JP6356048B2 - Superconducting wire connection structure, superconducting cable, superconducting coil, and superconducting wire connection processing method - Google Patents

Superconducting wire connection structure, superconducting cable, superconducting coil, and superconducting wire connection processing method Download PDF

Info

Publication number
JP6356048B2
JP6356048B2 JP2014229409A JP2014229409A JP6356048B2 JP 6356048 B2 JP6356048 B2 JP 6356048B2 JP 2014229409 A JP2014229409 A JP 2014229409A JP 2014229409 A JP2014229409 A JP 2014229409A JP 6356048 B2 JP6356048 B2 JP 6356048B2
Authority
JP
Japan
Prior art keywords
superconducting
superconducting wire
connection
slit
wire
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014229409A
Other languages
Japanese (ja)
Other versions
JP2016095904A (en
Inventor
聡士 山野
聡士 山野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
THE FURUKAW ELECTRIC CO., LTD.
Original Assignee
THE FURUKAW ELECTRIC CO., LTD.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by THE FURUKAW ELECTRIC CO., LTD. filed Critical THE FURUKAW ELECTRIC CO., LTD.
Priority to JP2014229409A priority Critical patent/JP6356048B2/en
Publication of JP2016095904A publication Critical patent/JP2016095904A/en
Application granted granted Critical
Publication of JP6356048B2 publication Critical patent/JP6356048B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Containers, Films, And Cooling For Superconductive Devices (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)

Description

本発明は、超電導線材の接続構造、超電導ケーブル、超電導コイル及び超電導線材の接続処理方法に関する。   The present invention relates to a superconducting wire connection structure, a superconducting cable, a superconducting coil, and a superconducting wire connection processing method.

RE系超電導線材(第2世代高温超電導線材)はテープ状線材であり、金属基材上にセラミックス層を中間層、超電導導体層として成膜し、金属保護層、金属安定化層を成膜することにより製造される。
すなわち、高温超電導線材は異種材料の積層構造体であり、超電導線材として特性は超電導導体層の配向性に大きく左右される。これらはセラミックスであるため、線材が折れ曲がる等により劣化が生じやすい。劣化した場合でも、多くの場合は目視では確認できず、いざ通電してみて初めて分かることが多い。
また、局所的な劣化の場合は劣化個所で、通電電流由来のジュール発熱が生じ、周辺の線材や構造物を巻き込んで焼損する。コイル・ケーブルなどのアプリケーションへの応用の際は劣化個所の有無がアプリケーションの信頼性に大きく影響する。
劣化モードの一つとして線材の剥離がある。これは超電導線材の表面に引きはがし力がかかり、中間層や超電導導体層といったセラミック層で線材表面が剥がれてしまう問題である。引きはがし力は、線材をオペレーション温度まで冷却した際に、超電導線材と含浸材、絶縁材などの構造物との線膨張率の差によって生じる応力に起因するものや、コイルを通電した際に発生する電磁力に起因するものがある。アプリケーション内に超電導線材同士、もしくは超電導線材と電流端子など接続部が存在する場合、当該部の剛性が不連続に変化するため、冷却や電磁力によって発生する応力が集中しやすく、劣化が生じやすくなる可能性があった。
RE-based superconducting wire (2nd generation high-temperature superconducting wire) is a tape-like wire. A ceramic layer is formed on a metal substrate as an intermediate layer and a superconducting conductor layer, and a metal protective layer and a metal stabilization layer are formed. It is manufactured by.
That is, the high-temperature superconducting wire is a laminated structure of different materials, and the characteristics of the superconducting wire greatly depend on the orientation of the superconducting conductor layer. Since these are ceramics, deterioration is likely to occur due to bending of the wire. Even when it deteriorates, in many cases, it cannot be visually confirmed, and it is often found only after energization.
Further, in the case of local degradation, Joule heat is generated from the energized current at the degradation location, and the surrounding wires and structures are involved and burnt out. In application to applications such as coils and cables, the presence or absence of degraded parts greatly affects the reliability of the application.
One of the deterioration modes is peeling of the wire. This is a problem that a peeling force is applied to the surface of the superconducting wire, and the surface of the wire is peeled off by a ceramic layer such as an intermediate layer or a superconducting conductor layer. Peeling force is generated when the wire is cooled to the operating temperature, which is caused by the difference in the linear expansion coefficient between the superconducting wire and the impregnated material, insulation, or other structures, or when the coil is energized. Some of them are caused by electromagnetic force. If there is a connection between superconducting wires or between a superconducting wire and a current terminal in the application, the rigidity of the relevant part changes discontinuously, so stress generated by cooling or electromagnetic force is likely to concentrate, and deterioration is likely to occur. There was a possibility.

超電導線材同士の接続は、接続する超電導線材の端部同士を重ね合わせて接合した接続構造(以下「ラップ接続」という。)、接続する超電導線材の端部同士間に他の接続用の超電導線材を架け渡して重ねて接合した接続構造(以下「ブリッジ接続」という。)といった超電導線材を対向させて半田で接続する方法がとられる。このようなラップ接続やブリッジ接続といった線材同士を重ね合わせて接合する構造において、対向させる向きは線材の超電導導体層側同士が半田で接合されるようになる向きであり(基材が共に外側)、半田などの抵抗体をなるべく短い電流パスで通過させるための構造とされる。
このような接続構造をとった場合、超電導線材同士の接続部は、主な要素でいうと金属基材・超電導導体層・半田・超電導導体層・金属基材の順番で各層が積層され、剛性が小さく壊れやすい超電導導体層が、金属基材、半田といった剛性の大きい層に挟まれた積層構造となる。
このような積層構造の接続部を有した超電導線材を曲げたり、ねじったりすると超電導導体層に引きはがし力がかかり、接続部で剥離や劣化が生じることがある。
超電導線材同士を接続するための接合方法としては、半田で接合する方法が主であるが、銀ペーストや超音波接続を使用した接合方法も提案されている。これらの接合方法であっても、超電導線材同士の接続部の構造はラップ接続・ブリッジ接続となることが多く、半田の場合と同様に曲げやねじりによる剥離や劣化の問題が生じる。
また、近年超電導導体層同士を接合させる技術が提案されているが、本技術による場合にも超電導線材同士の接続部は弱いセラミック層が金属基材に挟まれた構造となるため、同様に曲げやねじりによる剥離や劣化の問題が生じる。
The connection between the superconducting wires is a connection structure (hereinafter referred to as “lap connection”) in which the ends of the superconducting wires to be connected are overlapped and joined, and the superconducting wires for other connections between the ends of the superconducting wires to be connected. A superconducting wire such as a connection structure (hereinafter referred to as “bridge connection”) in which the two wires are connected and overlapped with each other is opposed and connected with solder. In such a structure in which wires are overlapped and joined such as lap connection or bridge connection, the facing direction is the direction in which the superconducting conductor layers of the wires are joined by solder (both base materials are outside). In this structure, a resistor such as solder is passed through the current path as short as possible.
When such a connection structure is adopted, the connection part between the superconducting wires is the main element, each layer is laminated in the order of metal substrate, superconducting conductor layer, solder, superconducting conductor layer, metal substrate, rigidity The superconducting conductor layer, which is small and fragile, has a laminated structure sandwiched between layers of high rigidity such as a metal substrate and solder.
When a superconducting wire having such a laminated connection portion is bent or twisted, a peeling force is applied to the superconducting conductor layer, and peeling or deterioration may occur at the connection portion.
As a joining method for connecting the superconducting wires, a soldering method is mainly used, but a joining method using silver paste or ultrasonic connection has also been proposed. Even in these joining methods, the structure of the connection part between the superconducting wires is often a lap connection / bridge connection, and the problem of peeling or deterioration due to bending or twisting occurs as in the case of solder.
In recent years, a technique for joining superconducting conductor layers has been proposed. Even in this technique, the connection between superconducting wires has a structure in which a weak ceramic layer is sandwiched between metal substrates. The problem of peeling or deterioration due to twisting or twisting occurs.

超電導線材同士の接続部における剥離問題に関連した文献として特許文献1が挙げられる。
すなわち、特許文献1に記載の発明にあっては、超電導導体同士の接続部を有した超電導コイルにおいて、接続部に配置される第2の超電導導体の端末部は幅が端末に近づくほど狭くなるように形成されていることにより、巻線部内の接続部における第2の超電導導体の基材の占める割合が端末に近づくほど低減し、これとともに機械的強度(曲げ強さ)も低減しているので、第2の超電導導体の端末部の先端部分における例えば半田接合などの接合処理での加熱を受けた基材の元に戻ろうとする力(外周側に向う力)が低減されており、第2の超電導導体における基材側と超電導導体層側との剥離を防止しようとする。
Patent document 1 is mentioned as a literature relevant to the peeling problem in the connection part of superconducting wires.
That is, in the invention described in Patent Document 1, in the superconducting coil having the connecting portion between the superconducting conductors, the terminal portion of the second superconducting conductor arranged in the connecting portion becomes narrower as the width approaches the terminal. By being formed in this way, the proportion of the base material of the second superconducting conductor in the connecting portion in the winding portion decreases as it approaches the terminal, and the mechanical strength (bending strength) is also reduced. Therefore, the force (force toward the outer peripheral side) of returning to the base of the base material that has been heated in the joining process such as solder joining at the tip portion of the terminal portion of the second superconducting conductor is reduced, The superconducting conductor of No. 2 tries to prevent peeling between the base material side and the superconducting conductor layer side.

上述の積層構造を有した超電導線材を積極的にねじった状態で保持した超電導ケーブルが開示された文献として特許文献2が挙げられる。   Patent Document 2 is cited as a document disclosing a superconducting cable in which the superconducting wire having the above-described laminated structure is actively twisted.

特開2012−195469号公報JP 2012-195469 A 米国特許第8437819号明細書U.S. Pat. No. 8437819

しかし、特許文献1は、フラットワイズ方向の曲げに対する剥離防止策について記載されており、ねじりに対する剥離防止効果が不明であるとともに、接続する一方の超電導線材の端部は幅が端末に近づくほど狭くなるように三角状に切り欠かれているから、一定の長手方向の接合長さ内において他方の超電導線材との接合面積が減少する。
曲げモーメントやねじりモーメントは、超電導ケーブルの取扱時や設置時に加わり得るほか、特許文献2に記載されるようなねじりケーブルを構成したり、さらにこのねじりケーブルを巻線して超電導コイルを構成したりする場合に加わる。
ラップ接続やブリッジ接続により超電導線材の端部同士を重ねて接合した接続部が有る場合には、接続部の剛性は自ずと接続部の前後の他の部分より高くなっており、ねじり難く、取扱いや設置のほか、上掲のねじりケーブルやこれを巻線したコイルを均整な状態に作製することを困難にするとともに、無理にねじった場合には上述したように剥離の問題が生じる。
特許文献1に記載のように、超電導線材の端部同士の接続部に配置される一方の超電導線材の端部を三角状に切り欠いても、この三角状の端部を、他方の三角状にされていない超電導線材の端部に重ねるから、接続部の剛性が自ずと接続部の前後の他の部分(重ねられていない部分)より高くなることに変わりがなく、同様の問題が生じる。
However, Patent Document 1 describes a delamination prevention measure against bending in the flatwise direction, and the delamination prevention effect against torsion is unknown, and the end of one superconducting wire to be connected becomes narrower as the width approaches the terminal. Thus, since it is cut out in a triangular shape, the bonding area with the other superconducting wire is reduced within a certain length of the bonding length in the longitudinal direction.
Bending moments and torsional moments can be applied during handling and installation of superconducting cables, and a torsional cable as described in Patent Document 2 can be constructed, or a superconducting coil can be constructed by winding this torsional cable. If you want to join.
When there is a connection part where the ends of superconducting wires are overlapped and joined by lap connection or bridge connection, the rigidity of the connection part is naturally higher than the other parts before and after the connection part, and it is difficult to twist. In addition to installation, it is difficult to produce the above-described twisted cable and the coil wound with this cable in an even state, and when it is forcibly twisted, the problem of peeling occurs as described above.
As described in Patent Document 1, even if the end portion of one superconducting wire disposed at the connection portion between the end portions of the superconducting wire is cut out in a triangular shape, this triangular end portion becomes the other triangular shape. Since it is piled up on the end portion of the superconducting wire that has not been made, the rigidity of the connecting portion is naturally higher than other portions before and after the connecting portion (non-overlapped portions), and the same problem arises.

本発明は以上の従来技術における問題に鑑みてなされたものであって、超電導線材同士の接続部を、ねじりが加わっても剥離や劣化が生じにくくすることを課題とする。   The present invention has been made in view of the above-described problems in the prior art, and it is an object of the present invention to make it difficult for peeling and deterioration to occur even when twisting is applied to a connecting portion between superconducting wires.

以上の課題を解決するための請求項1記載の発明は、基材と超電導導体層を含んだ積層構造を有する超電導線材同士を長手方向に接続した超電導線材の接続構造であって、
一の超電導線材の接続端部と他の超電導線材の接続端部とが各自の基材を外側にして積層方向に重ね合わされ、その重ね合わされた面で互いに接合された接続部が構成され、
長手方向には前記一の超電導線材の接続端部と前記他の超電導線材の接続端部とが重ね合わされた範囲に亘り、積層方向には前記一の超電導線材の基材から前記他の超電導線材の基材までに亘って前記接続部の積層構造を幅方向に分断するスリットが1又は複数設けられた超電導線材の接続構造である。
The invention according to claim 1 for solving the above problems is a connection structure of superconducting wires in which superconducting wires having a laminated structure including a base material and a superconducting conductor layer are connected in the longitudinal direction,
The connection end of one superconducting wire and the connection end of the other superconducting wire are overlapped in the stacking direction with their respective substrates facing outside, and a connection is formed that is joined to each other on the overlapped surface,
In the longitudinal direction, the connection end portion of the one superconducting wire and the connection end portion of the other superconducting wire are overlapped, and in the stacking direction, the base material of the one superconducting wire extends to the other superconducting wire. A superconducting wire connecting structure in which one or a plurality of slits for dividing the laminated structure of the connecting portion in the width direction is provided over the base material.


請求項2記載の発明は、前記スリットは、前記接続部を幅方向に3等分したときの中央部分に相当する範囲に設けられている請求項1に記載の超電導線材の接続構造である。
,
The invention according to claim 2 is the superconducting wire connecting structure according to claim 1, wherein the slit is provided in a range corresponding to a central portion when the connecting portion is equally divided into three in the width direction.

請求項3記載の発明は、請求項1又は請求項2に記載の超電導線材の接続構造により接続された2以上の超電導線材をねじった状態で保持した超電導ケーブルである。   Invention of Claim 3 is the superconducting cable which hold | maintained the 2 or more superconducting wire connected by the connection structure of the superconducting wire of Claim 1 or Claim 2 in the twisted state.


請求項4記載の発明は、請求項3に記載の超電導ケーブルを巻線して構成された超電導コイルである。
,
The invention according to claim 4 is a superconducting coil formed by winding the superconducting cable according to claim 3.

請求項5記載の発明は、基材と超電導導体層を含んだ積層構造を有する超電導線材同士を長手方向に接続した超電導線材の接続処理方法であって、
一の超電導線材の接続端部と他の超電導線材の接続端部とが各自の基材を外側にして積層方向に重ね合わされ、その重ね合わされた面で互いに接合された接続部を構成した後、
長手方向には前記一の超電導線材の接続端部と前記他の超電導線材の接続端部とが重ね合わされた範囲に亘り、積層方向には前記一の超電導線材の基材から前記他の超電導線材の基材までに亘って前記接続部の積層構造を幅方向に分断するスリットを加工することを特徴とする超電導線材の接続処理方法である。
The invention according to claim 5 is a superconducting wire connection processing method in which superconducting wires having a laminated structure including a base material and a superconducting conductor layer are connected in the longitudinal direction.
After configuring the connection part where the connection end part of one superconducting wire and the connection end part of the other superconducting wire are overlapped in the stacking direction with their respective base materials facing outside, and joined to each other on the overlapped surface,
In the longitudinal direction, the connection end portion of the one superconducting wire and the connection end portion of the other superconducting wire are overlapped, and in the stacking direction, the base material of the one superconducting wire extends to the other superconducting wire. A process for connecting a superconducting wire, characterized by processing a slit that divides the laminated structure of the connecting portion in the width direction over the base material.

本発明によれば、超電導線材同士の接続部に構成される基材から基材までの積層構造は、1又は必要により複数のスリットにより幅方向に分断されるので、ねじり剛性が低下し、ねじりが加わっても応力は低く抑えられ剥離や劣化が生じにくいという効果がある。   According to the present invention, since the laminated structure from the base material to the base material formed in the connection part between the superconducting wires is divided in the width direction by one or a plurality of slits as necessary, the torsional rigidity is reduced and the torsional rigidity is reduced. Even if is added, the stress is kept low, and there is an effect that peeling and deterioration hardly occur.

本発明の一実施形態に係る超電導線材の接続構造の斜視図である。It is a perspective view of the connection structure of the superconducting wire which concerns on one Embodiment of this invention. 本発明の一実施形態に係る超電導線材の接続構造の模式的断面図(a)及び平面図(b)である。FIG. 2 is a schematic cross-sectional view (a) and a plan view (b) of a superconducting wire connecting structure according to an embodiment of the present invention. 本発明の一実施形態に係る超電導線材の接続構造のブリッジ接続にした場合の模式的断面図(a)及び平面図(b)である。FIG. 2 is a schematic cross-sectional view (a) and a plan view (b) when a superconducting wire connecting structure according to an embodiment of the present invention is bridge-connected. 本発明の一実施形態に係る超電導ケーブルの一部を示す見取り図である。It is a sketch which shows a part of superconducting cable which concerns on one Embodiment of this invention. 本発明の一実施形態に係る超電導コイルの見取り図である。It is a sketch of the superconducting coil which concerns on one Embodiment of this invention. 本発明の実施例1に係る超電導線材の接続構造の模式的断面図(a)及び平面図(b)である。It is typical sectional drawing (a) and top view (b) of the connection structure of the superconducting wire which concerns on Example 1 of this invention. 本発明の実施例2に係る超電導線材の接続構造の模式的断面図(a)及び平面図(b)である。It is typical sectional drawing (a) and the top view (b) of the connection structure of the superconducting wire which concerns on Example 2 of this invention. 本発明の実施例3に係る超電導線材の接続構造の模式的断面図(a)及び平面図(b)である。It is typical sectional drawing (a) and the top view (b) of the connection structure of the superconducting wire which concerns on Example 3 of this invention. 本発明の実施例4に係る超電導線材の接続構造の模式的断面図(a)及び平面図(b)である。It is typical sectional drawing (a) and the top view (b) of the connection structure of the superconducting wire which concerns on Example 4 of this invention. 本発明の実施例5に係る超電導線材の接続構造の模式的断面図(a)及び平面図(b)である。It is typical sectional drawing (a) and top view (b) of the connection structure of the superconducting wire which concerns on Example 5 of this invention. 本発明の実施例6に係る超電導線材の接続構造の模式的断面図(a)及び平面図(b)である。It is typical sectional drawing (a) and top view (b) of the connection structure of the superconducting wire which concerns on Example 6 of this invention. 本発明の実施例7に係る超電導線材の接続構造の模式的断面図(a)及び平面図(b)である。It is typical sectional drawing (a) and top view (b) of the connection structure of the superconducting wire which concerns on Example 7 of this invention. 本発明の実施例8に係る超電導線材の接続構造の模式的断面図(a)及び平面図(b)である。It is typical sectional drawing (a) and top view (b) of the connection structure of the superconducting wire which concerns on Example 8 of this invention. 本発明の実施例9に係る超電導線材の接続構造の模式的断面図(a)及び平面図(b)である。It is typical sectional drawing (a) and top view (b) of the connection structure of the superconducting wire which concerns on Example 9 of this invention. 本発明の実施例10に係る超電導線材の接続構造の模式的断面図(a)及び平面図(b)である。It is typical sectional drawing (a) and top view (b) of the connection structure of the superconducting wire which concerns on Example 10 of this invention. 本発明の実施例11に係る超電導線材の接続構造の模式的断面図(a)及び平面図(b)である。It is typical sectional drawing (a) and top view (b) of the connection structure of the superconducting wire which concerns on Example 11 of this invention. 本発明の実施例12に係る超電導線材の接続構造の模式的断面図(a)及び平面図(b)である。It is typical sectional drawing (a) and top view (b) of the connection structure of the superconducting wire which concerns on Example 12 of this invention. 比較例1に係る超電導線材の接続構造の模式的断面図(a)及び平面図(b)である。FIG. 6 is a schematic cross-sectional view (a) and a plan view (b) of a superconducting wire connecting structure according to Comparative Example 1; 比較例2に係る超電導線材の接続構造の模式的断面図(a)及び平面図(b)である。FIG. 6 is a schematic cross-sectional view (a) and a plan view (b) of a superconducting wire connecting structure according to Comparative Example 2.

以下に本発明の一実施形態につき図面を参照して説明する。以下は本発明の一実施形態であって本発明を限定するものではない。   An embodiment of the present invention will be described below with reference to the drawings. The following is one embodiment of the present invention and does not limit the present invention.

図1は、本発明の一実施形態に係る超電導線材の接続構造の斜視図である。
図1に示すように、本実施形態の超電導線材の接続構造は、超電導線材1と超電導線材2とを長手方向に接続した接続構造である。図中に幅方向X、長手方向Y、積層方向(厚み方向)Zを示す。
超電導線材1,2はRE系酸化物超電導線材で、互いに同様の構成であり、基材11(21)上に、中間層12(22)、超電導導体層13、(23)、安定化層14(24)をこの順で積層しテープ状構造となっている。
FIG. 1 is a perspective view of a superconducting wire connecting structure according to an embodiment of the present invention.
As shown in FIG. 1, the connection structure of the superconducting wire of this embodiment is a connection structure in which a superconducting wire 1 and a superconducting wire 2 are connected in the longitudinal direction. In the figure, a width direction X, a longitudinal direction Y, and a stacking direction (thickness direction) Z are shown.
The superconducting wires 1 and 2 are RE-based oxide superconducting wires, which have the same configuration. The intermediate layer 12 (22), the superconducting conductor layers 13 and (23), and the stabilization layer 14 are formed on the base material 11 (21). (24) is laminated in this order to form a tape-like structure.

基材11(21)は、テープ状の低磁性の金属基板やセラミックス基板が用いられる。金属基板の材料としては、例えば、強度及び耐熱性に優れた、Co、Cu、Cr、Ni、Ti、Mo、Nb、Ta、W、Mn、Fe、Ag等の金属又はこれらの合金が用いられる。特に、耐食性及び耐熱性が優れているという観点からハステロイ(登録商標)、インコネル(登録商標)等のNi基合金、またはステンレス鋼等のFe基合金を用いることが好ましい。
また、これら各種金属材料上に各種セラミックスを配してもよい。また、セラミックス基板の材料としては、例えば、MgO、SrTiO、又はイットリウム安定化ジルコニア等が用いられる。その他にも、サファイアを基材として用いてもよい。
The base material 11 (21) is a tape-like low magnetic metal substrate or ceramic substrate. As the material of the metal substrate, for example, a metal such as Co, Cu, Cr, Ni, Ti, Mo, Nb, Ta, W, Mn, Fe, and Ag, which is excellent in strength and heat resistance, or an alloy thereof is used. . In particular, from the viewpoint of excellent corrosion resistance and heat resistance, it is preferable to use Ni-based alloys such as Hastelloy (registered trademark) and Inconel (registered trademark), or Fe-based alloys such as stainless steel.
Various ceramics may be arranged on these various metal materials. Moreover, as a material of the ceramic substrate, for example, MgO, SrTiO 3 , yttrium stabilized zirconia, or the like is used. In addition, sapphire may be used as a base material.

中間層12(22)は、超電導導体層13(23)において例えば高い2軸配向性を実現するための層である。このような中間層12(22)は、例えば、熱膨張率や格子定数等の物理的な特性値が基材11(21)と超電導導体層13(23)を構成する超電導体との中間的な値を示す。
また、中間層12(22)は、単層構造であってもよく、多層構造であってもよい。多層構造の場合、その層数や種類は限定されないが、非晶質のGdZr7−δ(δは酸素不定比量)やAl或いはY等を含むベッド層と、結晶質のMgO等を含みIBAD(Ion Beam Assisted Deposition)法により成形された強制配向層と、LaMnO3+δ(δは酸素不定比量)を含むLMO層と、を順に積層した構成となっていてもよい。また、LMO層の上にCeO2等を含むキャップ層をさらに設けてもよい。
上記各層の厚さは、LMO層を30nm、強制配向層のMgO層を40nm、ベッド層のY層を7nm、Al層を80nmとする。なお、これらの数値はいずれも一例である。
The intermediate layer 12 (22) is a layer for realizing, for example, high biaxial orientation in the superconducting conductor layer 13 (23). Such an intermediate layer 12 (22) has, for example, physical characteristics such as a coefficient of thermal expansion and a lattice constant that are intermediate between the base material 11 (21) and the superconductor constituting the superconducting conductor layer 13 (23). The value is shown.
The intermediate layer 12 (22) may have a single layer structure or a multilayer structure. In the case of a multilayer structure, the number and types of layers are not limited, but a bed layer containing amorphous Gd 2 Zr 2 O 7-δ (δ is an oxygen non-stoichiometric amount), Al 2 O 3, Y 2 O 3, or the like. And a forced alignment layer formed by IBAD (Ion Beam Assisted Deposition) method including crystalline MgO and the like, and an LMO layer including LaMnO 3 + δ (δ is an oxygen non-stoichiometric amount) are sequentially stacked. May be. Further, a cap layer containing CeO 2 or the like may be further provided on the LMO layer.
The thickness of each of the above layers is 30 nm for the LMO layer, 40 nm for the MgO layer for forced alignment layer, 7 nm for the Y 2 O 3 layer for bed, and 80 nm for the Al 2 O 3 layer. These numerical values are only examples.

この中間層12(22)の表面には、超電導導体層13(23)が積層している。超電導導体層13(23)は、酸化物超電導体、特に銅酸化物超電導体を含んでいることが好ましい。銅酸化物超電導体としては、高温超電導体としてのREBaCu7−δ(以下、RE系超電導体と称す)が好ましい。なお、RE系超電導体中のREは、Y,Nd,Sm,Eu,Gd,Dy,Ho,Er,Tm,YbやLuなどの単一の希土類元素又は複数の希土類元素であり、これらの中でもBaサイトと置換が起き難い等の理由でYであることが好ましい。また、δは、酸素不定比量であって、例えば0以上1以下であり、超電導転移温度が高いという観点から0に近いほど好ましい。なお、酸素不定比量は、オートクレーブ等の装置を用いて高圧酸素アニール等を行えば、δは0未満、すなわち、負の値をとることもある。 A superconducting conductor layer 13 (23) is laminated on the surface of the intermediate layer 12 (22). Superconducting conductor layer 13 (23) preferably contains an oxide superconductor, particularly a copper oxide superconductor. As the copper oxide superconductor, REBa 2 Cu 3 O 7-δ (hereinafter referred to as RE superconductor) as a high-temperature superconductor is preferable. The RE in the RE-based superconductor is a single rare earth element or a plurality of rare earth elements such as Y, Nd, Sm, Eu, Gd, Dy, Ho, Er, Tm, Yb, and Lu. Y is preferable because it is difficult to cause substitution with the Ba site. Further, δ is an oxygen non-stoichiometric amount and is, for example, 0 or more and 1 or less, and is preferably closer to 0 from the viewpoint that the superconducting transition temperature is high. The oxygen non-stoichiometric amount may be less than 0, that is, take a negative value when high-pressure oxygen annealing or the like is performed using an apparatus such as an autoclave.

安定化層14(24)は、超電導導体層13(23)の表面を覆っているが、基材11(21)と中間層12(22)と超電導導体層13(23)の周囲全体を覆っていることがより好ましい。
この安定化層14(24)は、単層構造であってもよく、多層構造であってもよい。多層構造の場合、その層数や種類は限定されないが、銀からなる銀安定化層と、銅からなる銅安定化層を順に積層した構成となっていてもよい。
The stabilization layer 14 (24) covers the surface of the superconducting conductor layer 13 (23), but covers the entire periphery of the substrate 11 (21), the intermediate layer 12 (22), and the superconducting conductor layer 13 (23). More preferably.
The stabilization layer 14 (24) may have a single layer structure or a multilayer structure. In the case of a multilayer structure, the number and types of the layers are not limited, but a silver stabilization layer made of silver and a copper stabilization layer made of copper may be laminated in order.

さて、本実施形態の超電導線材の接続構造は、図1に示すように超電導線材1の接続端部1aと超電導線材2の接続端部2aとが各自の基材11,21を外側にして積層方向Zに重ね合わされ、その重ね合わされた面で互いに接合された接続部4が構成されたものである。この接合を実現するための接合材層3は、半田、銀ペーストなどより構成されるが、超電導導体層13,23同士が接合した構造など、接続端部1aと接続端部2aとの間に介在する接合材層3が無い構造であってもよい。   Now, as shown in FIG. 1, the connection structure 1a of the superconducting wire 1 and the connection end 2a of the superconducting wire 2 are laminated so that the base materials 11 and 21 are outside as shown in FIG. The connecting portion 4 is configured to be overlapped in the direction Z and joined to each other on the overlapped surface. The bonding material layer 3 for realizing this bonding is composed of solder, silver paste, or the like, but between the connection end 1a and the connection end 2a, such as a structure in which the superconducting conductor layers 13 and 23 are bonded together. A structure without the interposed bonding material layer 3 may be used.

超電導線材1,2の層構造の図示を省略し、接合材層3の図示を省略して描いた断面図を図2(a)に、対応する平面図を図2(b)に示した。
図1及び図2に示すように本接続構造にはスリットSが設けられている。
スリットSは、長手方向Yに略平行に形成されている。
接続部4の一端に配置される超電導線材1の終端1bから、接続部4の他端に配置される超電導線材2の終端2bまでが、長手方向Yについての超電導線材1の接続端部1aと超電導線材2の接続端部2aとが重ね合わされた範囲に相当する。スリットSは、長手方向Yにはこの終端1bから終端2bまでの範囲に亘り形成されている。図1及び図2には終端1bから終端2bまでの範囲から両端へ延び出して形成されたスリットSを描いている。このようにスリットSは、終端1bから終端2bまでの範囲を超えて形成されるものであってもよい。
スリットSは、長手方向Yに対して平行が望ましいが、長手方向Yに対して±10度程度の範囲に収まれば、実用に足る。
2A is a cross-sectional view drawn with the superconducting wires 1 and 2 omitted, and the bonding material layer 3 omitted, and a corresponding plan view is shown in FIG. 2B.
As shown in FIGS. 1 and 2, the connection structure is provided with a slit S.
The slit S is formed substantially parallel to the longitudinal direction Y.
From the terminal end 1b of the superconducting wire 1 arranged at one end of the connecting part 4 to the terminal end 2b of the superconducting wire 2 arranged at the other end of the connecting part 4, the connecting end part 1a of the superconducting wire 1 in the longitudinal direction Y This corresponds to the range in which the connection end 2a of the superconducting wire 2 is overlapped. The slit S is formed in the longitudinal direction Y over a range from the terminal end 1b to the terminal end 2b. 1 and 2 illustrate a slit S formed to extend from the end 1b to the end 2b. Thus, the slit S may be formed beyond the range from the terminal end 1b to the terminal end 2b.
The slit S is preferably parallel to the longitudinal direction Y. However, if the slit S is within a range of about ± 10 degrees with respect to the longitudinal direction Y, it is practical.

スリットSは、表裏に貫通して形成されている。
すなわち、積層方向Zには超電導線材1の基材11から超電導線材2の基材21までに亘って形成されている。
以上のような範囲に亘ってスリットSは形成されており、スリットSは、接続部4の積層構造を幅方向Xに分断するものである。
スリットSが接続部4の積層構造を幅方向Xに分断するので、スリットSが無い場合に比較して、接続部4のねじり剛性が確実に低下する。ここでいう「ねじり」は、長手方向Yに距離を隔てた2つのXZ平面要素に相対的角度変化を生じさせるねじりである。ねじり剛性が低下するので、ねじりが加わっても応力は低く抑えられ接続部4において剥離や劣化が生じにくいという効果がある。
図1に示すように接続部4は剛性の高い基材11,21によるサンドイッチ構造となり、F1、F2といったねじれ力が加わると、通常図1にFGで示した基材11,21の高剛性に起因した劈開力が発生し、弱い超電導導体層13,23、中間層12,22での剥離の原因になる。本接続構造によれば、接続部4にスリットSを入れることで、ねじれが発生した際に接続部4に応力が集中することを防ぎ、劈開力FGは分断された各部に分散して低減するので、超電導線材の層間剥離や電導特性の劣化が生じにくい接続構造とすることができる。
The slit S is formed through the front and back.
That is, it is formed in the stacking direction Z from the base material 11 of the superconducting wire 1 to the base material 21 of the superconducting wire 2.
The slit S is formed over the above range, and the slit S divides the laminated structure of the connecting portion 4 in the width direction X.
Since the slit S divides the laminated structure of the connection portion 4 in the width direction X, the torsional rigidity of the connection portion 4 is reliably reduced as compared with the case where there is no slit S. The term “twist” here is a twist that causes a relative angle change in two XZ plane elements that are separated from each other in the longitudinal direction Y. Since the torsional rigidity is lowered, the stress is kept low even when torsion is applied, and there is an effect that the connection part 4 is hardly peeled off or deteriorated.
As shown in FIG. 1, the connecting portion 4 has a sandwich structure with highly rigid base materials 11 and 21, and when a torsional force such as F1 and F2 is applied, the high rigidity of the base materials 11 and 21 generally indicated by FG in FIG. The resulting cleavage force is generated, which causes peeling at the weak superconducting conductor layers 13 and 23 and the intermediate layers 12 and 22. According to this connection structure, by inserting the slit S in the connection portion 4, stress is prevented from concentrating on the connection portion 4 when torsion occurs, and the cleavage force FG is dispersed and reduced in each divided portion. Therefore, it is possible to obtain a connection structure in which delamination of superconducting wires and deterioration of conductive characteristics hardly occur.

図1及び図2に示した接続構造はラップ接続であるが、図3に示すように接続用の超電導線材5を、平置きした超電導線材1,2間に架け渡してそれぞれに接合したブリッジ接続の場合にも、本発明を実施できる。ブリッジ接続の場合にも、図3に示すようにスリットSによって接続部41,42の積層構造を幅方向Xに分断した構造とする。図3では、線材1および2の接続部41,42が離れて設けられているが、互いに接するように配置していてもよい。   The connection structure shown in FIGS. 1 and 2 is a lap connection, but as shown in FIG. 3, a superconducting wire 5 for connection is bridged between the superconducting wires 1 and 2 placed flat and joined to each other. In this case, the present invention can be implemented. Also in the case of the bridge connection, as shown in FIG. 3, the laminated structure of the connection portions 41 and 42 is divided in the width direction X by the slit S. In FIG. 3, the connecting portions 41 and 42 of the wires 1 and 2 are provided apart from each other, but may be arranged so as to contact each other.

以上の効果を利用して、本接続構造により接続された2以上の超電導線材を、図4に示すようにねじった状態で保持した超電導ケーブル30を容易に高品質に構成することができる。なお、本接続構造により接続された2以上の超電導線材の連結体をさらに複数枚重ねて厚みを増すとともに超電導導体層の積層数を増し自己インダクタンスの低減化等の特性向上が図られる。
ねじった状態で保持した超電導ケーブル30は、360°のうちの任意の角度に曲げやすくなっているので、図5に示すように超電導ケーブル30を巻線して構成された超電導コイル31を容易に高品質に構成することができる。
Using the above effects, the superconducting cable 30 in which two or more superconducting wires connected by this connection structure are held in a twisted state as shown in FIG. 4 can be easily configured with high quality. It is to be noted that a plurality of two or more superconducting wire connected bodies connected by this connection structure are further stacked to increase the thickness and increase the number of superconducting conductor layers to improve characteristics such as reduction of self-inductance.
Since the superconducting cable 30 held in a twisted state is easily bent at an arbitrary angle of 360 °, the superconducting coil 31 formed by winding the superconducting cable 30 as shown in FIG. High quality can be configured.

以上の効果を得るためには、スリットSは幅方向Xの中央に設けることが好ましい。すなわち、スリットSを幅方向Xの端にあまり寄らないようにすべきであり、基準としてスリットSは、接続部4を幅方向Xに3等分したときの中央の3分の1に相当する中央部4c(図2(b)参照)に、少なくとも1本が設けられていることが好ましい。   In order to obtain the above effects, the slit S is preferably provided at the center in the width direction X. That is, the slit S should not be so close to the end in the width direction X. As a reference, the slit S corresponds to one third of the center when the connection portion 4 is equally divided into three in the width direction X. It is preferable that at least one is provided in the central portion 4c (see FIG. 2B).

図1及び図2には1本のスリットSが設けられる場合を示したが、スリットSは複数設けてもよい。すなわち、幅方向Xに距離を隔てて配置された複数のスリットSを設けることができる。スリットSの本数が多いほど、接続部4の分断数が増加し、従って接続部4のねじり剛性が低下する。
しかし、スリットSを多く入れると、スリットSを加工にあたって超電導導体層13,23が削られるので電導特性が落ちる。その点と、ねじり剛性低下による効果の利得とを比較考量してスリットSの本数を選択すべきである。
また、スリットSの加工方法としては、機械加工やレーザー加工を適用し得るが、超電導線材1,2の面積になるべく損失が少ない方法が望ましい。そのため、レーザー加工が好適である。
スリットSの加工は、超電導線材1の接続端部1aと超電導線材2の接続端部2aとが各自の基材11,21を外側にして積層方向Zに重ね合わせ、その重ね合わせた面で互いに接合した後、すなわち、接続部4を構成した後に行う。例えば、接合方法として半田付けを適用する場合は、その半田付けの後にスリットSの加工を実施する。半田付けを適用する場合は、スリットSの加工時の熱によって半田が溶け出す可能性があるため、超電導線材1,2が相対的に動かぬように保持してスリットSの加工を実施することが望ましい。
1 and 2 show the case where one slit S is provided, a plurality of slits S may be provided. That is, a plurality of slits S arranged at a distance in the width direction X can be provided. As the number of the slits S increases, the number of divisions of the connection portion 4 increases, and thus the torsional rigidity of the connection portion 4 decreases.
However, if a large number of slits S are inserted, the superconducting conductor layers 13 and 23 are scraped when the slits S are processed, so that the conductive characteristics are deteriorated. The number of slits S should be selected by taking into consideration the point and the gain of the effect due to the reduction in torsional rigidity.
Further, as the method of processing the slit S, machining or laser processing can be applied, but a method with as little loss as possible in the area of the superconducting wires 1 and 2 is desirable. Therefore, laser processing is preferable.
The slit S is processed by superimposing the connecting end portion 1a of the superconducting wire 1 and the connecting end portion 2a of the superconducting wire 2 in the stacking direction Z with the respective base materials 11 and 21 being outside, and mutually overlapping surfaces. After the joining, that is, after the connection portion 4 is formed. For example, when soldering is applied as a joining method, the slit S is processed after the soldering. When soldering is applied, there is a possibility that the solder may be melted by heat at the time of processing of the slit S, so that the processing of the slit S is performed while holding the superconducting wires 1 and 2 so as not to move relatively. Is desirable.

〔実施例〕
各種の実施例を制作し、超電導特性を検査したのでこれを開示する。
〔Example〕
Various examples were produced and superconducting properties were examined and disclosed.

(a)スリットが入ることに伴い、超電導線材の表面積が損失して臨界電流値が低下するため、スリットを入れる数は超電導線材の特性とトレードオフの関係にある。
(b)現状一般的によく使用されている、RE系高温超電導線材の線材幅オプションは4mm幅、6mm幅、10mm幅とmm単位の線材である。スリット加工に使用されるレーザー種として、YAGレーザーなどが使用されるが、スリット加工に使用するレーザーによる損失幅は100μm程度である。したがって、4mm幅線材を使用した場合、レーザースリットを1本入れるとテープ幅の損失は3%程度となる。この損失は超電導線材の特性劣化に反映され、線材の臨界電流値が3%減少することを意味する。したがって、多くのスリットを入れる程、線材の臨界電流値が減少することとなる。
(c)なお、実際の運転では臨界電流値まで、臨界電流を流すことはなく、特に接続部においては接合に使用した半田等が電流の転流先となるため、接続部4におけるスリットはそれ以外の場所でのスリットよりも、焼損リスクが少ない。
(A) As the slit enters, the surface area of the superconducting wire is lost and the critical current value decreases, so the number of slits is in a trade-off relationship with the characteristics of the superconducting wire.
(B) The wire width options of RE-based high-temperature superconducting wires that are commonly used at present are 4 mm width, 6 mm width, 10 mm width, and mm units. A YAG laser or the like is used as a laser type used for slit processing, and the loss width due to the laser used for slit processing is about 100 μm. Therefore, when a 4 mm width wire is used, if one laser slit is inserted, the tape width loss is about 3%. This loss is reflected in the characteristic deterioration of the superconducting wire, and means that the critical current value of the wire is reduced by 3%. Accordingly, the critical current value of the wire decreases as more slits are inserted.
(C) In the actual operation, the critical current is not passed up to the critical current value. In particular, the solder used for joining is the current commutation destination in the connection portion, so the slit in the connection portion 4 There is less risk of burning than slits at other locations.

上述した実施形態の図1、図2に示した接続構造であって接合材層3に半田を採用した構造につき、スリットの長さ、配置、本数などを様々に変更して作製した本発明の実施例1〜12と、以下に説明する比較例1〜5につき、(1)ねじり無しの状態、(2)45度のねじれを加えた状態、(3)60度のねじれを加えた状態のそれぞれにおける超電導特性を検査した。
すべて銅安定化層つき4mm幅線材で、接続部4の長手方向Yの長さは10cm、接続部4の厚みは230μmである。
The connection structure shown in FIGS. 1 and 2 of the above-described embodiment, in which solder is used for the bonding material layer 3, the length of the slit, the arrangement, the number of the slits, etc. are variously changed. For Examples 1 to 12 and Comparative Examples 1 to 5 described below, (1) no twist, (2) 45 degrees twisted, (3) 60 degrees twist added The superconducting properties in each were examined.
All are 4 mm width wires with a copper stabilizing layer, the length of the connecting portion 4 in the longitudinal direction Y is 10 cm, and the thickness of the connecting portion 4 is 230 μm.

(実施例1)
実施例1は、図6に示すようにスリットSは1本で幅方向Xの中央に接続部4から両端が30mmずつ延長されるように形成した。
(実施例2)
実施例2は、図7に示すようにスリットSは1本で幅方向Xの中央に接続部4から両端が1mm程度だけ出るように形成した。
(実施例3,4)
実施例3は図8に示すように実施例1に対し、実施例4は図9に示すように実施例2に対し、スリットSの幅方向Xの配置を外側から全幅の3分の1の位置とした配置に変更したものである。
(実施例5,6)
実施例5は図10に示すように実施例1に対し、実施例6は図11に示すように実施例2に対し、スリットSを2本として幅方向Xに3等分する位置にそれぞれ配置したものである。
(実施例7,8)
実施例7は図12に示すように実施例1に対し、実施例8は図13に示すように実施例2に対し、スリットSの幅方向Xの配置を外側から全幅の4分の1の位置とした配置に変更したものである。
(実施例9,10)
実施例9は図14に示すように実施例1に対し、実施例10は図15に示すように実施例2に対し、スリットSを3本として幅方向Xに4等分する位置にそれぞれ配置したものである。
(実施例11)
実施例11は図16に示すように実施例9に対し、両側のスリットS,Sを中央のスリットSより長くしたものである。
(実施例12)
実施例12は図17に示すように実施例9に対し、3本のスリットS,S,Sの両端の位置を異ならしめたものである。
Example 1
In Example 1, as shown in FIG. 6, one slit S was formed in the center in the width direction X so that both ends were extended by 30 mm from the connection portion 4.
(Example 2)
In Example 2, as shown in FIG. 7, one slit S was formed so that both ends protruded from the connection portion 4 by about 1 mm in the center in the width direction X.
(Examples 3 and 4)
As shown in FIG. 8, the third embodiment is compared with the first embodiment, and the fourth embodiment is compared with the second embodiment as shown in FIG. It has been changed to the location as the position.
(Examples 5 and 6)
As shown in FIG. 10, the fifth embodiment is arranged in a position that divides the slit S into two equal parts in the width direction X with respect to the first embodiment as shown in FIG. It is a thing.
(Examples 7 and 8)
As shown in FIG. 12, the seventh embodiment is compared to the first embodiment, and the eighth embodiment is compared to the second embodiment as shown in FIG. It has been changed to the location as the position.
(Examples 9 and 10)
As shown in FIG. 14, the ninth embodiment is arranged for the first embodiment, and the tenth embodiment is arranged for the second embodiment as shown in FIG. It is a thing.
(Example 11)
As shown in FIG. 16, the eleventh embodiment has slits S, S on both sides longer than the central slit S, as compared with the ninth embodiment.
(Example 12)
As shown in FIG. 17, the twelfth embodiment differs from the ninth embodiment in that the positions of the ends of the three slits S, S, S are different.

(比較例1)
比較例1は図18に示すように実施例1に対し、接続部4にスリットを設けず、接続部4の長手方向Yの両側の部分にスリットS,Sを設けたものである。
(比較例2)
比較例2は図19に示すように実施例1に対し、接続部4の両端までスリットSが至らないものである。
(比較例3)
比較例3はスリット無しのものである(図示略)。
(比較例4)
比較例4はスリット無しであり、特許文献1に記載の発明に従い超電導線材1の接続端部1aは幅が終端1bに近づくほど狭くなるように三角状に切り欠いた構造である(図示略)。
(比較例5)
比較例5は片方の超電導線材1の接続端部1aのみをスリットで幅方向Xに分断したものであり、超電導線材2にはスリットを設けていない(図示略)。
(Comparative Example 1)
As shown in FIG. 18, the first comparative example is different from the first embodiment in that no slit is provided in the connecting portion 4 and slits S and S are provided on both sides in the longitudinal direction Y of the connecting portion 4.
(Comparative Example 2)
As shown in FIG. 19, the comparative example 2 is one in which the slits S do not reach the both ends of the connecting portion 4 compared to the first embodiment.
(Comparative Example 3)
Comparative Example 3 has no slit (not shown).
(Comparative Example 4)
Comparative Example 4 has no slit, and has a structure in which the connecting end 1a of the superconducting wire 1 is cut out in a triangular shape so that the width becomes narrower as it approaches the terminal end 1b according to the invention described in Patent Document 1 (not shown). .
(Comparative Example 5)
In Comparative Example 5, only the connection end 1a of one superconducting wire 1 is divided in the width direction X by a slit, and the superconducting wire 2 is not provided with a slit (not shown).

以下のように評価判別符号を定義する。
(1)ねじり無しの状態
この場合、上記(b)に記述したスリットの付加に伴う臨界電流の減少率を反映して評価した。
A : 5%未満の臨界電流値の劣化が生じる。
B : 5%以上の臨界電流値の劣化が生じる。
(2)45度のねじれを加えた状態
スリットによるねじれに対する効果を調べるため、長手方向Yに20cmのねじれを加える領域の外側を固定し、1Kgf程度の張力をかけ、線材長手方向中心線を軸として、45度のねじれを加えた。図6に代表して示すようにねじれを加える領域G(スパン20cm)の中央に接続部4が配置される条件とした。
A : ねじれを加えても、超電導特性は劣化しなかった。
B : ねじれを加えたことによって、超電導特性が劣化してしまった。
(3)60度のねじれを加えた状態
さらに、スリットによるねじれに対する効果を調べるため、長手方向Yに20cmのねじれを加える領域の外側を固定し、1Kgf程度の張力をかけ、線材長手方向中心線を軸として、60度のねじれを加えた。図6に代表して示すようにねじれを加える領域G(スパン20cm)の中央に接続部4が配置される条件とした。
A : ねじれを加えても、超電導特性は劣化しなかった。
B : ねじれを加えたことによって、超電導特性が劣化してしまった。
The evaluation discrimination code is defined as follows.
(1) State without torsion In this case, evaluation was performed by reflecting the reduction rate of the critical current accompanying the addition of the slit described in (b) above.
A: Deterioration of critical current value of less than 5% occurs.
B: Deterioration of critical current value of 5% or more occurs.
(2) 45 degree twisted state In order to investigate the effect on the twisting by the slit, fix the outside of the region where the 20 cm twist is applied in the longitudinal direction Y, apply a tension of about 1 Kgf, As a result, a 45 degree twist was added. As representatively shown in FIG. 6, the connection portion 4 is arranged in the center of the region G (span 20 cm) to be twisted.
A: Even if twist was added, the superconducting properties were not deteriorated.
B: The superconducting property was deteriorated by adding a twist.
(3) A state in which a twist of 60 degrees is applied Further, in order to investigate the effect on the twist by the slit, the outside of the region to which a twist of 20 cm is applied in the longitudinal direction Y is fixed, a tension of about 1 Kgf is applied, and the longitudinal center line of the wire A twist of 60 degrees was applied around the axis. As representatively shown in FIG. 6, the connection portion 4 is arranged in the center of the region G (span 20 cm) to be twisted.
A: Even if twist was added, the superconducting properties were not deteriorated.
B: The superconducting property was deteriorated by adding a twist.

本発明の実施例及び比較例の条件の要点と評価結果を表にまとめると以下の通りである。   The main points of the conditions of the examples and comparative examples of the present invention and the evaluation results are summarized in a table as follows.

Figure 0006356048
Figure 0006356048
Figure 0006356048
Figure 0006356048

(総評)
本発明の実施例1〜4については、いずれの評価項目についても「A」であった。実施例2,4のようにスリットが短くても、実施例11のように長さが異なっていたり、実施例12のように端の位置が異なっていたりしても、接続部4を分断していれば効果は認められた。
また、実施例3,4のようにスリットが中心線からやや外れても効果は認められたが、実施例7,8のように3分の1相当の中央部4cから外れると、60度のねじれに対しては超電導特性の劣化は認められた。許容できるねじれ角は、実施例1,2に比較して実施例3,4の方が小さくなっていると考えられるが、60度までのねじれでは差は生じなかった。
実施例5,6、さらに実施例9〜12のようにスリットの本数を増やすことで、超電導導体層の欠損面積の増加により超電導特性の劣化は認められたが、ねじりを加えることに伴う劣化は認められず、ねじりに対しては効果が認められた。超電導特性と、所定のねじりに対する効果を考慮すると、実施例1〜4のように、線材を幅方向に3等分した時の中央部に1本だけスリットを設けるのがより好ましい。
これに対し、比較例1〜5ではねじれを加えたことにより超電導特性の劣化が認められた。比較例1,3,4では接続部4にスリットが無いため、比較例2では接続部4が幅方向Xに連続する部分が残っており分断されていないため、比較例5では片方の超電導線材2及び接合材層3にはスリットが無いため、ねじりに伴い剥離や応力集中が生じて超電導特性が劣化した。スリットは、超電導線材1、接合材層3及び超電導線材2を貫通し終端1bから終端2bまで接続部4の全体に亘って設けることで効果があることが確認された。
(General comments)
About Examples 1-4 of this invention, it was "A" about any evaluation item. Even if the slit is short as in Examples 2 and 4, even if the length is different as in Example 11 or the end position is different as in Example 12, the connecting portion 4 is divided. If so, the effect was recognized.
In addition, the effect was recognized even when the slit slightly deviated from the center line as in Examples 3 and 4, but when the slit deviated from the central portion 4c corresponding to 1/3 as in Examples 7 and 8, 60 degrees Degradation of superconducting properties was observed for torsion. The allowable twist angle is considered to be smaller in Examples 3 and 4 than in Examples 1 and 2, but no difference was caused by twisting up to 60 degrees.
By increasing the number of slits as in Examples 5 and 6 and Examples 9 to 12, deterioration in superconducting properties was observed due to an increase in the defect area of the superconducting conductor layer, but deterioration due to the addition of torsion is It was not recognized, and an effect on torsion was recognized. Considering the superconducting characteristics and the effect on the predetermined torsion, it is more preferable to provide only one slit at the center when the wire is divided into three equal parts in the width direction as in Examples 1 to 4.
On the other hand, in Comparative Examples 1 to 5, deterioration of superconducting characteristics was observed due to the addition of twist. In Comparative Examples 1, 3, and 4, since there is no slit in the connecting portion 4, in Comparative Example 2, the connecting portion 4 remains in the width direction X and is not divided. In Comparative Example 5, one superconducting wire Since 2 and the bonding material layer 3 had no slit, peeling and stress concentration occurred with torsion, and superconducting characteristics deteriorated. It was confirmed that the slit is effective by being provided over the entire connecting portion 4 from the terminal end 1b to the terminal end 2b through the superconducting wire 1, the bonding material layer 3, and the superconducting wire 2.

1 超電導線材
1a 接続端部
1b 終端
2 超電導線材
2a 接続端部
2b 終端
3 接合材層
4 接続部
11,21 基材
12,22 中間層
13,23 超電導導体層
14,24 安定化層
S スリット
DESCRIPTION OF SYMBOLS 1 Superconducting wire 1a Connection end part 1b Termination 2 Superconducting wire 2a Connection end part 2b Termination 3 Joining material layer 4 Connection part 11,21 Base material 12,22 Intermediate layer 13,23 Superconducting conductor layer 14,24 Stabilization layer S Slit

Claims (5)

基材と超電導導体層を含んだ積層構造を有する超電導線材同士を長手方向に接続した超電導線材の接続構造であって、
一の超電導線材の接続端部と他の超電導線材の接続端部とが各自の基材を外側にして積層方向に重ね合わされ、その重ね合わされた面で互いに接合された接続部が構成され、
長手方向には前記一の超電導線材の接続端部と前記他の超電導線材の接続端部とが重ね合わされた範囲に亘り、積層方向には前記一の超電導線材の基材から前記他の超電導線材の基材までに亘って前記接続部の積層構造を幅方向に分断するスリットが1又は複数設けられた超電導線材の接続構造。
A superconducting wire connecting structure in which superconducting wires having a laminated structure including a base material and a superconducting conductor layer are connected in the longitudinal direction,
The connection end of one superconducting wire and the connection end of the other superconducting wire are overlapped in the stacking direction with their respective substrates facing outside, and a connection is formed that is joined to each other on the overlapped surface,
In the longitudinal direction, the connection end portion of the one superconducting wire and the connection end portion of the other superconducting wire are overlapped, and in the stacking direction, the base material of the one superconducting wire extends to the other superconducting wire. A superconducting wire connecting structure in which one or a plurality of slits for dividing the laminated structure of the connecting portion in the width direction are provided up to the base material.
前記スリットは、前記接続部を幅方向に3等分したときの中央部分に相当する範囲に設けられている請求項1に記載の超電導線材の接続構造。   2. The superconducting wire connection structure according to claim 1, wherein the slit is provided in a range corresponding to a central portion when the connection portion is equally divided into three in the width direction. 請求項1又は請求項2に記載の超電導線材の接続構造により接続された2以上の超電導線材をねじった状態で保持した超電導ケーブル。   A superconducting cable that holds two or more superconducting wires connected by the superconducting wire connecting structure according to claim 1 or 2 in a twisted state. 請求項3に記載の超電導ケーブルを巻線して構成された超電導コイル。   A superconducting coil configured by winding the superconducting cable according to claim 3. 基材と超電導導体層を含んだ積層構造を有する超電導線材同士を長手方向に接続した超電導線材の接続処理方法であって、
一の超電導線材の接続端部と他の超電導線材の接続端部とが各自の基材を外側にして積層方向に重ね合わされ、その重ね合わされた面で互いに接合された接続部を構成した後、
長手方向には前記一の超電導線材の接続端部と前記他の超電導線材の接続端部とが重ね合わされた範囲に亘り、積層方向には前記一の超電導線材の基材から前記他の超電導線材の基材までに亘って前記接続部の積層構造を幅方向に分断するスリットを加工することを特徴とする超電導線材の接続処理方法。
A superconducting wire connection processing method in which superconducting wires having a laminated structure including a base material and a superconducting conductor layer are connected in the longitudinal direction,
After configuring the connection part where the connection end part of one superconducting wire and the connection end part of the other superconducting wire are overlapped in the stacking direction with their respective base materials facing outside, and joined to each other on the overlapped surface,
In the longitudinal direction, the connection end portion of the one superconducting wire and the connection end portion of the other superconducting wire are overlapped, and in the stacking direction, the base material of the one superconducting wire extends to the other superconducting wire. A process for connecting a superconducting wire, characterized by processing a slit that divides the laminated structure of the connecting portion in the width direction over the substrate.
JP2014229409A 2014-11-12 2014-11-12 Superconducting wire connection structure, superconducting cable, superconducting coil, and superconducting wire connection processing method Active JP6356048B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014229409A JP6356048B2 (en) 2014-11-12 2014-11-12 Superconducting wire connection structure, superconducting cable, superconducting coil, and superconducting wire connection processing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014229409A JP6356048B2 (en) 2014-11-12 2014-11-12 Superconducting wire connection structure, superconducting cable, superconducting coil, and superconducting wire connection processing method

Publications (2)

Publication Number Publication Date
JP2016095904A JP2016095904A (en) 2016-05-26
JP6356048B2 true JP6356048B2 (en) 2018-07-11

Family

ID=56071224

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014229409A Active JP6356048B2 (en) 2014-11-12 2014-11-12 Superconducting wire connection structure, superconducting cable, superconducting coil, and superconducting wire connection processing method

Country Status (1)

Country Link
JP (1) JP6356048B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11855400B2 (en) 2021-03-19 2023-12-26 Kabushiki Kaisha Toshiba Connection structure of superconducting layer, superconducting wire, superconducting coil, and superconducting device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6725072B2 (en) * 2017-05-19 2020-07-15 住友電気工業株式会社 Superconducting wire, superconducting coil, superconducting magnet and superconducting equipment

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4777749B2 (en) * 2005-11-18 2011-09-21 公益財団法人鉄道総合技術研究所 Method for producing low AC loss oxide superconducting conductor
JP4810268B2 (en) * 2006-03-28 2011-11-09 株式会社東芝 Superconducting wire connection method and superconducting wire
JP5205558B2 (en) * 2008-01-23 2013-06-05 古河電気工業株式会社 Superconducting wire, superconducting conductor and superconducting cable
JP4917524B2 (en) * 2007-12-19 2012-04-18 住友電気工業株式会社 Superconducting wire and method of manufacturing superconducting wire
US8437819B2 (en) * 2008-10-08 2013-05-07 Massachusetts Institute Of Technology Superconductor cable
JP5619731B2 (en) * 2009-04-28 2014-11-05 公益財団法人国際超電導産業技術研究センター Superconducting wire current terminal structure and superconducting cable having this current terminal structure
JP6040515B2 (en) * 2011-03-17 2016-12-07 富士電機株式会社 Superconducting coil manufacturing method
JP6371395B2 (en) * 2014-08-12 2018-08-08 国立研究開発法人理化学研究所 High temperature superconducting multi-core tape wire, method for manufacturing the same, and manufacturing apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11855400B2 (en) 2021-03-19 2023-12-26 Kabushiki Kaisha Toshiba Connection structure of superconducting layer, superconducting wire, superconducting coil, and superconducting device

Also Published As

Publication number Publication date
JP2016095904A (en) 2016-05-26

Similar Documents

Publication Publication Date Title
JP4810268B2 (en) Superconducting wire connection method and superconducting wire
JP4845040B2 (en) Thin film superconducting wire connection method and connection structure thereof
JP6725001B2 (en) Superconducting wire and superconducting coil
EP3179486B1 (en) Oxide superconducting wire, superconducting device and method for producing oxide superconducting wire
US9362026B2 (en) Oxide superconductor wire, connection structure thereof, and superconductor equipment
JP6155258B2 (en) Superconducting wire, superconducting wire connection structure, superconducting wire connecting method, and superconducting wire terminal treatment method
JP5118990B2 (en) Superconducting tape wire and defect repair method
JP6178779B2 (en) Superconducting wire connection structure and manufacturing method of superconducting wire connection structure
CN111357126A (en) Splicing superconducting tapes
JP6012658B2 (en) Oxide superconducting wire and manufacturing method thereof
EP2490272B1 (en) Superconducting element with elongated opening and method for manufacturing the same
JP6356048B2 (en) Superconducting wire connection structure, superconducting cable, superconducting coil, and superconducting wire connection processing method
JP2014154320A (en) Connection structure of oxide superconductive wire rod and superconductive apparatus
JP6738720B2 (en) Superconducting wire connection structure
WO2017078027A1 (en) Thin-film oxide superconducting wire and method for manufacturing same
JP5775785B2 (en) Oxide superconducting wire and method for producing the same
JP6605942B2 (en) Superconducting wire connection structure and superconducting wire connection method
JP6069269B2 (en) Oxide superconducting wire, superconducting equipment, and oxide superconducting wire manufacturing method
RU2597211C1 (en) Wire made from oxide superconductor
JP5701247B2 (en) Oxide superconducting wire connection structure and connection method
JP2016157686A (en) Superconducting wire rod, superconducting coil and method for producing superconducting wire rod
JP2014130730A (en) Connection structure and connection method of oxide superconductive wire material, and oxide superconductive wire material using the connection structure
JP6002602B2 (en) Oxide superconducting wire connection structure and manufacturing method thereof
JP6106789B1 (en) Oxide superconducting wire, manufacturing method thereof, and superconducting coil
JP2014154331A (en) Oxide superconductive wire material, connection structure of oxide superconductive wire materials, and method for manufacturing an oxide superconductive wire material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170908

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180523

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180605

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180613

R151 Written notification of patent or utility model registration

Ref document number: 6356048

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350