JP2009110668A - Superconductive wire and superconductor - Google Patents

Superconductive wire and superconductor Download PDF

Info

Publication number
JP2009110668A
JP2009110668A JP2007278357A JP2007278357A JP2009110668A JP 2009110668 A JP2009110668 A JP 2009110668A JP 2007278357 A JP2007278357 A JP 2007278357A JP 2007278357 A JP2007278357 A JP 2007278357A JP 2009110668 A JP2009110668 A JP 2009110668A
Authority
JP
Japan
Prior art keywords
wire
superconducting
wires
loss
thin film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007278357A
Other languages
Japanese (ja)
Other versions
JP5041414B2 (en
Inventor
Masashi Yagi
正史 八木
Mitsuo Suzuki
光男 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP2007278357A priority Critical patent/JP5041414B2/en
Publication of JP2009110668A publication Critical patent/JP2009110668A/en
Application granted granted Critical
Publication of JP5041414B2 publication Critical patent/JP5041414B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Abstract

<P>PROBLEM TO BE SOLVED: To provide a superconductive wire and a superconductor with an AC loss reduced without degrading superconductivity characteristics, and with mechanical characteristics improved. <P>SOLUTION: The superconductive wire has 8 or more thin-film superconductive wire rods spirally wound around core wires with an outer diameter of 1.3 to 5 mm so as not to be overlapped. In the superconductor, the plurality of superconductive wires are wound around the core wires in a spiral shape so as not to overlap with each other. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、超電導ワイヤーおよび超電導導体に係り、特に、交流損失が低減され、機械特性の向上した超電導ワイヤーおよび超電導導体に関する。   The present invention relates to a superconducting wire and a superconducting conductor, and more particularly to a superconducting wire and a superconducting conductor with reduced AC loss and improved mechanical properties.

高温超電導ケーブルの線材として、YBCO(YBaCu7−d)等のY系線材や、BSCCO(BiSrCaCu10)等のBi系線材に代表される薄膜超電導線材が知られている。いずれの線材も、図15に示すように、テープ状の形状を有している。即ち、(a)はテープ状BSCCO線材を示し、BSCCOフィラメント41が銀合金からなるシース42内に充填された構造を有する。その厚さは、約0.2mm程度である。(b)は、テープ状YBCO線材を示し、基体51上に、中間層52を介して厚さ約1μmのYBCO層53が形成され、その上に厚さ約10μmの銀層54が被覆された構造を有する。 As wire rods for high-temperature superconducting cables, Y-based wires such as YBCO (YBa 2 Cu 3 O 7-d ) and thin-film superconducting wires represented by Bi-based wires such as BSCCO (BiSr 2 Ca 2 Cu 3 O 10 ) are known. It has been. Each wire has a tape-like shape as shown in FIG. That is, (a) shows a tape-like BSCCO wire, and has a structure in which a BSCCO filament 41 is filled in a sheath 42 made of a silver alloy. Its thickness is about 0.2 mm. (B) shows a tape-shaped YBCO wire, on which a YBCO layer 53 having a thickness of about 1 μm is formed on a base 51 via an intermediate layer 52, and a silver layer 54 having a thickness of about 10 μm is coated thereon. It has a structure.

これらのテープ状線材のうち、BSCCO線材は、外部磁界が印加されると臨界電流密度が急激に低下するという問題がある。一方、YBCO線材は、外部磁界に対して強く、強磁界内でも高い電流密度を維持することができるため、超電導ケーブル等の交流電力機器への応用が期待されている。   Among these tape-shaped wires, the BSCCO wire has a problem that the critical current density rapidly decreases when an external magnetic field is applied. On the other hand, YBCO wire is strong against an external magnetic field and can maintain a high current density even in a strong magnetic field, and thus is expected to be applied to AC power equipment such as a superconducting cable.

また、Y系線材は、金属基板にYBCOの薄膜を蒸着させた構造を有しており、薄膜であるため高い電流密度を有することから、薄膜の面に平行な磁場による交流損失はBi系線材と比較して非常に小さい。一方で、薄膜の面に垂直な交流損失はBi系線材よりも交流損失は大きくなる。   The Y-based wire has a structure in which a YBCO thin film is vapor-deposited on a metal substrate. Since the Y-based wire is a thin film, it has a high current density. Very small compared to. On the other hand, the AC loss perpendicular to the surface of the thin film is larger than that of the Bi-based wire.

図16に、Bi系線材及びY系線材の様々な線材の形式を示す。図5に、これらの線材形式の交流外部磁場下で通電したときの交流損失を示す(例えば、非特許文献1参照)。なお、図5の交流損失は、外部磁場は50mTで、通電電流のピークがIt=90A、各線材の臨界電流が150Aとした場合の結果である。横軸は磁場の方向であり、0度が面に平行であり、90度は面に垂直である。図5から、YBCOストリップは、超電導面に平行な磁場の時は交流損失が小さいが、15度では、YBCOスタック(YBCOを重ねた形状)、BSCCOテープ、BSCCOワイヤーよりも交流損失が大きくなってしまうことがわかる。また、YBCOスタックでは、BSCCOと比較して、優位性が無い。   FIG. 16 shows various wire types of Bi-based wire and Y-based wire. FIG. 5 shows AC loss when energized under an AC external magnetic field of these wire types (see, for example, Non-Patent Document 1). The AC loss in FIG. 5 is the result when the external magnetic field is 50 mT, the peak of the energizing current is It = 90 A, and the critical current of each wire is 150 A. The horizontal axis is the direction of the magnetic field, 0 degrees is parallel to the plane and 90 degrees is perpendicular to the plane. From FIG. 5, the AC loss of the YBCO strip is small when the magnetic field is parallel to the superconducting surface. However, at 15 degrees, the AC loss is larger than that of the YBCO stack (YBCO stack), BSCCO tape, and BSCCO wire. I understand that. Also, the YBCO stack has no advantage compared to BSCCO.

そこで、図17に示すように、Y系線材を超電導円筒にした場合、外部から磁場を与えても、全て面に平行な磁場となるため、理想的な形となる(この形状をモノブロック型という)。しかし、このような理想的なY系超電導線材の製作は非常に難しく、出来たとしても、機械特性が非常に悪いと予想される。それは、この形状は曲げに対して逃げが無いので、実際の電力機器応用を考えると適用は難しい。   Therefore, as shown in FIG. 17, when a Y-based wire is made of a superconducting cylinder, even if a magnetic field is applied from the outside, the magnetic field is entirely parallel to the surface, and thus an ideal shape (this shape is a monoblock type). Called). However, it is very difficult to manufacture such an ideal Y-based superconducting wire, and even if it is possible, it is expected that the mechanical characteristics are very poor. Since this shape has no escape against bending, it is difficult to apply when considering the actual power equipment application.

そこで、モノブロック形状に近づける方法として、図18(a)に示すように、有限の幅をもつ線材をより細線化し、図18(b)に示すように、この細線を多角形、例えば4角形に配置する方法が提案され、交流損失の低減に効果を上げている。しかし、細線化をすることに伴い超電導特性の劣化が生じ、これらを考慮した最適化はこれまで行われていない。
Stravrey, Supercond. Sci. Technol. 18(2005) 1300-1312
Therefore, as a method of approaching the monoblock shape, a wire having a finite width is made finer as shown in FIG. 18 (a), and this fine wire is converted into a polygon, for example, a quadrangle as shown in FIG. 18 (b). Has been proposed, and is effective in reducing AC loss. However, the superconducting characteristics are deteriorated with the thinning, and the optimization considering these has not been performed so far.
Stravrey, Supercond. Sci. Technol. 18 (2005) 1300-1312

本発明は、このような状況に鑑みてなされ、超電導特性を劣化させることなく交流損失が低減され、機械特性の向上した超電導ワイヤーおよび超電導導体を提供することを目的とする。   The present invention has been made in view of such circumstances, and an object of the present invention is to provide a superconducting wire and a superconducting conductor in which AC loss is reduced without deteriorating superconducting characteristics and mechanical characteristics are improved.

上記課題を解決するため、本発明の第1の態様は、外径1.3〜5mmの心線の周囲に、8本以上の薄膜系超電導線材を相互に重ならないようにスパイラル状に巻き付けてなることを特徴とする超電導ワイヤーを提供する。   In order to solve the above problems, the first aspect of the present invention is to wrap around 8 or more thin film superconducting wires in a spiral shape around a core wire having an outer diameter of 1.3 to 5 mm so as not to overlap each other. A superconducting wire is provided.

このように構成される超電導ワイヤーは、周囲に良導体又は高抵抗金属からなる保護層を設けたものとすることが出来る。   The superconducting wire configured as described above can be provided with a protective layer made of a good conductor or a high-resistance metal around it.

前記薄膜系超電導線材の幅は、0.48〜1.8mmとすることができる。また、隣接する薄膜系超電導線材の間のギャップは、前記薄膜系超電導線材の幅の1/2以下とすることができる。   The thin film superconducting wire may have a width of 0.48 to 1.8 mm. In addition, the gap between adjacent thin film superconducting wires can be ½ or less of the width of the thin film superconducting wire.

前記薄膜系超電導線材として、RE系線材を用いることができる。RE系はRE−Ba−Cu−Oで示され、REはLa,Nd,Sm,Eu,Gd,Dy,Ho,Er,Tm,Yb,Lu及びYから選択される。また、前記薄膜系超電導線材は、IBAD又はPLDにより形成された線材を、レーザ又はスリッターにより均等に分割して得たものとすることができる。   As the thin film superconducting wire, an RE wire can be used. The RE system is indicated by RE-Ba-Cu-O, and the RE is selected from La, Nd, Sm, Eu, Gd, Dy, Ho, Er, Tm, Yb, Lu, and Y. The thin film superconducting wire may be obtained by equally dividing a wire formed by IBAD or PLD with a laser or slitter.

本発明の第2の態様は、以上の超電導ワイヤーの複数本を、100mm以下のピッチで撚ってなることを特徴とする撚り線状超電導ワイヤーを提供する。   The second aspect of the present invention provides a stranded superconducting wire characterized in that a plurality of the above superconducting wires are twisted at a pitch of 100 mm or less.

本発明の第3の態様は、心線の周囲に、第2の態様に係る撚り線状超電導ワイヤーの複数本を重ならないようにスパイラル状に巻き付けてなることを特徴とする超電導導体を提供する。   According to a third aspect of the present invention, there is provided a superconducting conductor formed by winding a plurality of stranded superconducting wires according to the second aspect in a spiral shape around a core wire so as not to overlap. .

本発明の第4の態様は、心線の周囲に、第1の態様に係る超電導ワイヤーの複数本を重ならないようにスパイラル状に巻き付けてなることを特徴とする超電導導体を提供する。   According to a fourth aspect of the present invention, there is provided a superconducting conductor characterized in that a plurality of superconducting wires according to the first aspect are wound around a core wire in a spiral shape so as not to overlap.

本発明の第5の態様は、心線の周囲に、第4の態様に係る超電導導体の複数本を重ならないようにスパイラル状に巻き付けてなることを特徴とする超電導導体を提供する。   According to a fifth aspect of the present invention, there is provided a superconducting conductor characterized in that a plurality of superconducting conductors according to the fourth aspect are wound around a core wire in a spiral shape so as not to overlap.

本発明によると、超電導特性を劣化させることなく交流損失が低減され、機械特性の向上した超電導ワイヤーおよび超電導導体が提供される。   According to the present invention, a superconducting wire and a superconducting conductor with reduced AC loss and improved mechanical properties without degrading superconducting properties are provided.

以下、本発明の実施形態について説明する。   Hereinafter, embodiments of the present invention will be described.

図1は、本発明の一実施形態に係る超電導ワイヤーを示す斜視図である。図1において、超電導ワイヤー1は、外径1.3〜5mmの心線2の周囲に、8本以上(図では8本)の薄膜系超電導線材3を相互に重ならないようにスパイラル状に配置してなることを特徴とする。このとき、隣接する薄膜超電導線材同士はギャップを有した状態で並行配置されている。   FIG. 1 is a perspective view showing a superconducting wire according to an embodiment of the present invention. In FIG. 1, a superconducting wire 1 is spirally arranged around a core wire 2 having an outer diameter of 1.3 to 5 mm so that eight or more (eight in the figure) thin film superconducting wires 3 do not overlap each other. It is characterized by becoming. At this time, adjacent thin film superconducting wires are arranged in parallel with a gap.

心線2の材料としては、超電導ワイヤーの機械特性を考慮して、使い分けることが出来る。電気特性を主とするならば、電気伝導性の良好な銅や銅合金を用い、機械特性を重視するならば、ステンレス鋼や銅合金などを使用することが出来る。   The material of the core 2 can be properly used in consideration of the mechanical characteristics of the superconducting wire. If electrical characteristics are mainly used, copper or copper alloy having good electrical conductivity can be used. If mechanical characteristics are important, stainless steel or copper alloy can be used.

心線2の外径は、1.3〜5mmである必要がある。機械的な強度の点から、及び心線2の周囲に8本以上の薄膜系超電導線材3を重ならないように配置することを可能とするためには、心線2の外径は1.3mm以上である必要があり、ワイヤーを巻き付け、撚り合わせる2次加工を施す場合、径が大き過ぎると2次加工が困難となるため、5mm以下である必要がある。   The outer diameter of the core wire 2 needs to be 1.3 to 5 mm. In order to make it possible to dispose eight or more thin-film superconducting wires 3 so as not to overlap with each other in terms of mechanical strength and around the core 2, the outer diameter of the core 2 is 1.3 mm. When it is necessary to perform the secondary processing of winding and twisting the wire, if the diameter is too large, the secondary processing becomes difficult.

薄膜系超電導線材としては、YBCO(YBaCu7−d)等のY系線材や、BSCO(BiSrCaCu10)等のBi系線材があるが、本発明では、YBCO(YBaCu7−d)等のY系線材を好ましく用いることが出来る。 As the thin-film superconducting wire, there are Y-based wires such as YBCO (YBa 2 Cu 3 O 7-d ) and Bi-based wires such as BSCO (BiSr 2 Ca 2 Cu 3 O 10 ). In the present invention, YBCO A Y-based wire such as (YBa 2 Cu 3 O 7-d ) can be preferably used.

薄膜系超電導線材は、所定の幅の超電導線材、例えばIBAD(Ion Beam Assist Deposition)により形成された10mm幅のY系線材を、レーザやスリッター等により均等に分割したものである。分割された細線の幅は、0.48〜1.8mm程度が好ましく、例えば0.48mmである。   The thin-film superconducting wire is a superconducting wire having a predetermined width, for example, a Y-based wire having a width of 10 mm formed by IBAD (Ion Beam Assist Deposition), which is equally divided by a laser, a slitter or the like. The width of the divided thin line is preferably about 0.48 to 1.8 mm, for example, 0.48 mm.

細線の幅について、本発明者らは、IBADやPLD(Ion Beam Deposition)により製作した10mmの幅のY系線材について、分割された細線の幅と臨界電流比(分割後の臨界電流Icと分割前の臨界電流Icoとの比)との関係についての実験を行い、図2に示す結果を得た。即ち、図2に示すグラフから、分割により臨界電流は低下するが、20分割し、幅0.48mmとしても(残りの0.02mmはレーザ加工中に失われたもの)臨界電流比は0.97であり、大きな劣化が無い事が確認された。   Regarding the width of the thin wire, the present inventors have examined the width of the thin wire and the critical current ratio (the divided critical current Ic and the divided current) for a Y-based wire having a width of 10 mm manufactured by IBAD or PLD (Ion Beam Deposition). Experiments on the relationship with the previous critical current Ico) were performed, and the results shown in FIG. 2 were obtained. That is, from the graph shown in FIG. 2, the critical current decreases due to the division, but even when the division is 20 and the width is 0.48 mm (the remaining 0.02 mm is lost during laser processing), the critical current ratio is 0. 97, confirming that there was no significant deterioration.

細線の幅は、Y系線材の材料と製造法に大きく依存すると考えられており、結晶のグレインサイズ(結晶粒径)の関係から説明される。Goyalらの論文(Goyal, Physica C 426-431(2005) 1083-1090) によると、グレインサイズに対して十分な線材幅を持たないと、グレインサイズの一つが欠陥となった場合、臨界電流の低下の可能性が大きくなる。   The width of the thin wire is considered to depend greatly on the material of the Y-based wire and the manufacturing method, and will be explained from the relationship of the crystal grain size (crystal grain size). According to Goyal et al. Paper (Goyal, Physica C 426-431 (2005) 1083-1090), if there is not enough wire width for the grain size, if one of the grain sizes becomes defective, the critical current The possibility of decline increases.

低下の可能性が小さい細線の幅はグレインサイズの100倍である。 The width of the thin line with a low possibility of reduction is 100 times the grain size.

グレインサイズはY系線材の材料と製造法によって変わり、IBAD−PLD法では、0.1〜数μmである。グレインサイズが数μmであれば、その100倍である数100μmが適正な線材幅であり、20分割による細線の幅0.48mmは、それほど劣化しない細線の幅の下限に近い値と考えることが出来る。   The grain size varies depending on the material of the Y-based wire and the manufacturing method, and is 0.1 to several μm in the IBAD-PLD method. If the grain size is several μm, several hundred μm, which is 100 times that, is an appropriate wire width, and the thin wire width of 0.48 mm by 20 divisions is considered to be a value close to the lower limit of the thin wire width that does not deteriorate so much. I can do it.

心線2の周囲に配置する薄膜系超電導線材3の数は8本以上であり、8本未満では、交流損失の低減効果が不十分である。   The number of thin film superconducting wires 3 arranged around the core wire 2 is 8 or more, and if it is less than 8, the effect of reducing AC loss is insufficient.

8本以上の薄膜系超電導線材3は、心線2の周囲に相互に重ならないように沿わせて配置され、スパイラルに巻き付けられる。その上には、保護材4が形成されている。また更に、保護材4上に被覆を施してもよい。   Eight or more thin film superconducting wires 3 are arranged along the periphery of the core wire 2 so as not to overlap each other, and are wound around a spiral. A protective material 4 is formed thereon. Furthermore, the protective material 4 may be coated.

保護材4としては、良導体としての銅、またはステンレスやハステロイなどの高抵抗金属合金、被覆としてはエナメルやホルマルやポリイミド樹脂やテフロン(登録商標)など液体窒素中で性能を維持する物を使用用途に分けて使い分けることが出来る。   Protective material 4 is copper as a good conductor, or high resistance metal alloy such as stainless steel or hastelloy, and coating is a material that maintains its performance in liquid nitrogen such as enamel, formal, polyimide resin or Teflon (registered trademark) Can be used separately.

このように、超電導ワイヤーを保護材4により被覆することにより、液体窒素の浸漬や薬品との接触等の外部環境の変化に非常に強い構造が得られる。   Thus, by covering the superconducting wire with the protective material 4, a structure that is extremely resistant to changes in the external environment such as immersion in liquid nitrogen and contact with chemicals can be obtained.

細線化した線材同士のギャップ(隙間)は小さいほど望ましいが、スパイラルに巻き付ける場合、ある程度のギャップは必要である。目安として、ギャップは、線材幅の1/2以下にすることが望ましい。   The smaller the gap between the thinned wires, the better. However, when winding around a spiral, a certain amount of gap is necessary. As a guide, it is desirable that the gap be ½ or less of the wire width.

図3は、細線化した線材を心線に巻き付ける本数と交流損失との関係を示すグラフである。図3から、7本までは急激に交流損失の低下が確認できるが、8本以上になると、低下もやや飽和気味の傾向を見せる。そのため、8本以上の細線化した線材を心線に巻き付ける必要がある。なお、細線化した線材の本数が多すぎる場合には、細線の幅が小さくなりすぎて、臨界電流が低下するため、好ましい線材の本数は、10〜30本である。更に好ましくは、18〜24本である。   FIG. 3 is a graph showing the relationship between the number of wires wound around the core and the AC loss. From FIG. 3, it can be confirmed that the AC loss is drastically reduced up to seven, but when it is eight or more, the decrease also shows a slightly saturated tendency. Therefore, it is necessary to wind eight or more thin wires around the core wire. When the number of thinned wires is too large, the width of the thin wires becomes too small and the critical current decreases, so the preferred number of wires is 10 to 30. More preferably, it is 18-24.

以上のように構成されるY系超電導ワイヤーの交流損失をBi線材(テープ状)、Biワイヤー(ワイヤー状)、Y系線材(テープ状)、Y系スタック(Y系線材を重ねた)と比較した場合、それらに対し、低い交流損失を示す。特に、交流損失の内、通電損失と磁化損失の両方において、低い特性を示すので、高電流・低磁場のケーブルにも、高磁場のマグネットにもどちらにも有用である。   Compare AC loss of Y-based superconducting wire configured as described above with Bi wire (tape), Bi wire (wire), Y-based wire (tape), Y-stack (with Y-based wires stacked) If they do, they show low AC loss. In particular, it exhibits low characteristics in both current loss and magnetization loss in the AC loss, so it is useful for both high current / low magnetic field cables and high magnetic field magnets.

本発明者らは、このことを示す試験を以下のように行なった。   The present inventors conducted a test showing this as follows.

即ち、まず、IBAD法で作製された10mmの幅のY系線材をレーザにより20分割した。このときの線材の幅は0.48mmである。   That is, first, a Y-based wire having a width of 10 mm produced by the IBAD method was divided into 20 by a laser. The width of the wire at this time is 0.48 mm.

このようにして得たY系線材を10本、1.6mmφの径の心材に、スパイラルに巻き付け、図4(a)に示す断面形状のY系ワイヤー1を得た。スパイラルピッチは300mmであり、線材間のギャップ(隙間)は0.023mmであった。   Ten Y-based wires thus obtained were wound around a core material having a diameter of 1.6 mmφ in a spiral to obtain a Y-based wire 1 having a cross-sectional shape shown in FIG. The spiral pitch was 300 mm, and the gap (gap) between the wires was 0.023 mm.

次に、幅0.48mmのY系線材を18本を、同様にして、2.9mmφの径の心材に、スパイラル状に巻き付け、図4(b)に示す断面形状のY系ワイヤー2を得た。スパイラルピッチは300mmであり、線材間のギャップ(隙間)は0.026mmであった。   Next, 18 Y-type wire rods having a width of 0.48 mm were similarly wound around a core material having a diameter of 2.9 mmφ in a spiral shape to obtain a Y-type wire 2 having a cross-sectional shape shown in FIG. It was. The spiral pitch was 300 mm, and the gap (gap) between the wires was 0.026 mm.

これらのY系ワイヤー1,2について、磁場角度と交流損失との関係を求めたところ、図5に示す結果を得た。なお、図5には、図16に示す従来のBSCCOテープ、BSCCOワイヤー、YBCOスタック、YBCOストリップの磁場角度と交流損失との関係も示している。   When the relationship between the magnetic field angle and the AC loss was determined for these Y-based wires 1 and 2, the results shown in FIG. 5 were obtained. FIG. 5 also shows the relationship between the magnetic field angle and AC loss of the conventional BSCCO tape, BSCCO wire, YBCO stack, and YBCO strip shown in FIG.

図5に示す結果から、Y系ワイヤー1は、BSCCOテープ、BSCCOワイヤー、YBCOスタックよりも全ての磁場角度において交流損失が小さくなっていることがわかる。また、Y系ワイヤー2は、BSCCOテープ、BSCCOワイヤー、YBCOスタック、YBCOストリップ、及びY系ワイヤー1よりも、1/10に交流損失が小さくなっていることがわかる。   From the results shown in FIG. 5, it can be seen that the Y-system wire 1 has smaller AC loss at all magnetic field angles than the BSCCO tape, BSCCO wire, and YBCO stack. It can also be seen that the Y-system wire 2 has an AC loss that is 1/10 that of the BSCCO tape, BSCCO wire, YBCO stack, YBCO strip, and Y-system wire 1.

次に、本発明者らは、10mm幅のY系超電導線材(a)と、Y系超電導線材(a)を18分割して得たストリップ(b)と、上記で作製したY系ワイヤー2(c)について、通電損失および磁化損失を比較する試験を行なった。なお、(b)と(c)では、構成材料はおなじであるが、(c)はワイヤー化している点で異なっている。その結果を図6に示す。
図6に示す結果から、(a)から(b)への細線化により、超電導の臨界電流が10%低下していることがわかる。これに対し、(b)から(c)へのワイヤー化では、臨界電流の低下は無かった。なお、図6のグラフでは、これらの臨界電流の違いを統一するため、横軸をIt/Ic(通電電流のピークIt/臨界電流Ic)とし、縦軸の交流損失はIc^2に比例する事から、交流損失をIc^2で除したものとした。
Next, the present inventors have a Y-based superconducting wire (a) having a width of 10 mm, a strip (b) obtained by dividing the Y-based superconducting wire (a) into 18 parts, and the Y-based wire 2 (above prepared) ( For c), a test was conducted to compare the conduction loss and the magnetization loss. In (b) and (c), the constituent materials are the same, but (c) is different in that it is wired. The result is shown in FIG.
From the results shown in FIG. 6, it can be seen that the critical current of superconductivity is reduced by 10% due to the thinning from (a) to (b). On the other hand, there was no decrease in critical current in the wiring from (b) to (c). In the graph of FIG. 6, in order to unify the difference between these critical currents, the horizontal axis is It / Ic (peak current It / critical current Ic), and the vertical axis AC loss is proportional to Ic ^ 2. Therefore, AC loss was divided by Ic ^ 2.

図6から、(c)の交流損失が最も小さいことがわかる。(a)と比較すると、(c)の交流損失は、(a)の1/3以下にまで低下している。また、(a)と(b)はテープ状であるため、ねじりや折れや曲がりに弱く、ハンドリングが悪いという問題があるが、(c)はワイヤー状であるので、ハンドリングは良好である。   FIG. 6 shows that the AC loss of (c) is the smallest. Compared with (a), the AC loss in (c) is reduced to 1/3 or less of (a). Moreover, since (a) and (b) are tape-shaped, there is a problem that they are vulnerable to twisting, bending and bending, and handling is bad, but (c) is wire-shaped, so handling is good.

図7は、テープ面に垂直の磁場をかけたときの磁化損失を示すグラフである。図9のグラフから、上記で作製したY系ワイヤー2は、BSCCOテープ、BSCCOワイヤー、YBCOスタック、YBCOストリップ、及びYBCOを18分割した18本の細線よりも磁化損失は低く、最も損失の低いBSCCOワイヤーと比較しても、その1/10であることがわかる。   FIG. 7 is a graph showing the magnetization loss when a magnetic field perpendicular to the tape surface is applied. From the graph of FIG. 9, the Y-based wire 2 produced above has a lower magnetization loss than the 18 thin wires obtained by dividing the BSCCO tape, BSCCO wire, YBCO stack, YBCO strip, and YBCO into 18 pieces, and BSCCO with the lowest loss. Even if compared with a wire, it turns out that it is 1/10.

以上説明した図1に示すY系超電導ワイヤーは、径が小さいので、複数本を撚り合わせたり、集合化して、図8〜13に示すような様々な超電導導体を作製することが出来る。以下、それらの作製例について説明する。   Since the Y-based superconducting wire shown in FIG. 1 described above has a small diameter, various superconducting conductors as shown in FIGS. 8 to 13 can be produced by twisting or assembling a plurality of wires. Hereinafter, production examples thereof will be described.

図8に示す例は、図1に示すY系超電導ワイヤー1を3本撚って得た撚り線状超電導ワイヤー10である。図9に示す例は、図1に示すY系超電導ワイヤー1を2本撚って得た撚り線状超電導ワイヤー20である。図10に示す例は、心線12の周囲に、図1に示すY系超電導ワイヤー1を6本、スパイラル状に巻回して得た超電導導体30である。   The example shown in FIG. 8 is a stranded superconducting wire 10 obtained by twisting three Y-based superconducting wires 1 shown in FIG. The example shown in FIG. 9 is a stranded superconducting wire 20 obtained by twisting two Y-based superconducting wires 1 shown in FIG. The example shown in FIG. 10 is a superconducting conductor 30 obtained by winding six Y-based superconducting wires 1 shown in FIG.

このように、図1に示すY系超電導ワイヤー1を複数本、撚り合わせたり、集合化することにより、長手方向の平行磁場から生じる結合損失を減少させる事が出来る。   As described above, the coupling loss caused by the parallel magnetic field in the longitudinal direction can be reduced by twisting or assembling a plurality of Y-based superconducting wires 1 shown in FIG.

図11に示す例は、心線22の周囲に、図9に示す撚り線状超電導ワイヤー20を6本、スパイラル状に巻回して得た超電導導体である。図12に示す例は、心線22の周囲に、図8に示す撚り線状超電導ワイヤー10を6本、スパイラル状に巻回して得た超電導導体である。図13に示す例は、心線22の周囲に、図10に示す超電導導体30を6本、スパイラル状に巻回して得た超電導導体である。   The example shown in FIG. 11 is a superconducting conductor obtained by winding six stranded superconducting wires 20 shown in FIG. 9 spirally around the core wire 22. The example shown in FIG. 12 is a superconducting conductor obtained by winding six stranded superconducting wires 10 shown in FIG. 8 spirally around the core wire 22. The example shown in FIG. 13 is a superconducting conductor obtained by spirally winding six superconducting conductors 30 shown in FIG. 10 around the core wire 22.

このように図8、図9、図10に示す撚り線状超電導ワイヤー10,20及び超電導導体30を更に集合化することにより、大容量かつ交流損失の小さい超電導導体を作製することができる。なお、撚り線状超電導ワイヤー10,20及び超電導導体30は、いずれも周囲を被覆層により覆われている。   As described above, by further assembling the stranded superconducting wires 10 and 20 and the superconducting conductor 30 shown in FIGS. 8, 9 and 10, a superconducting conductor having a large capacity and a small AC loss can be produced. The stranded superconducting wires 10 and 20 and the superconducting conductor 30 are all covered with a coating layer.

このように製作した超電導導体は、超電導ワイヤー間のギャップが取りやすく、動きの自由度も大きいため、曲げに対する機械的強度を大きく上げることが出来る。   Since the superconducting conductor manufactured in this way can easily form a gap between superconducting wires and has a high degree of freedom of movement, the mechanical strength against bending can be greatly increased.

通常、テープ状の超電導体を作製する場合には、図14(a)に示すように、フォーマとなる芯31に超電導線材32をスパイラル状に巻き付けており、電流容量が少ない場合には、図14(b)、(14c)に示すように、更に超電導線材33,34をスパイラル状に巻き付け、多層にしている。   Usually, when producing a tape-shaped superconductor, as shown in FIG. 14A, a superconducting wire 32 is spirally wound around a core 31 as a former, and when the current capacity is small, As shown in 14 (b) and (14c), the superconducting wires 33 and 34 are further spirally wound to form a multilayer.

図14(a)に示すような形状の超電導体の場合、曲げた時に、線材の逃げは、超電導線間ギャップgのみで行われる。さらに、図14(b)、(14c)に示すように、多層導体になった場合、層毎の電流を等しくするために、スパイラルピッチを変える必要がある。多層になると、そのスパイラルピッチは大きく変わり、スパイラルピッチが短いと、巻き付け時に劣化を起こし、スパイラルピッチが長いと、機械曲げをしたときに劣化を起こしやすい。従って、超電導線材間のギャップが、ある程度必要となる。   In the case of a superconductor having a shape as shown in FIG. 14 (a), when the wire is bent, the wire is escaped only by the gap g between the superconducting wires. Furthermore, as shown in FIGS. 14B and 14C, in the case of a multilayer conductor, it is necessary to change the spiral pitch in order to equalize the current for each layer. When it is multi-layered, its spiral pitch changes greatly. When the spiral pitch is short, it is deteriorated during winding, and when the spiral pitch is long, deterioration is likely to occur when mechanical bending is performed. Therefore, a gap between superconducting wires is required to some extent.

ギャップが十分あれば、1mR曲げでも劣化は少ないが、0.9mRだと10%の劣化が見られる。一方、図12や図13に示す導体形状では、0.5mRでも劣化を示さない図12に示す導体を例に取ると、導体を曲げると、超電導線材に直接ひずみがかかるまで構成材である図8に示す導体がスライドし、曲げを吸収し、さらに、曲げても、構成材導体の更に構成材である図1に示す超電導ワイヤーがスライドし、曲げを吸収するため、優れた曲げ特性を示す。   If the gap is sufficient, the deterioration is small even with 1 mR bending, but if it is 0.9 mR, 10% deterioration is observed. On the other hand, in the conductor shape shown in FIG. 12 and FIG. 13, the conductor shown in FIG. 12 that does not show deterioration even at 0.5 mR is taken as an example, and when the conductor is bent, the superconducting wire is directly strained. The conductor shown in FIG. 8 slides and absorbs the bending, and even when bent, the superconducting wire shown in FIG. 1 which is a further constituent material of the constituent conductor slides and absorbs the bending, thus exhibiting excellent bending characteristics. .

また、交流損失の点でも図12に示す導体と図14(c)に示す3層導体を比較したところ、図12に示す導体の交流損失の大きさは、図14(c)に示す導体の10%以下と非常に小さい。   Also, in terms of AC loss, the conductor shown in FIG. 12 was compared with the three-layer conductor shown in FIG. 14C. The magnitude of AC loss in the conductor shown in FIG. Very small, less than 10%.

本発明の一実施形態に係る超電導ワイヤーを示す斜視図。The perspective view which shows the superconducting wire which concerns on one Embodiment of this invention. 分割された細線の幅と臨界電流比との関係を示す特性図。The characteristic view which shows the relationship between the width | variety of the divided | segmented thin wire | line, and a critical current ratio. 細線化した線材を心線に巻き付ける本数と交流損失との関係を示す特性図。The characteristic view which shows the relationship between the number which winds the thinned wire around a core wire, and alternating current loss. 10本及び18本のY系線材を心材にスパイラルに巻き付けて得たY系ワイヤー1,2を示す図。The figure which shows the Y type | system | group wires 1 and 2 obtained by winding 10 and 18 Y type | system | group wire rods around a core material spirally. 、Y系ワイヤー1,2についての磁場角度と交流損失との関係を示す特性図。The characteristic view which shows the relationship between the magnetic field angle about the Y-type wires 1 and 2, and an alternating current loss. Y系超電導線材、ストリップ、及びY系ワイヤー2についての通電損失失を示す特性図。The characteristic view which shows the loss of electricity supply about a Y type superconducting wire, a strip, and a Y type wire. Y系超電導線材、ストリップ、及びY系ワイヤー2について、テープ面に垂直の磁場をかけたときの磁化損失を示す特性図。The characteristic view which shows the magnetization loss when a perpendicular magnetic field is applied to a tape surface about Y type | system | group superconducting wire, a strip, and the Y type | system | group wire 2. FIG. 図1に示すY系超電導ワイヤーを3本撚って得た導体を示す図。The figure which shows the conductor obtained by twisting three Y-type superconducting wires shown in FIG. 図1に示すY系超電導ワイヤーを2本撚って得た導体を示す図。The figure which shows the conductor obtained by twisting two Y-type superconducting wires shown in FIG. 心線の周囲に、図1に示すY系超電導ワイヤーを6本、スパイラル状に巻回して得た導体を示す図。The figure which shows the conductor obtained by winding 6 Y-type superconducting wires shown in FIG. 1 in the spiral shape around the core wire. 心線の周-囲に、図8に示す導体を6本、スパイラル状に巻回して得た導体を示す図。The figure which shows the conductor obtained by winding the six conductors shown in FIG. 8 spirally around the core wire. 心線の周囲に、図9に示す導体を6本、スパイラル状に巻回して得た導体を示す図。The figure which shows the conductor obtained by winding six conductors shown in FIG. 9 spirally around the core wire. 心線の周囲に、図10に示す導体を6本、スパイラル状に巻回して得た導体を示す図。The figure which shows the conductor obtained by winding six conductors shown in FIG. 10 in the spiral shape around the core wire. 従来の芯に超電導線材をスパイラル状に巻き付けてなる導体を示す図。The figure which shows the conductor formed by winding a superconducting wire spirally around the conventional core. 従来のテープ状BSCCO線材及びテープ状YBCO線材を示す図。The figure which shows the conventional tape-shaped BSCCO wire and tape-shaped YBCO wire. 従来のBi系線材及びY系線材の様々な線材の形式を示す図。The figure which shows the format of the various wire materials of the conventional Bi type | system | group wire material and Y type | system | group wire. 超電導円筒を示す図。The figure which shows a superconducting cylinder. 交流損失の低減のため、細線化された線材及び4角形に配置された線材を示す図。The figure which shows the wire rod thinned and the wire arrange | positioned in the quadrangle | tetragon in order to reduce alternating current loss.

符号の説明Explanation of symbols

1…超電導ワイヤー、2,12,22…心線、3…薄膜系超電導線材、10,20撚り線状超電導ワイヤー、30・・・超電導導体、31…芯、32,33,34…超電導線材。   DESCRIPTION OF SYMBOLS 1 ... Superconducting wire, 2, 12, 22 ... Core wire, 3 ... Thin film type | system | group superconducting wire, 10, 20 twisted-wire superconducting wire, 30 ... Superconducting conductor, 31 ... Core, 32, 33, 34 ... Superconducting wire.

Claims (10)

外径1.3〜5mmの心線の周囲に、8本以上の薄膜系超電導線材を相互に重ならないようにスパイラル状に巻き付けてなることを特徴とする超電導ワイヤー。   A superconducting wire comprising eight or more thin film superconducting wires wound in a spiral shape around a core wire having an outer diameter of 1.3 to 5 mm so as not to overlap each other. 周囲に良導体又は高抵抗金属からなる保護層を設けたことを特徴とする請求項1に記載の超電導ワイヤー。   The superconducting wire according to claim 1, wherein a protective layer made of a good conductor or a high-resistance metal is provided around the periphery. 前記薄膜系超電導線材の幅は、0.48〜1.8mmであることを特徴とする請求項1又は2に記載の超電導ワイヤー。   The superconducting wire according to claim 1 or 2, wherein a width of the thin film superconducting wire is 0.48 to 1.8 mm. 隣接する薄膜系超電導線材の間のギャップは、前記薄膜系超電導線材の幅の1/2以下であることを特徴とする請求項3に記載の超電導ワイヤー。   4. The superconducting wire according to claim 3, wherein a gap between adjacent thin film superconducting wires is ½ or less of a width of the thin film superconducting wire. 前記薄膜系超電導線材は、RE系線材であることを特徴とする請求項1〜4のいずれかに記載の超電導ワイヤー。   The superconducting wire according to claim 1, wherein the thin film superconducting wire is an RE wire. 前記薄膜系超電導線材は、IBAD又はPLDにより形成された線材を、レーザ又はスリッターにより均等に分割して得たものであることを特徴とする請求項1〜5のいずれかに記載の超電導ワイヤー。   The superconducting wire according to any one of claims 1 to 5, wherein the thin film superconducting wire is obtained by equally dividing a wire formed by IBAD or PLD with a laser or a slitter. 請求項1〜6のいずれかに記載の超電導ワイヤーの複数本を、100mm以下のピッチで撚ってなることを特徴とする撚り線状超電導ワイヤー。   A stranded superconducting wire comprising a plurality of the superconducting wires according to any one of claims 1 to 6 twisted at a pitch of 100 mm or less. 心線の周囲に、請求項7に記載の撚り線状超電導ワイヤーの複数本を重ならないようにスパイラル状に巻き付けてなることを特徴とする超電導導体。   A superconducting conductor formed by winding a plurality of stranded superconducting wires according to claim 7 in a spiral shape around a core wire so as not to overlap. 心線の周囲に、請求項1〜6のいずれかに記載の超電導ワイヤーの複数本を重ならないようにスパイラル状に巻き付けてなることを特徴とする超電導導体。   A superconducting conductor formed by winding a plurality of superconducting wires according to any one of claims 1 to 6 in a spiral shape around a core wire so as not to overlap. 心線の周囲に、請求項9に記載の超電導導体の複数本を重ならないようにスパイラル状に巻き付けてなることを特徴とする超電導導体。   A superconducting conductor formed by winding a plurality of superconducting conductors according to claim 9 in a spiral shape around a core wire so as not to overlap.
JP2007278357A 2007-10-26 2007-10-26 Superconducting wire and superconducting conductor Active JP5041414B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007278357A JP5041414B2 (en) 2007-10-26 2007-10-26 Superconducting wire and superconducting conductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007278357A JP5041414B2 (en) 2007-10-26 2007-10-26 Superconducting wire and superconducting conductor

Publications (2)

Publication Number Publication Date
JP2009110668A true JP2009110668A (en) 2009-05-21
JP5041414B2 JP5041414B2 (en) 2012-10-03

Family

ID=40778961

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007278357A Active JP5041414B2 (en) 2007-10-26 2007-10-26 Superconducting wire and superconducting conductor

Country Status (1)

Country Link
JP (1) JP5041414B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014141777A1 (en) 2013-03-15 2014-09-18 古河電気工業株式会社 Method for manufacturing superconducting conductor and superconducting conductor

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004031128A (en) * 2002-06-26 2004-01-29 Sumitomo Electric Ind Ltd Superconducting thin film wiring material and manufacturing method of the same, and superconducting cable conductor
JP2004510300A (en) * 2000-09-27 2004-04-02 アイジーシー−スーパーパワー、リミテッド ライアビリティー カンパニー Low AC loss superconducting cable
JP2007087734A (en) * 2005-09-21 2007-04-05 Sumitomo Electric Ind Ltd Manufacturing method of superconducting tape wire rod, superconducting tape wire rod, and superconducting apparatus
JP2007188844A (en) * 2006-01-16 2007-07-26 Sumitomo Electric Ind Ltd Superconducting cable
JP2008053215A (en) * 2006-07-24 2008-03-06 Furukawa Electric Co Ltd:The Superconducting wire rod, superconductor, and superconductive cable
JP2009048792A (en) * 2007-08-13 2009-03-05 Sumitomo Electric Ind Ltd Superconducting cable

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004510300A (en) * 2000-09-27 2004-04-02 アイジーシー−スーパーパワー、リミテッド ライアビリティー カンパニー Low AC loss superconducting cable
JP2004031128A (en) * 2002-06-26 2004-01-29 Sumitomo Electric Ind Ltd Superconducting thin film wiring material and manufacturing method of the same, and superconducting cable conductor
JP2007087734A (en) * 2005-09-21 2007-04-05 Sumitomo Electric Ind Ltd Manufacturing method of superconducting tape wire rod, superconducting tape wire rod, and superconducting apparatus
JP2007188844A (en) * 2006-01-16 2007-07-26 Sumitomo Electric Ind Ltd Superconducting cable
JP2008053215A (en) * 2006-07-24 2008-03-06 Furukawa Electric Co Ltd:The Superconducting wire rod, superconductor, and superconductive cable
JP2009048792A (en) * 2007-08-13 2009-03-05 Sumitomo Electric Ind Ltd Superconducting cable

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014141777A1 (en) 2013-03-15 2014-09-18 古河電気工業株式会社 Method for manufacturing superconducting conductor and superconducting conductor
KR20170132897A (en) 2013-03-15 2017-12-04 후루카와 덴키 고교 가부시키가이샤 Method for manufacturing superconducting conductor and superconducting conductor
US10096403B2 (en) 2013-03-15 2018-10-09 Furukawa Electric Co., Ltd. Method for producing superconductive conductor and superconductive conductor

Also Published As

Publication number Publication date
JP5041414B2 (en) 2012-10-03

Similar Documents

Publication Publication Date Title
KR101152467B1 (en) High-current, compact flexible conductors containing high temperature superconducting tapes
US8798696B2 (en) Superconducting wire with low AC losses
US20080210454A1 (en) Composite Superconductor Cable Produced by Transposing Planar Subconductors
JP3342739B2 (en) Oxide superconducting conductor, method of manufacturing the same, and oxide superconducting power cable having the same
JP4558517B2 (en) Superconducting coil
US20140302997A1 (en) Superconducting Power Cable
JP5192741B2 (en) Superconducting conductor and superconducting cable with superconducting conductor
KR20120089568A (en) Superconductor cable and ac power transmission cable
JP5115778B2 (en) Superconducting cable
JP5205558B2 (en) Superconducting wire, superconducting conductor and superconducting cable
JP4774494B2 (en) Superconducting coil
JP5397994B2 (en) Superconducting cable
JP5041414B2 (en) Superconducting wire and superconducting conductor
JP5604213B2 (en) Superconducting equipment
JP5385746B2 (en) Superconducting cable
JP2011014830A (en) Method of manufacturing superconductive coil body, and superconductive coil body
JP6163039B2 (en) Superconducting cable
JP2018186037A (en) Superconductive cable line
JP2008282566A (en) Bismuth oxide superconducting element wire, bismuth oxide superconductor, superconducting coil, and manufacturing method of them
JP2005235562A (en) Dislocation segment conductor
JP5771509B2 (en) Superconducting cable
JP6214196B2 (en) Oxide superconducting coil and superconducting equipment provided with the same
CN115605964A (en) Hybrid round superconducting wire
JP2022139398A (en) Rare earth-based oxide superconductive multi-core wire rod and method for producing the same
JP2004063225A (en) Dislocation superconductivity tape unit and superconductive cable

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100701

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120327

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120403

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20120423

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120601

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120619

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120704

R151 Written notification of patent or utility model registration

Ref document number: 5041414

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150720

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350