変形や亀裂など生じないことが確認された。   The characteristics of the thin film superconducting wire having this connection structure were evaluated. As a result, the current at which a voltage of 1 μV / cm is generated by passing a current is 198 A, which is 2 A lower than 200 A, which is the critical current of the original wire (thin film superconducting wire 10), and is comparable to the thin film superconducting wire 10. It had current-carrying characteristics. Further, when the connection resistance was measured, it was suppressed to a very small value of 0.1 μΩ. Furthermore, although a short current of 700 A for 2 seconds was passed at a liquid nitrogen temperature, there was no significant heat generation in the connection structure portion, and the wire rod could withstand the excessive current without burning. After that, the wire rod was returned to room temperature and a tensile test was performed. As a result of the tensile test, the connection structure portion itself was not broken at all at a portion away from the connection structure portion at 1120 MPa, and no mechanical deformation or cracking occurred. It was confirmed.

接続する第1の薄膜超電導線10としては、基板(1)11としてNi−5%W合金(ニッケル−5%タングステン合金)を使用した。この基板(1)11は、実施例1のハステロイと異なり、磁性を持つ材料であり交流電流を通電すると、交流損失が磁性の影響でハステロイの3倍程度大きくなることが観測されている。また、機械的にも弱く約300MPaで破断してしまう。この基板(1)11上に、電子ビーム法でCeO(酸化セリア)からなる中間層(1)12を1.0μm形成し、さらにその上にCVD法(化学蒸着堆積法)でYBCO酸化物を1μm積層して超電導層(1)13を形成した。この方法は、先のハステロイの基板(1)11上にIBAD−PLDで中間層(1)12/超電導層(1)13を形成する方式に比べて高速にすることができ、薄膜超電導線のコストダウンになる製造方法である。この第1の薄膜超電導線10を用いた接続を行った。   As the first thin film superconducting wire 10 to be connected, a Ni-5% W alloy (nickel-5% tungsten alloy) was used as the substrate (1) 11. Unlike the Hastelloy of Example 1, this substrate (1) 11 is a magnetic material, and it is observed that when an alternating current is applied, the alternating current loss is about three times larger than Hastelloy due to the influence of magnetism. It is also mechanically weak and breaks at about 300 MPa. An intermediate layer (1) 12 made of CeO (ceria oxide) is formed by 1.0 μm on the substrate (1) 11 by an electron beam method, and a YBCO oxide is further formed thereon by a CVD method (chemical vapor deposition method). Superconductive layer (1) 13 was formed by laminating 1 μm. This method can be made faster than the method of forming the intermediate layer (1) 12 / superconducting layer (1) 13 by IBAD-PLD on the Hastelloy substrate (1) 11, and the thin film superconducting wire This is a manufacturing method that reduces costs. Connection using the first thin film superconducting wire 10 was performed.

2本の第1の薄膜超電導線10は、実施例2ではそれぞれの端部16が200mmはなれた位置に配置してある。まず、最外層の金属安定化層15を端部16より50mmずつ剥がして切り取り、金属保護層(1)14を露出した状態にした。次に、接続用の第2の薄膜超電導線20を準備するが、ここでは非磁性のハステロイからなる基板(2)21を用い、臨界電流も第1の薄膜超電導線10に比べて高く、長さ260mmの薄膜超電導線を準備した。この第2の薄膜超電導線20の金属保護層(2)24と接続する第1の薄膜超電導線10の金属保護層(1)14をそれぞれ30mmずつ重なるように配置して、ビスマスと錫を主とした融点が150℃以下の低融点金属Bを用いたハンダ接続を行った。次に、400mmの厚さ0.1mm、幅が第1、第2の薄膜超電導線と同じ銅からなる良導性金属テープ25を用意して、第1の薄膜超電導線10の安定化金属層15にそれぞれ接合部19として50mmずつ重なるようにして、400mm全長にわたりハンダで第1、第2の薄膜超電導線10,20に貼り合わせた。   In the second embodiment, the two first thin film superconducting wires 10 are arranged at positions where the end portions 16 are separated from each other by 200 mm. First, the outermost metal stabilization layer 15 was peeled off by 50 mm from the end portion 16 and cut off to leave the metal protective layer (1) 14 exposed. Next, a second thin film superconducting wire 20 for connection is prepared. Here, a substrate (2) 21 made of nonmagnetic Hastelloy is used, and the critical current is higher than that of the first thin film superconducting wire 10 and is long. A thin film superconducting wire having a thickness of 260 mm was prepared. The metal protective layer (1) 14 of the first thin film superconducting wire 10 connected to the metal protective layer (2) 24 of the second thin film superconducting wire 20 is disposed so as to overlap each other by 30 mm, and bismuth and tin are mainly used. Solder connection using a low melting point metal B having a melting point of 150 ° C. or less was performed. Next, a highly conductive metal tape 25 made of the same copper as the first and second thin film superconducting wires having a thickness of 400 mm and a thickness of 0.1 mm is prepared, and the stabilized metal layer of the first thin film superconducting wire 10 is prepared. 15 were bonded to the first and second thin film superconducting wires 10 and 20 with solder over the entire length of 400 mm so as to overlap each other by 50 mm as the joint portion 19.

この接続構造部分を有する薄膜超電導線を実施例1の接続構造を有する薄膜超電導線と同様に特性の評価を行った結果、電流を流して1μV/cmの電圧が発生する電流は、元の線材(薄膜超電導線10)の臨界電流の98%であり、接続抵抗も0.1μΩとなった。液体窒素温度で700A 2秒の短時間過電流も耐え、引張り試験の結果、実施例1と同様に接続構造部分以外の部分で先に破断してしまい、薄膜超電導線自身よりも接続構造部分のほうが機械的に強固であることが確認された。また、薄膜超電導線の交流損失を測定したところ、接続構造部分の交流損失は、基板が非磁性であることから、Ni−5%Wの基板の薄膜超電導線材より交流損失が1/3と低く抑えることができた。   As a result of evaluating the characteristics of the thin film superconducting wire having this connection structure portion in the same manner as the thin film superconducting wire having the connection structure of Example 1, the current that generates a voltage of 1 μV / cm when the current flows is the original wire It was 98% of the critical current of (thin film superconducting wire 10), and the connection resistance was also 0.1 μΩ. Withstands a short-time overcurrent of 700 A 2 seconds at a liquid nitrogen temperature. As a result of the tensile test, it breaks first in the portion other than the connection structure portion as in Example 1, and the connection structure portion of the thin film superconducting wire itself is broken. Was confirmed to be mechanically strong. Moreover, when the AC loss of the thin film superconducting wire was measured, the AC loss of the connection structure portion was 1/3 lower than the thin film superconducting wire of the Ni-5% W substrate because the substrate was non-magnetic. I was able to suppress it.

なお、第1の薄膜超電導線10と第2の薄膜超電導線20の超電導材料の組成は、RE−バリウム−銅−酸素(RE は、 Y, Nd, Sm, Eu, Gd, Dy, Ho, Er, Ybから選ばれる1種の原子)からなる化合物を用いてもよい。   The composition of the superconducting material of the first thin film superconducting wire 10 and the second thin film superconducting wire 20 is RE-barium-copper-oxygen (RE is Y, Nd, Sm, Eu, Gd, Dy, Ho, Er , One atom selected from Yb) may be used.

本発明の薄膜超電導線の接続方法の第1の実施形態を説明する工程の模式図である。It is a schematic diagram of the process explaining 1st Embodiment of the connection method of the thin film superconducting wire of this invention. 本発明の薄膜超電導線の接続方法の第2の実施形態を説明する工程の模式図である。It is a schematic diagram of the process explaining 2nd Embodiment of the connection method of the thin film superconducting wire of this invention. 本発明の薄膜超電導線の接続構造の実施形態を説明する模式図である。It is a schematic diagram explaining embodiment of the connection structure of the thin film superconducting wire of this invention. 一般的な超電導ケーブルの概略構造を説明する模式図である。It is a schematic diagram explaining the schematic structure of a general superconducting cable.

符号の説明Explanation of symbols

10 第1の薄膜超電導線
11 基板(1)
12 中間層(1)
13 超電導層(1)
14 金属保護層(1)
15 安定化金属層
16 端部
17 端面
18 接続部
19 接合部
20 第2の薄膜超電導線
21 基板(2)
22 中間層(2)
23 超電導層(2)
24 金属保護層(2)
25 良導性金属テープ
31 超電導ケーブル
32 フォーマ
33 薄膜超電導線
34 電気絶縁層
35 保護層
36 内管
37 断熱材
38 外管
10 First thin film superconducting wire 11 Substrate (1)
12 Middle layer (1)
13 Superconducting layer (1)
14 Metal protective layer (1)
15 Stabilized metal layer 16 End 17 End face 18 Connection 19 Joint 20 Second thin film superconducting wire 21 Substrate (2)
22 Middle layer (2)
23 Superconducting layer (2)
24 Metal protective layer (2)
25: Conductive metal tape 31: Superconducting cable 32: Former 33: Thin film superconducting wire 34: Electrical insulating layer 35: Protective layer 36: Inner tube 37: Heat insulating material 38: Outer tube

Claims (8)

接続しようとする接続端近傍の安定化金属層の一部を剥がした、基板(1)上方に超電導層(1)と金属保護層(1)と安定化金属層が形成されている少なくとも2つの第1の薄膜超電導線、および、基板(2)上方に超電導層(2)と金属保護層(2)が形成されている少なくとも1つの第2の薄膜超電導線を調製し、
前記第1の薄膜超電導線の前記接続端部を対向配置し、
前記第2の薄膜超電導線の前記金属保護層(2)と、前記第1の薄膜超電導線の前記安定化金属層を剥がして露出した前記金属保護層(1)とを対向配置し、
前記第1の薄膜超電導線の前記金属保護層(1)と前記第2の薄膜超電導線の前記金属保護層(2)とを接続する、薄膜超電導線の接続方法。
At least two of the superconducting layer (1), the metal protective layer (1), and the stabilizing metal layer are formed above the substrate (1) from which a part of the stabilizing metal layer near the connection end to be connected is peeled off. Preparing a first thin film superconducting wire and at least one second thin film superconducting wire having a superconducting layer (2) and a metal protective layer (2) formed above the substrate (2);
Disposing the connection end of the first thin film superconducting wire oppositely,
The metal protective layer (2) of the second thin film superconducting wire and the metal protective layer (1) exposed by peeling off the stabilizing metal layer of the first thin film superconducting wire are opposed to each other.
A method for connecting a thin film superconducting wire, comprising connecting the metal protective layer (1) of the first thin film superconducting wire and the metal protective layer (2) of the second thin film superconducting wire.
前記第1の薄膜超電導線を調製する際に前記金属保護層(1)と前記安定化金属層の貼り合わせに用いられる第1の低融点金属の融点と同等もしくは低い温度の融点を有する第2の低融点金属を用いて、前記金属保護層(1)と前記金属保護層(2)が接続されることを特徴とする請求項1に記載の薄膜超電導線の接続方法。   The second thin film superconducting wire having a melting point equal to or lower than the melting point of the first low melting point metal used for bonding the metal protective layer (1) and the stabilizing metal layer when preparing the first thin film superconducting wire. The method for connecting a thin film superconducting wire according to claim 1, wherein the metal protective layer (1) and the metal protective layer (2) are connected using a low melting point metal. 接続される少なくとも2つの前記第1の薄膜超電導線のそれぞれの前記安定化金属層(1)が接合部を介して接続され、前記安定化金属層は前記第2の低融点金属を用いて接続されることを特徴とする請求項1または2に記載の薄膜超電導線の接続方法。   The stabilizing metal layer (1) of each of the at least two first thin film superconducting wires to be connected is connected via a joint, and the stabilizing metal layer is connected using the second low melting point metal. The thin film superconducting wire connection method according to claim 1, wherein the thin film superconducting wire is connected. 少なくとも2つの前記安定化金属層が、良導性金属テープによって接合部を介して接合されていることを特徴とする請求項1〜3のいずれか1項に記載の薄膜超電導線の接続方法。   The method for connecting a thin film superconducting wire according to any one of claims 1 to 3, wherein at least two of the stabilizing metal layers are joined to each other by a highly conductive metal tape through a joint portion. 前記第2の薄膜超電導線の基板(2)に、非磁性体または極低磁性体を用いることを特徴とする請求項1〜4のいずれか1項に記載の薄膜超電導線の接続方法。   The thin film superconducting wire connection method according to any one of claims 1 to 4, wherein a nonmagnetic material or an extremely low magnetic material is used for the substrate (2) of the second thin film superconducting wire. 接続端近傍の安定化金属層の一部が剥がされた、基板(1)上方に超電導層(1)と金属保護層(1)と安定化金属層が形成されている少なくとも2つの第1の薄膜超電導線と、
基板(2)上方に超電導層(2)と金属保護層(2)が形成されている少なくとも1つの第2の薄膜超電導線と、
前記第1の薄膜超電導線および前記第2の薄膜超電導線の前記金属保護層が接続して形成される接続部と
前記第2の薄膜超電導線の前記接続部と反対側の外表面を覆う部材によって形成される接合部とを備え、
前記第1の薄膜超電導線の前記接続端部が対向配置され、前記第2の薄膜超電導線の前記金属保護層(2)と、前記第1の薄膜超電導線の前記安定化金属層を剥がして露出した前記金属保護層(1)とが対向配置され、前記第1の薄膜超電導線および前記第2の薄膜超電導線が、前記接続部を介して接続され、前記第2の薄膜超電導線の前記外表面を覆う部材が前記接合部を介して接続されている、薄膜超電導線の接続構造体。
A superconducting layer (1), a metal protective layer (1), and a stabilizing metal layer are formed above the substrate (1) from which a part of the stabilizing metal layer near the connection end has been peeled off. A thin film superconducting wire,
At least one second thin film superconducting wire having a superconducting layer (2) and a metal protective layer (2) formed above the substrate (2);
A connecting portion formed by connecting the metal protective layer of the first thin film superconducting wire and the second thin film superconducting wire; and a member covering an outer surface of the second thin film superconducting wire on the opposite side to the connecting portion. A joint formed by
The connection end of the first thin film superconducting wire is disposed oppositely, and the metal protective layer (2) of the second thin film superconducting wire and the stabilizing metal layer of the first thin film superconducting wire are peeled off. The exposed metal protective layer (1) is disposed oppositely, the first thin film superconducting wire and the second thin film superconducting wire are connected via the connecting portion, and the second thin film superconducting wire A connection structure for a thin film superconducting wire, wherein members covering an outer surface are connected via the joint.
前記第2の薄膜超電導線の前記外表面を覆う部材が前記第1の薄膜超電導線の前記安定化金属層からなっており、前記安定化金属層同士が接続されていることを特徴とする請求項6に記載の薄膜超電導線の接続構造体。   The member covering the outer surface of the second thin film superconducting wire is made of the stabilizing metal layer of the first thin film superconducting wire, and the stabilizing metal layers are connected to each other. Item 7. A connection structure for a thin film superconducting wire according to Item 6. 前記第2の薄膜超電導線の前記外表面を覆う部材が良導性金属テープからなっており、前記良導性金属テープと前記安定化金属層とが接続されていることを特徴とする請求項6に記載の薄膜超電導線の接続構造体。   The member covering the outer surface of the second thin film superconducting wire is made of a highly conductive metal tape, and the highly conductive metal tape and the stabilizing metal layer are connected to each other. 7. A connection structure for a thin film superconducting wire according to 6.
JP2007071919A 2007-03-20 2007-03-20 Thin film superconducting wire connection method and connection structure thereof Active JP4845040B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007071919A JP4845040B2 (en) 2007-03-20 2007-03-20 Thin film superconducting wire connection method and connection structure thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007071919A JP4845040B2 (en) 2007-03-20 2007-03-20 Thin film superconducting wire connection method and connection structure thereof

Publications (2)

Publication Number Publication Date
JP2008234957A true JP2008234957A (en) 2008-10-02
JP4845040B2 JP4845040B2 (en) 2011-12-28

Family

ID=39907532

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007071919A Active JP4845040B2 (en) 2007-03-20 2007-03-20 Thin film superconducting wire connection method and connection structure thereof

Country Status (1)

Country Link
JP (1) JP4845040B2 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010003435A (en) * 2008-06-18 2010-01-07 Toshiba Corp Superconducting wire rod and method for manufacturing the same
WO2010126099A1 (en) * 2009-04-28 2010-11-04 財団法人 国際超電導産業技術研究センター Current terminal structure of superconducting wire material and superconducting cable having this current terminal structure
JP2011124188A (en) * 2009-12-14 2011-06-23 Fuji Electric Systems Co Ltd Connection method of oxide superconductive wire
WO2011129252A1 (en) * 2010-04-16 2011-10-20 株式会社フジクラ Electrode unit joining structure for superconducting wire material, superconducting wire material, and superconducting coil
WO2013164918A1 (en) 2012-05-02 2013-11-07 古河電気工業株式会社 Superconducting wire connection structure, superconducting wire connection method, and superconducting wire for connecting
WO2013165001A1 (en) * 2012-05-02 2013-11-07 古河電気工業株式会社 Superconducting wire material, superconducting wire material connection structure, superconducting wire material connection method, and terminal treatment method of superconducting wire material
JP2013243002A (en) * 2012-05-18 2013-12-05 Fujikura Ltd Connection structure and connection method of oxide superconducting wire rod
JP2014130788A (en) * 2012-11-30 2014-07-10 Fujikura Ltd Connection structure of oxide superconductive wire material and superconductive appliance
JP2014167887A (en) * 2013-02-28 2014-09-11 Fujikura Ltd Connection structure of oxide superconducting wire, and manufacturing method of the same
WO2017154228A1 (en) * 2016-03-11 2017-09-14 住友電気工業株式会社 Superconducting wire and method for manufacturing same
WO2019105778A1 (en) * 2017-11-28 2019-06-06 Basf Se Joined superconducting tapes
US20220084725A1 (en) * 2018-09-07 2022-03-17 Tokamak Energy Ltd Flexible hts current leads

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106356692B (en) * 2016-10-28 2018-10-16 清华大学深圳研究生院 A kind of device and method of processing superconductivity wire connector interfaces

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6174282A (en) * 1984-09-18 1986-04-16 株式会社フジクラ Connection for compound-based superconductive wire
JPH0883519A (en) * 1994-07-11 1996-03-26 Hitachi Chem Co Ltd Manufacture of high temperature superconducting junction body
JP2000133067A (en) * 1998-10-30 2000-05-12 Fujikura Ltd Connection structure and connection method of oxide superconducting conductor
JP2001319750A (en) * 2000-05-02 2001-11-16 Fujikura Ltd Connecting method of oxide superconductor
JP2005063695A (en) * 2003-08-18 2005-03-10 Sumitomo Electric Ind Ltd Connection method of superconducting plate-shaped body and connection part of same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6174282A (en) * 1984-09-18 1986-04-16 株式会社フジクラ Connection for compound-based superconductive wire
JPH0883519A (en) * 1994-07-11 1996-03-26 Hitachi Chem Co Ltd Manufacture of high temperature superconducting junction body
JP2000133067A (en) * 1998-10-30 2000-05-12 Fujikura Ltd Connection structure and connection method of oxide superconducting conductor
JP2001319750A (en) * 2000-05-02 2001-11-16 Fujikura Ltd Connecting method of oxide superconductor
JP2005063695A (en) * 2003-08-18 2005-03-10 Sumitomo Electric Ind Ltd Connection method of superconducting plate-shaped body and connection part of same

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010003435A (en) * 2008-06-18 2010-01-07 Toshiba Corp Superconducting wire rod and method for manufacturing the same
WO2010126099A1 (en) * 2009-04-28 2010-11-04 財団法人 国際超電導産業技術研究センター Current terminal structure of superconducting wire material and superconducting cable having this current terminal structure
CN102396112A (en) * 2009-04-28 2012-03-28 财团法人国际超电导产业技术研究中心 Current terminal structure of superconducting wire material and superconducting cable having this current terminal structure
US8260388B2 (en) 2009-04-28 2012-09-04 International Superconductivity Technology Center Current terminal structure of superconducting wire and superconducting cable having the current terminal structure
JP5619731B2 (en) * 2009-04-28 2014-11-05 公益財団法人国際超電導産業技術研究センター Superconducting wire current terminal structure and superconducting cable having this current terminal structure
JP2011124188A (en) * 2009-12-14 2011-06-23 Fuji Electric Systems Co Ltd Connection method of oxide superconductive wire
WO2011129252A1 (en) * 2010-04-16 2011-10-20 株式会社フジクラ Electrode unit joining structure for superconducting wire material, superconducting wire material, and superconducting coil
JP2011228065A (en) * 2010-04-16 2011-11-10 Fujikura Ltd Electrode bonding structure of superconducting wire, superconducting wire, and superconducting coil
CN102834878A (en) * 2010-04-16 2012-12-19 株式会社藤仓 Electrode unit joining structure for superconducting wire material, superconducting wire material, and superconducting coil
US8498680B2 (en) 2010-04-16 2013-07-30 Fujikura Ltd. Electrode unit joining structure for superconducting wire, superconducting wire, and superconducting coil
WO2013165001A1 (en) * 2012-05-02 2013-11-07 古河電気工業株式会社 Superconducting wire material, superconducting wire material connection structure, superconducting wire material connection method, and terminal treatment method of superconducting wire material
WO2013164918A1 (en) 2012-05-02 2013-11-07 古河電気工業株式会社 Superconducting wire connection structure, superconducting wire connection method, and superconducting wire for connecting
US9312052B2 (en) 2012-05-02 2016-04-12 Furukawa Electric Co., Ltd Superconducting wire material, superconducting wire material connection structure, superconducting wire material connection method, and treatment method of superconducting wire material end
US9502159B2 (en) 2012-05-02 2016-11-22 Furukawa Electric Co., Ltd. Superconducting wire connection structure, superconducting wire connection method, and connection superconducting wire
JP2013243002A (en) * 2012-05-18 2013-12-05 Fujikura Ltd Connection structure and connection method of oxide superconducting wire rod
JP2014130788A (en) * 2012-11-30 2014-07-10 Fujikura Ltd Connection structure of oxide superconductive wire material and superconductive appliance
JP2014167887A (en) * 2013-02-28 2014-09-11 Fujikura Ltd Connection structure of oxide superconducting wire, and manufacturing method of the same
WO2017154228A1 (en) * 2016-03-11 2017-09-14 住友電気工業株式会社 Superconducting wire and method for manufacturing same
JP2017168424A (en) * 2016-03-11 2017-09-21 住友電気工業株式会社 Superconducting wire and manufacturing method of the same
US10262781B2 (en) 2016-03-11 2019-04-16 Sumitomo Electric Industries, Ltd. Superconducting wire and method for manufacturing the same
WO2019105778A1 (en) * 2017-11-28 2019-06-06 Basf Se Joined superconducting tapes
US20220084725A1 (en) * 2018-09-07 2022-03-17 Tokamak Energy Ltd Flexible hts current leads

Also Published As

Publication number Publication date
JP4845040B2 (en) 2011-12-28

Similar Documents

Publication Publication Date Title
JP4845040B2 (en) Thin film superconducting wire connection method and connection structure thereof
JP4810268B2 (en) Superconducting wire connection method and superconducting wire
JP5933781B2 (en) Oxide superconducting wire
EP2731113B1 (en) Oxide superconducting wire and superconducting coil
JP3342739B2 (en) Oxide superconducting conductor, method of manufacturing the same, and oxide superconducting power cable having the same
WO2013164918A1 (en) Superconducting wire connection structure, superconducting wire connection method, and superconducting wire for connecting
EP2945168B1 (en) Oxide superconducting wire, connection structure thereof, and superconducting device
JP5115778B2 (en) Superconducting cable
JP2009187743A (en) Superconductive tape wire rod, and repair method of defective portion
JP6040515B2 (en) Superconducting coil manufacturing method
JP2014143840A (en) Terminal structure of tape like superconducting wire material and manufacturing method of the same
JP6101490B2 (en) Oxide superconducting wire connection structure and superconducting equipment
Shin et al. Joint characteristics of ultrasonic welded CC bridge joints for HTS coil applications
JP2014154320A (en) Connection structure of oxide superconductive wire rod and superconductive apparatus
RU2597211C1 (en) Wire made from oxide superconductor
JP3283106B2 (en) Structure of current supply terminal for oxide superconducting conductor
JP6818578B2 (en) Superconducting cable connection
JP2013084382A (en) Oxide superconductive wire, and method of manufacturing the same
WO2013077128A1 (en) Method for measuring critical current of superconductive cable
JP6069269B2 (en) Oxide superconducting wire, superconducting equipment, and oxide superconducting wire manufacturing method
JP6356048B2 (en) Superconducting wire connection structure, superconducting cable, superconducting coil, and superconducting wire connection processing method
JP4634954B2 (en) Superconducting device
JP2018125147A (en) Connection part of superconductive cable and assembly method therefor
JP3126071B2 (en) Superconducting device and manufacturing method thereof
JP7292257B2 (en) Superconducting wire connection structure and method for manufacturing superconducting wire connection structure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100205

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110928

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111003

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111005

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141021

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4845040

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141021

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141021

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141021

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350