JP2007227771A - Superconductive coil device - Google Patents

Superconductive coil device Download PDF

Info

Publication number
JP2007227771A
JP2007227771A JP2006048627A JP2006048627A JP2007227771A JP 2007227771 A JP2007227771 A JP 2007227771A JP 2006048627 A JP2006048627 A JP 2006048627A JP 2006048627 A JP2006048627 A JP 2006048627A JP 2007227771 A JP2007227771 A JP 2007227771A
Authority
JP
Japan
Prior art keywords
superconducting
superconducting coil
coil device
yttrium
copper
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006048627A
Other languages
Japanese (ja)
Inventor
Kenji Tazaki
賢司 田崎
Michitaka Ono
通隆 小野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2006048627A priority Critical patent/JP2007227771A/en
Publication of JP2007227771A publication Critical patent/JP2007227771A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Abstract

<P>PROBLEM TO BE SOLVED: To provide a superconductive coil device which can take high current density using a high-temperature superconductive wire, and is little in hysteresis loss. <P>SOLUTION: The device comprises a superconductive coil device 11 formed by winding a high-temperature superconductive tape wire rod 1 characterized by W≥5d when thickness is set as the character (d), and width is set as W. A component perpendicular to the surface of the width W of field strength in a surface of width W of the high-temperature superconductive tape wire rod 1 is constituted to be half or less with respect to a parallel component. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、高温超電導線を巻回してコイルとし、このコイルに通電することにより磁場を発生させる超電導コイル装置に関する。   The present invention relates to a superconducting coil device that winds a high-temperature superconducting wire into a coil and generates a magnetic field by energizing the coil.

超電導コイルを構成する超電導線は超電導コイルが発生する磁場によって磁化される。超電導線の磁化は磁場変化に対してヒステリシスをもつため、磁場が変化すると超電導線は発熱する。この磁化のヒステリシスによる発熱はヒステリシス損失と呼ばれる。ヒステリシス損失を小さくする効果的な手段としては、従来の金属系超電導体の場合は、超電導フィラメント径を小さくし、フィラメントをツイストすることが一般的である。また、超電導フィラメント径を小さくする際に隣接フィラメント間隔まで小さくなり過ぎると、近接効果によりマトリクスを介してフィラメントが磁気結合してしまうため、フィラメント径を10μm程度よりも小さくする場合には、近接効果を生じにくいCuNi等の合金を高抵抗母材としてフィラメントの周囲に備えることが一般的である。   The superconducting wire constituting the superconducting coil is magnetized by the magnetic field generated by the superconducting coil. Since the magnetization of the superconducting wire has hysteresis with respect to the magnetic field change, the superconducting wire generates heat when the magnetic field changes. Heat generation due to this magnetization hysteresis is called hysteresis loss. As an effective means for reducing the hysteresis loss, in the case of a conventional metal superconductor, it is common to reduce the diameter of the superconducting filament and twist the filament. Further, when the superconducting filament diameter is reduced, if the distance between adjacent filaments becomes too small, the filament is magnetically coupled through the matrix due to the proximity effect. Therefore, when the filament diameter is made smaller than about 10 μm, the proximity effect is obtained. It is common to provide an alloy such as CuNi that does not easily cause cracks around the filament as a high resistance base material.

一方、高温超電導線材の場合は、フィラメント径を減じることは可能であるが、線材の製法上、フィラメントをツイストすること、および高抵抗母材をフィラメント周囲に配置することが技術的に困難であり、フィラメント間の磁気結合を十分に切ることが現状できていない。フィラメント間が磁気結合している状態であると、特にテープ線材の場合は、テープ面に垂直方向の磁場に伴い非常に大きなヒステリシス損失が生じる。この大きなヒステリシス損失が高温超電導コイルを実用化する上で大きな障害になっている場合が多い。特に、テープ線材幅が広いイットリウム系超電導線材の場合は、ヒステリシス損失の問題が顕著である。   On the other hand, in the case of high-temperature superconducting wire, it is possible to reduce the filament diameter, but it is technically difficult to twist the filament and to arrange the high-resistance base material around the filament because of the manufacturing method of the wire. However, the magnetic coupling between the filaments cannot be sufficiently cut. When the filaments are in a magnetically coupled state, particularly in the case of a tape wire, a very large hysteresis loss occurs with a magnetic field perpendicular to the tape surface. This large hysteresis loss often becomes a major obstacle to putting the high-temperature superconducting coil into practical use. In particular, in the case of an yttrium-based superconducting wire having a wide tape wire width, the problem of hysteresis loss is significant.

ヒステリシス損失を低減するための手段として、下記特許文献1には、コイルの軸に対するテープ面の角度を磁場ベクトルに合わせて巻線内で少しずつ変化させていく方法が開示されているが、この方法では、巻線が難しいこと、コイル電流密度が低くなるなどの問題がある。
特開2002−75727号公報
As means for reducing the hysteresis loss, the following Patent Document 1 discloses a method in which the angle of the tape surface with respect to the coil axis is gradually changed in the winding in accordance with the magnetic field vector. This method has problems such as difficulty in winding and lower coil current density.
JP 2002-75727 A

上記のように、従来の高温超電導コイルではヒステリシス損失が非常に大きいという問題があった。
そこで本発明は、高温超電導線を用いて高い電流密度をとることができ、ヒステリシス損失の少ない超電導コイル装置を提供することを目的とする。
As described above, the conventional high-temperature superconducting coil has a problem that hysteresis loss is very large.
Therefore, an object of the present invention is to provide a superconducting coil device that can take a high current density by using a high-temperature superconducting wire and has little hysteresis loss.

上記課題を解決するために、本発明の請求項1は、厚さをdとし幅をWとするときW≧5dである高温超電導テープ線材を巻回してなる超電導コイルを備え、前記高温超電導テープ線材の幅Wの面における磁場の強さの前記幅Wの面に垂直な成分が平行な成分の2分の1以下であるようにした構成とする。   In order to solve the above-mentioned problem, claim 1 of the present invention comprises a superconducting coil formed by winding a high-temperature superconducting tape wire W ≧ 5d when the thickness is d and the width is W, and the high-temperature superconducting tape is provided. The configuration is such that the component perpendicular to the plane of the width W of the magnetic field strength in the plane of the width W of the wire is one half or less of the parallel component.

本発明によれば、高温超電導線を用いて高い電流密度をとることができ、ヒステリシス損失の少ない超電導コイル装置を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, a high current density can be taken using a high temperature superconducting wire, and a superconducting coil apparatus with few hysteresis losses can be provided.

以下、本発明に係る超電導コイル装置の第1ないし第6の実施の形態を図面を参照して説明する。
(第1の実施の形態)
図1は、本発明の第1の実施の形態の超電導コイル装置を示す斜視図である。本実施の形態の超電導コイル装置は、厚さdと幅Wを持つテープ状の高温超電導テープ線材1をドーナツ状のコイル巻枠2にトロイダル形状に巻回した超電導コイル11を備えている。コイル巻枠2の表面に沿って高温超電導テープ線材1の幅Wの面がコイル巻枠2の表面に平行になる向きに巻かれている。高温超電導テープ線材1の幅Wは厚さdの5倍以上の長さを有している。図1では、高温超電導テープ線材1が疎巻きに巻かれている場合を示しているが、高温超電導テープ線材1が密巻に巻かれていてもよい。また、複数層に巻かれていてもよい。超電導コイル11にはエポキシ系樹脂が含浸され、真空容器内に配置されて伝導冷却で冷却される。
Hereinafter, first to sixth embodiments of a superconducting coil device according to the present invention will be described with reference to the drawings.
(First embodiment)
FIG. 1 is a perspective view showing a superconducting coil device according to a first embodiment of the present invention. The superconducting coil device of this embodiment includes a superconducting coil 11 in which a tape-shaped high-temperature superconducting tape wire 1 having a thickness d and a width W is wound around a donut-shaped coil winding frame 2 in a toroidal shape. A surface having a width W of the high-temperature superconducting tape wire 1 is wound in a direction parallel to the surface of the coil winding frame 2 along the surface of the coil winding frame 2. The width W of the high-temperature superconducting tape wire 1 has a length that is at least five times the thickness d. Although FIG. 1 shows a case where the high-temperature superconducting tape wire 1 is wound in a loose winding, the high-temperature superconducting tape wire 1 may be wound in a dense winding. Further, it may be wound in a plurality of layers. The superconducting coil 11 is impregnated with an epoxy resin, and is placed in a vacuum vessel and cooled by conduction cooling.

本実施の形態によれば、アスペクト比(W/d)が5以上の高温超電導テープ線材1をトロイダルコイル形状に巻線した超電導コイル11を備えることにより、ヒステリシス損失低減効果が高い。また、幅Wの線材面に垂直に印加される磁場成分が小さくなることから、臨界電流密度が高くなり、結果として少ない線材量で超電導コイルを製作することができる。ヒステリシス損失低減によってランニングコスト低減効果が得られ、臨界電流密度増加によってイニシャルコスト低減効果が得られる。   According to the present embodiment, by providing the superconducting coil 11 in which the high temperature superconducting tape wire 1 having an aspect ratio (W / d) of 5 or more is wound in a toroidal coil shape, the effect of reducing hysteresis loss is high. Further, since the magnetic field component applied perpendicularly to the surface of the wire W having a width W is reduced, the critical current density is increased, and as a result, a superconducting coil can be manufactured with a small amount of wire. A reduction in hysteresis loss can provide a running cost reduction effect, and an increase in critical current density can provide an initial cost reduction effect.

(第2の実施の形態)
図2は、本発明の第2の実施の形態の超電導コイル装置を示す断面図である。本実施の形態の超電導コイル装置は、第1の実施の形態で説明したテープ状の高温超電導テープ線材1を巻線した複数の超電導要素コイル3をトロイダル形状に配置した構成である。超電導要素コイル3のコイル形状は、円形、レーストラック形状、D型形状などどのような形状でもよい。また、要素コイル3はパンケーキ巻線構造でもレイヤー巻構造でもよい。超電導要素コイル3にはエポキシ系樹脂が含浸され、真空容器内に配置されて伝導冷却で冷却される。
(Second Embodiment)
FIG. 2 is a sectional view showing a superconducting coil device according to a second embodiment of the present invention. The superconducting coil device of the present embodiment has a configuration in which a plurality of superconducting element coils 3 wound with the tape-like high-temperature superconducting tape wire 1 described in the first embodiment are arranged in a toroidal shape. The coil shape of the superconducting element coil 3 may be any shape such as a circle, a racetrack shape, or a D shape. The element coil 3 may have a pancake winding structure or a layer winding structure. The superconducting element coil 3 is impregnated with an epoxy resin, and is placed in a vacuum vessel and cooled by conduction cooling.

ただし、要素コイル3の構造、数量、および配置は、超電導要素コイル3内における高温超電導テープ線材1の幅Wの線材面に垂直な方向の磁場成分最大値B⊥maxが、おなじ線材面に平行な方向の磁場成分最大値B//maxの半分以下であるように構成されている。磁場成分比を2倍以上と限定する理由は下記のとおりである。すなわち、図3に示す磁場および線材使用量の要素コイル数依存性のグラフに示されているように、磁場成分比が約2倍で線材使用量が極大値をとり、磁場成分比が大きくなるほど、線材使用量は急激に少なくなるからである。   However, the structure, quantity, and arrangement of the element coil 3 are such that the maximum magnetic field component value B⊥max in the direction perpendicular to the wire surface of the width W of the high-temperature superconducting tape wire 1 in the superconducting element coil 3 is parallel to the same wire surface. It is configured to be less than half of the maximum magnetic field component value B // max in any direction. The reason for limiting the magnetic field component ratio to twice or more is as follows. That is, as shown in the graph of the dependency of the magnetic field and the amount of wire used on the number of element coils shown in FIG. 3, the magnetic field component ratio is about twice, the wire material used has a maximum value, and the magnetic field component ratio increases. This is because the amount of wire used decreases rapidly.

(第3の実施の形態)
本実施の形態の超電導コイル装置は、図4に示すように、テープ状の高温超電導テープ線材1を複数枚束ねて構成された高温超電導バンドル導体4をドーナツ状のコイル巻枠2に巻回した構成である。高温超電導バンドル導体4は、高温超電導線1が複数枚どのように配置されてもよい。いくつかの配置例を図4(b)〜(e)に示す。
本実施の形態によれば、電流容量が大きくヒステリシス損失の少ない超電導コイル装置を提供することができる。
(Third embodiment)
In the superconducting coil device according to the present embodiment, as shown in FIG. 4, a high-temperature superconducting bundle conductor 4 configured by bundling a plurality of tape-shaped high-temperature superconducting tape wires 1 is wound around a donut-shaped coil winding frame 2. It is a configuration. The high temperature superconducting bundle conductor 4 may have a plurality of high temperature superconducting wires 1 arranged in any manner. Some arrangement examples are shown in FIGS.
According to the present embodiment, it is possible to provide a superconducting coil device having a large current capacity and a small hysteresis loss.

(第4の実施の形態)
本実施の形態の超電導コイル装置は、図5に示すように、テープ状の高温超電導テープ線材1を複数枚束ねて構成された高温超電導バンドル導体4を巻回した複数の超電導要素コイル5をトロイダル形状に配置した構成である。超電導要素コイル5のコイル形状は、円形、レーストラック形状、D型形状などどのような形状でもよい。また、超電導要素コイル5はパンケーキ巻線構造でもレイヤー巻構造でもよい。超電導要素コイル5の構造、数量、および配置は、超電導要素コイル5内における高温超電導テープ線材1の幅Wの線材面に垂直な方向の磁場成分最大値B⊥maxが、おなじく幅Wの線材面に平行な方向の磁場成分最大値B//maxの半分以下であるように構成されている。
本実施の形態によれば、電流容量が大きくヒステリシス損失の少ない大型の超電導コイル装置を提供することができる。
(Fourth embodiment)
As shown in FIG. 5, the superconducting coil device according to the present embodiment has a plurality of superconducting element coils 5 each wound with a high-temperature superconducting bundle conductor 4 formed by bundling a plurality of tape-shaped high-temperature superconducting tape wires 1. The configuration is arranged in a shape. The coil shape of the superconducting element coil 5 may be any shape such as a circle, a race track, or a D shape. The superconducting element coil 5 may have a pancake winding structure or a layer winding structure. The structure, quantity, and arrangement of the superconducting element coil 5 are such that the maximum magnetic field component value B⊥max in the direction perpendicular to the width W of the high-temperature superconducting tape wire 1 in the superconducting element coil 5 is the same. Is less than half of the maximum value B // max of the magnetic field component in the direction parallel to.
According to the present embodiment, it is possible to provide a large superconducting coil device having a large current capacity and a small hysteresis loss.

(第5の実施の形態)
図6は、本発明の超電導コイル装置に使用される高温超電導テープ線材の一例を示している。すなわち、高温超電導テープ線材1は、基板7と、基板7上に設けられたイットリウム系酸化物超電導体6と、導電性金属から成りイットリウム系酸化物超電導体6を保護する保護層8を備え、保護層8には、銅あるいは銅合金あるいは銅化合物で形成された銅テープ9が電気的に接触するように配置されている。銅テープ9の厚さdcuは、イットリウム系酸化物超電導体6の厚さdyの少なくとも20倍以上である。
(Fifth embodiment)
FIG. 6 shows an example of a high temperature superconducting tape wire used in the superconducting coil device of the present invention. That is, the high-temperature superconducting tape wire 1 includes a substrate 7, an yttrium oxide superconductor 6 provided on the substrate 7, and a protective layer 8 made of a conductive metal and protecting the yttrium oxide superconductor 6. A copper tape 9 formed of copper, a copper alloy, or a copper compound is disposed on the protective layer 8 so as to be in electrical contact. The thickness dcu of the copper tape 9 is at least 20 times the thickness dy of the yttrium-based oxide superconductor 6.

本実施の形態の効果を検証するために、dcu=10dy,20dy,50dyの超電導テープ線材1を準備し、冷凍機で試料を70Kに冷却した状態で臨界電流をそれぞれの試料に通電したことを想定した熱解析を実施した。その結果、図7のグラフに示すような試料両端電圧の時間変化が得られた。dcu=50dyでは試料の両端電圧にほとんど時間変化がなく、安定な通電が可能である。dcu=10dyでは試料の電圧変化が急激で、焼損に至る。dcu=20dyでは、電圧の上昇はみられるものの、電圧の時間変化は比較的緩やかであるので、電圧上昇を検知して、電流をゼロにすることができ、焼損には至らない。以上の結果から、超電導テープ線材1が焼損に至ることを防ぐためには、イットリウム系酸化物超電導体6の厚さの20倍以上の厚さの銅テープ9が必要であると結論付けられる。   In order to verify the effect of the present embodiment, a superconducting tape wire 1 with dcu = 10 dy, 20 dy, 50 dy was prepared, and a critical current was applied to each sample while the sample was cooled to 70 K with a refrigerator. An assumed thermal analysis was performed. As a result, a time change of the voltage across the sample as shown in the graph of FIG. 7 was obtained. When dcu = 50 dy, there is almost no time change in the voltage across the sample, and stable energization is possible. When dcu = 10 dy, the voltage change of the sample is abrupt and burns out. At dcu = 20 dy, although the voltage rises, the time change of the voltage is relatively gradual, so the voltage rise can be detected and the current can be made zero, and no burning occurs. From the above results, it can be concluded that the copper tape 9 having a thickness 20 times or more the thickness of the yttrium-based oxide superconductor 6 is necessary to prevent the superconducting tape wire 1 from burning.

(第6の実施の形態)
図8は、本発明の超電導コイル装置に使用される高温超電導テープ線材1の他の例を示している。すなわち、高温超電導テープ線材1は、基板7と、イットリウム系酸化物超電導体6と、安定化材10から構成されており、安定化材10は銀、銅、銀合金、銅合金、銀化合物、銅化合物のいずれかあるいは複数からなり、イットリウム系酸化物超電導体6と電気的に接触するように配置されている。安定化材10の厚さdsは、イットリウム系酸化物超電導体6の厚さdyの20倍以上である。
本実施の形態によれば、電流容量が大きくヒステリシス損失の少ない超電導コイル装置を提供することができる。
(Sixth embodiment)
FIG. 8 shows another example of the high-temperature superconducting tape wire 1 used in the superconducting coil device of the present invention. That is, the high-temperature superconducting tape wire 1 is composed of a substrate 7, an yttrium-based oxide superconductor 6 and a stabilizing material 10, and the stabilizing material 10 is made of silver, copper, a silver alloy, a copper alloy, a silver compound, It consists of one or a plurality of copper compounds, and is arranged so as to be in electrical contact with the yttrium oxide superconductor 6. The thickness ds of the stabilizing material 10 is 20 times or more the thickness dy of the yttrium-based oxide superconductor 6.
According to the present embodiment, it is possible to provide a superconducting coil device having a large current capacity and a small hysteresis loss.

本発明の第1の実施の形態を示し、(a)は超電導コイル装置の斜視図、(b)は高温超電導テープ線材の斜視断面図。BRIEF DESCRIPTION OF THE DRAWINGS The 1st Embodiment of this invention is shown, (a) is a perspective view of a superconducting coil apparatus, (b) is a perspective sectional view of a high-temperature superconducting tape wire. 本発明の第2の実施の形態の超電導コイル装置を示す断面図。Sectional drawing which shows the superconducting coil apparatus of the 2nd Embodiment of this invention. 本発明の第2の実施の形態の超電導コイル装置の作用および効果を説明するグラフ。The graph explaining the effect | action and effect of the superconducting coil apparatus of the 2nd Embodiment of this invention. 本発明の第3の実施の形態を示し、(a)は超電導コイル装置の斜視図、(b)〜(e)はそれぞれ異なる高温超電導バンドル導体の実施例を示す斜視断面図。The 3rd Embodiment of this invention is shown, (a) is a perspective view of a superconducting coil apparatus, (b)-(e) is a perspective sectional view which shows the Example of a different high temperature superconducting bundle conductor. 本発明の第4の実施の形態を示し、(a)は超電導コイル装置の斜視図、(b)は高温超電導バンドル導体の斜視断面図。The 4th Embodiment of this invention is shown, (a) is a perspective view of a superconducting coil apparatus, (b) is a perspective sectional view of a high-temperature superconducting bundle conductor. 本発明の第5の実施の形態の超電導コイル装置を構成する高温超電導テープ線材を示す斜視断面図。The perspective sectional view which shows the high temperature superconducting tape wire which comprises the superconducting coil apparatus of the 5th Embodiment of this invention. 本発明の第5の実施の形態の超電導コイル装置を構成する高温超電導テープ線材の作用効果を説明するグラフ。The graph explaining the effect of the high temperature superconducting tape wire which comprises the superconducting coil apparatus of the 5th Embodiment of this invention. 本発明の第6の実施の形態の超電導コイル装置を構成する高温超電導テープ線材を示す斜視断面図。The perspective sectional view which shows the high-temperature superconducting tape wire which comprises the superconducting coil apparatus of the 6th Embodiment of this invention.

符号の説明Explanation of symbols

1…高温超電導テープ線材、2…コイル巻枠、3…超電導要素コイル、4…高温超電導バンドル導体、5…高温超電導バンドル導体を巻回した超電導要素コイル、6…イットリウム系酸化物超電導体、7…基板、8…保護層、9…銅テープ、10…安定化材、11…超電導コイル。

DESCRIPTION OF SYMBOLS 1 ... High temperature superconducting tape wire, 2 ... Coil winding frame, 3 ... Superconducting element coil, 4 ... High temperature superconducting bundle conductor, 5 ... Superconducting element coil which wound the high temperature superconducting bundle conductor, 6 ... Yttrium-based oxide superconductor, 7 ... substrate, 8 ... protective layer, 9 ... copper tape, 10 ... stabilizer, 11 ... superconducting coil.

Claims (8)

厚さをdとし幅をWとするときW≧5dである高温超電導テープ線材を巻回してなる超電導コイルを備え、前記高温超電導テープ線材の幅Wの面における磁場の強さの前記幅Wの面に垂直な成分が平行な成分の2分の1以下であるようにしたことを特徴とする超電導コイル装置。   A superconducting coil formed by winding a high-temperature superconducting tape wire with W ≧ 5d when the thickness is d and the width is W, and the magnetic field strength of the width W of the high-temperature superconducting tape wire is A superconducting coil device characterized in that the component perpendicular to the surface is less than or equal to one-half of the component parallel to the surface. 前記超電導コイルは円環状の巻枠上にトロイダル状に巻回されていることを特徴とする請求項1記載の超電導コイル装置。   2. The superconducting coil device according to claim 1, wherein the superconducting coil is wound in a toroidal shape on an annular winding frame. 前記高温超電導テープ線材は複数枚並列に形成されていることを特徴とする請求項1記載の超電導コイル装置。   2. The superconducting coil device according to claim 1, wherein a plurality of the high-temperature superconducting tape wires are formed in parallel. 前記高温超電導テープ線材の超電導部分はイットリウム系酸化物超電導体であることを特徴とする請求項1記載の超電導コイル装置。   The superconducting coil device according to claim 1, wherein the superconducting portion of the high-temperature superconducting tape wire is an yttrium oxide superconductor. 前記イットリウム系酸化物超電導体に接触して銅もしくは銅合金もしくは銅化合物からなる銅テープが設けられ、前記イットリウム系酸化物超電導体の厚さをtとしたとき前記銅テープの厚さが20t以上であることを特徴とする請求項4記載の超電導コイル装置。   A copper tape made of copper, a copper alloy, or a copper compound is provided in contact with the yttrium-based oxide superconductor, and the thickness of the yttrium-based oxide superconductor is 20 t or more when the thickness of the yttrium-based oxide superconductor is t. The superconducting coil device according to claim 4, wherein: 前記イットリウム系酸化物超電導体に接触して金、銀、銅、金合金、銀合金、銅合金、金化合物、銀化合物、銅化合物の少なくともいずれか一つからなる安定化材が設けられ、前記イットリウム系酸化物超電導体の厚さをtとしたとき前記安定化材の厚さが20t以上であることを特徴とする請求項4記載の超電導コイル装置。   A stabilizing material comprising at least one of gold, silver, copper, a gold alloy, a silver alloy, a copper alloy, a gold compound, a silver compound, and a copper compound is provided in contact with the yttrium-based oxide superconductor, 5. The superconducting coil device according to claim 4, wherein when the thickness of the yttrium-based oxide superconductor is t, the thickness of the stabilizing material is 20 t or more. 前記超電導コイルがエポキシ系樹脂で含浸されていることを特徴とする請求項1記載の超電導コイル装置。   The superconducting coil device according to claim 1, wherein the superconducting coil is impregnated with an epoxy resin. 前記超電導コイルが真空容器内に配置され伝導冷却で冷却されていることを特徴とする請求項7記載の超電導コイル装置。

8. The superconducting coil device according to claim 7, wherein the superconducting coil is disposed in a vacuum vessel and cooled by conduction cooling.

JP2006048627A 2006-02-24 2006-02-24 Superconductive coil device Pending JP2007227771A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006048627A JP2007227771A (en) 2006-02-24 2006-02-24 Superconductive coil device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006048627A JP2007227771A (en) 2006-02-24 2006-02-24 Superconductive coil device

Publications (1)

Publication Number Publication Date
JP2007227771A true JP2007227771A (en) 2007-09-06

Family

ID=38549257

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006048627A Pending JP2007227771A (en) 2006-02-24 2006-02-24 Superconductive coil device

Country Status (1)

Country Link
JP (1) JP2007227771A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009238888A (en) * 2008-03-26 2009-10-15 Toshiba Corp Superconducting coil apparatus
JP2014513913A (en) * 2011-05-17 2014-06-05 ヘロン エナジー ピーティーイー リミテッド Low speed electromagnetic turbine
KR101502234B1 (en) * 2013-10-08 2015-03-12 창원대학교 산학협력단 Toroid-type HTS DC Reactor using D-shape superconducting coil
CN107799264A (en) * 2016-09-07 2018-03-13 中国电力科学研究院 A kind of fixed mount of high-temperature superconducting magnet
US20180096785A1 (en) * 2016-10-05 2018-04-05 The Boeing Company Superconducting air core inductor systems and methods

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01189813A (en) * 1988-01-22 1989-07-31 Hokuriku Electric Power Co Inc:The Oxide superconductive wire material
JPH01246801A (en) * 1988-03-19 1989-10-02 Internatl Business Mach Corp <Ibm> Superconducting magnet
JPH0773758A (en) * 1993-09-06 1995-03-17 Fujikura Ltd Structure of oxide superconductor with stabilized metallic layer
JPH07335051A (en) * 1994-06-02 1995-12-22 Chodendo Hatsuden Kanren Kiki Zairyo Gijutsu Kenkyu Kumiai Oxide superconductive tape with stabilizing layer and manufacture thereof
JP2000197263A (en) * 1998-12-25 2000-07-14 Toshiba Corp Superconductive coil device for current limiting element
JP2001244108A (en) * 2000-02-29 2001-09-07 Fuji Electric Co Ltd Superconducting coil of induction apparatus
JP2003505848A (en) * 1999-07-23 2003-02-12 アメリカン・スーパーコンダクター・コーポレーション Encapsulated ceramic superconductor
JP2004510346A (en) * 2000-09-27 2004-04-02 アイジーシー−スーパーパワー、リミテッド ライアビリティー カンパニー Low AC loss superconducting coil
JP2004303694A (en) * 2003-04-01 2004-10-28 Fujikura Ltd Transposition segment, method and device for manufacturing transposition segment, and superconductive application apparatus
JP2004342972A (en) * 2003-05-19 2004-12-02 Kyushu Electric Power Co Inc Superconductive coil
WO2005008687A1 (en) * 2003-07-17 2005-01-27 Fuji Electric Systems Co., Ltd. Superconducting wire and superconducting coil employing it

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01189813A (en) * 1988-01-22 1989-07-31 Hokuriku Electric Power Co Inc:The Oxide superconductive wire material
JPH01246801A (en) * 1988-03-19 1989-10-02 Internatl Business Mach Corp <Ibm> Superconducting magnet
JPH0773758A (en) * 1993-09-06 1995-03-17 Fujikura Ltd Structure of oxide superconductor with stabilized metallic layer
JPH07335051A (en) * 1994-06-02 1995-12-22 Chodendo Hatsuden Kanren Kiki Zairyo Gijutsu Kenkyu Kumiai Oxide superconductive tape with stabilizing layer and manufacture thereof
JP2000197263A (en) * 1998-12-25 2000-07-14 Toshiba Corp Superconductive coil device for current limiting element
JP2003505848A (en) * 1999-07-23 2003-02-12 アメリカン・スーパーコンダクター・コーポレーション Encapsulated ceramic superconductor
JP2001244108A (en) * 2000-02-29 2001-09-07 Fuji Electric Co Ltd Superconducting coil of induction apparatus
JP2004510346A (en) * 2000-09-27 2004-04-02 アイジーシー−スーパーパワー、リミテッド ライアビリティー カンパニー Low AC loss superconducting coil
JP2004303694A (en) * 2003-04-01 2004-10-28 Fujikura Ltd Transposition segment, method and device for manufacturing transposition segment, and superconductive application apparatus
JP2004342972A (en) * 2003-05-19 2004-12-02 Kyushu Electric Power Co Inc Superconductive coil
WO2005008687A1 (en) * 2003-07-17 2005-01-27 Fuji Electric Systems Co., Ltd. Superconducting wire and superconducting coil employing it

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009238888A (en) * 2008-03-26 2009-10-15 Toshiba Corp Superconducting coil apparatus
JP2014513913A (en) * 2011-05-17 2014-06-05 ヘロン エナジー ピーティーイー リミテッド Low speed electromagnetic turbine
US9762094B2 (en) 2011-05-17 2017-09-12 Heron Energy Pte Ltd Low speed electromagnetic turbine
KR101502234B1 (en) * 2013-10-08 2015-03-12 창원대학교 산학협력단 Toroid-type HTS DC Reactor using D-shape superconducting coil
CN107799264A (en) * 2016-09-07 2018-03-13 中国电力科学研究院 A kind of fixed mount of high-temperature superconducting magnet
CN107799264B (en) * 2016-09-07 2021-04-30 中国电力科学研究院 Fixing frame of high-temperature superconducting magnet
US20180096785A1 (en) * 2016-10-05 2018-04-05 The Boeing Company Superconducting air core inductor systems and methods
US10573458B2 (en) * 2016-10-05 2020-02-25 The Boeing Company Superconducting air core inductor systems and methods

Similar Documents

Publication Publication Date Title
JP3215697B2 (en) Superconducting coil that limits fault current
JP5192741B2 (en) Superconducting conductor and superconducting cable with superconducting conductor
WO2017061563A1 (en) Superconducting coil
JP2017533579A (en) Metal assembly including superconductor
JP2007227771A (en) Superconductive coil device
JP2923988B2 (en) Superconducting conductor
US6153825A (en) Superconducting current lead
JP5022279B2 (en) Oxide superconducting current lead
KR20100015226A (en) Method of joining ybco-cc superconducting wire by the melting diffusion of two superconductor layers facing each other
JP2015028912A (en) Superconductive wire rod and superconductive coil using the same
JP6895897B2 (en) Superconducting wire and superconducting coil
Iwai et al. Development of large-scale racetrack coil wound with REBCO-coated conductors
JP2013246881A (en) Insulation coating structure of superconducting wire rod
KR102473163B1 (en) Low Tc Superconductive Wire With Low Stabilzer Ratio And Superconductive Coil Comprising The Same
JP2010040962A (en) Superconducting coil
JP5127527B2 (en) Superconducting coil device
JP2015220417A (en) Electrode structure of superconducting coil
JP5041414B2 (en) Superconducting wire and superconducting conductor
JP3120626B2 (en) Oxide superconducting conductor
JPS5923406B2 (en) superconducting wire
JPH0652731A (en) Superconductive equipment and manufacture thereof
KR100722367B1 (en) Superconducting power cable and a manufacturing method thereof
JP5115245B2 (en) Superconducting current lead
JPH05335143A (en) Oxide superconducting magnet structure
JP2009111270A (en) Superconducting coil, and superconducting device with the superconducting coil

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101005

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101203

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110809