JP2013246881A - Insulation coating structure of superconducting wire rod - Google Patents

Insulation coating structure of superconducting wire rod Download PDF

Info

Publication number
JP2013246881A
JP2013246881A JP2012117340A JP2012117340A JP2013246881A JP 2013246881 A JP2013246881 A JP 2013246881A JP 2012117340 A JP2012117340 A JP 2012117340A JP 2012117340 A JP2012117340 A JP 2012117340A JP 2013246881 A JP2013246881 A JP 2013246881A
Authority
JP
Japan
Prior art keywords
superconducting wire
layer
superconducting
insulation coating
coating layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012117340A
Other languages
Japanese (ja)
Inventor
Tomonori Watabe
智則 渡部
Shigeo Nagaya
重夫 長屋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chubu Electric Power Co Inc
Original Assignee
Chubu Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chubu Electric Power Co Inc filed Critical Chubu Electric Power Co Inc
Priority to JP2012117340A priority Critical patent/JP2013246881A/en
Publication of JP2013246881A publication Critical patent/JP2013246881A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Abstract

PROBLEM TO BE SOLVED: To provide an insulation coating structure of a superconducting wire rod in which interlayer delamination of the superconducting wire rod can be suppressed, and excellent superconducting characteristics can be maintained.SOLUTION: A tape-like superconducting wire rod 11 is constituted by forming a superconductive layer 14 of a rare-earth-based oxide superconductor on a substrate 12 with an intermediate layer 13 interposed therebetween, forming stabilization layers 15, 16 on the superconductive layer 14, and then forming an insulation coating layer 17 on the outer periphery thereof. An insulation coating layer 17a at the end of the superconducting wire rod 11 in the width direction has a thickness D thicker than the thickness d of the insulation coating layer 17 in the intermediate part. Preferably, the thickness D of the insulation coating layer 17a is 15-35% thicker than the thickness d of the insulation coating layer 17 in the intermediate part. Furthermore, the thickness D of the insulation coating layer 17a is preferably 15-100 μm.

Description

本発明は、例えば金属基板上に希土類系酸化物超電導体による超電導層が形成され、その上に絶縁被覆層が形成されたテープ状の超電導線材について幅方向の端部における超電導層の剥離を抑制して超電導特性を維持することができる超電導線材の絶縁被覆構造に関する。   In the present invention, for example, a superconducting layer made of a rare earth-based oxide superconductor is formed on a metal substrate, and an insulating coating layer is formed on the superconducting layer, so that peeling of the superconducting layer at the end in the width direction is suppressed. The present invention relates to a superconducting wire insulation coating structure capable of maintaining superconducting characteristics.

この種の希土類系酸化物超電導体を用いた超電導線材はテープ形状を有していることから、その超電導線材を巻回して超電導コイル(パンケーキコイル)を形成するときに超電導線材の幅方向の端部に曲げ応力が作用して剥離の起点となり、超電導層の剥離が起きやすい。さらに、超電導線材のテープを細線化するために、その長手方向に切断加工したとき、その切断加工による断面が剥離の起点となって超電導層の剥離が進行しやすい。   Since a superconducting wire using this kind of rare earth oxide superconductor has a tape shape, when the superconducting wire is wound to form a superconducting coil (pancake coil), the width of the superconducting wire is reduced. Bending stress acts on the end portion to become a starting point of peeling, and the superconducting layer is easily peeled off. Furthermore, when the tape of the superconducting wire is thinned in order to cut it in the longitudinal direction, the superconducting layer is likely to be peeled off with the cross section obtained by the cutting as the starting point of the peeling.

この種の絶縁被覆酸化物超電導線材が特許文献1に開示されている。すなわち、この超電導線材は、絶縁材層が全周面に略等厚に被覆形成され、その絶縁材層の外表面の一部に離形材層が形成されている。そして、当該超電導線材を巻回して超電導コイルを形成し、冷却した際に離形材層が剥離し、超電導線材には剥離力が働かず、超電導線材が劣化し難いようになっている。   This kind of insulating coating oxide superconducting wire is disclosed in Patent Document 1. That is, in this superconducting wire, an insulating material layer is formed so as to cover the entire circumferential surface with a substantially equal thickness, and a parting material layer is formed on a part of the outer surface of the insulating material layer. Then, the superconducting wire is wound to form a superconducting coil, and when it is cooled, the release material layer is peeled off, and the superconducting wire does not have a peeling force, so that the superconducting wire is hardly deteriorated.

特開2011−198469号公報JP 2011-198469 A

前述した特許文献1に記載されている従来構成の超電導線材において、離形材層が具体的には超電導線材の一面にのみ設けられ、その他の部分には設けられていない。超電導線材より形成した超電導コイルの冷却時や使用時、或いは超電導コイルの製造時には、超電導線材の幅方向の端部に曲げ応力等の応力が集中しやすい。このため、超電導線材の幅方向の端部が超電導線材の層間剥離の起点となり、その層間剥離が内部へと拡大し、超電導層に剥離が生ずる。従って、超電導線材はその超電導特性を維持することができないという問題があった。   In the superconducting wire having the conventional configuration described in Patent Document 1 described above, the release material layer is specifically provided only on one surface of the superconducting wire, and is not provided in other portions. When a superconducting coil formed from a superconducting wire is cooled or used, or when a superconducting coil is manufactured, stress such as bending stress tends to concentrate on the end portion in the width direction of the superconducting wire. For this reason, the end portion in the width direction of the superconducting wire becomes a starting point of delamination of the superconducting wire, the delamination expands inside, and delamination occurs in the superconducting layer. Therefore, there is a problem that the superconducting wire cannot maintain its superconducting characteristics.

そこで、本発明の目的とするところは、超電導線材の層間剥離を抑制することができ、超電導特性を良好に維持することができる超電導線材の絶縁被覆構造を提供することにある。   Accordingly, an object of the present invention is to provide an insulation coating structure for a superconducting wire that can suppress delamination of the superconducting wire and maintain good superconducting properties.

上記の目的を達成するために、請求項1に記載の発明の超電導線材の絶縁被覆構造は、基板上に中間層を介して希土類系酸化物超電導体の超電導層が形成され、その超電導層上に安定化層が形成されるとともに、それらの外周部に絶縁被覆層が形成されたテープ状をなす超電導線材の絶縁被覆構造であって、前記超電導線材の幅方向の端部における絶縁被覆層の厚さを中間部における絶縁被覆層の厚さより厚くなるように構成したことを特徴とする。   In order to achieve the above object, the superconducting wire insulation coating structure according to the first aspect of the present invention has a superconducting layer of a rare earth oxide superconductor formed on a substrate via an intermediate layer, on the superconducting layer. A superconducting wire-like insulating coating structure in which a stabilizing layer is formed and an insulating coating layer is formed on the outer periphery thereof, and the insulating coating layer at the end in the width direction of the superconducting wire The structure is characterized in that the thickness is larger than the thickness of the insulating coating layer in the intermediate portion.

請求項2に記載の発明の超電導線材の絶縁被覆構造は、請求項1に係る発明において、前記超電導線材の幅方向の端部における絶縁被覆層の厚さは、中間部における絶縁被覆層の厚さより15〜35%厚く形成されていることを特徴とする。   The superconducting wire insulation coating structure according to claim 2 is the invention according to claim 1, wherein the thickness of the insulation coating layer at the end in the width direction of the superconducting wire is the thickness of the insulation coating layer at the intermediate portion. It is characterized by being 15-35% thicker than that.

請求項3に記載の発明の超電導線材の絶縁被覆構造は、請求項1又は請求項2に係る発明において、前記超電導線材の幅方向の端部における絶縁被覆層の厚さは、15〜100μmであることを特徴とする。   The insulation coating structure of the superconducting wire according to claim 3 is the invention according to claim 1 or 2, wherein the thickness of the insulation coating layer at the end portion in the width direction of the superconducting wire is 15 to 100 μm. It is characterized by being.

請求項4に記載の発明の超電導線材の絶縁被覆構造は、請求項1から請求項3のいずれか一項に係る発明において、前記超電導線材の幅方向の端部における絶縁被覆層の外面を曲面で構成したことを特徴とする。   According to a fourth aspect of the present invention, there is provided the insulating coating structure for a superconducting wire according to any one of the first to third aspects, wherein the outer surface of the insulating coating layer at the end in the width direction of the superconducting wire is curved. It is characterized by comprising.

請求項5に記載の発明の超電導線材の絶縁被覆構造は、請求項4に係る発明において、前記超電導線材の幅方向の端部における絶縁被覆層の外面は断面円弧状に形成されていることを特徴とする。   The superconducting wire insulating coating structure according to claim 5 is the invention according to claim 4, wherein the outer surface of the insulating coating layer at the end in the width direction of the superconducting wire is formed in an arcuate cross section. Features.

請求項6に記載の発明の超電導線材の絶縁被覆構造は、請求項1から請求項5のいずれか一項に係る発明において、前記絶縁被覆層は、ポリイミド樹脂を主成分とする合成樹脂により形成されていることを特徴とする。   The superconducting wire insulating coating structure according to claim 6 is the invention according to any one of claims 1 to 5, wherein the insulating coating layer is formed of a synthetic resin mainly composed of a polyimide resin. It is characterized by being.

本発明によれば、次のような効果を発揮することができる。
本発明の超電導線材の絶縁被覆構造では、超電導線材の幅方向の端部における絶縁被覆層の厚さが中間部における絶縁被覆層の厚さより厚くなるように構成されている。このため、超電導線材をコイル状に形成するときの曲げ応力や超電導線材のコイルを冷却したときの応力が超電導線材に作用したとき、超電導線材の幅方向端部の肉厚に形成された絶縁被覆層がその応力を緩衝して超電導線材が元の形状を保持しやすく、幅方向端部において超電導線材の層間剥離の起点の発生が抑えられる。
According to the present invention, the following effects can be exhibited.
The insulation coating structure of the superconducting wire of the present invention is configured such that the thickness of the insulation coating layer at the end in the width direction of the superconducting wire is greater than the thickness of the insulation coating layer at the intermediate portion. For this reason, when the bending stress when forming the superconducting wire into a coil shape or the stress when cooling the coil of the superconducting wire acts on the superconducting wire, the insulation coating formed on the thickness of the end portion in the width direction of the superconducting wire The layer absorbs the stress and the superconducting wire easily retains its original shape, and the occurrence of delamination of the superconducting wire at the end in the width direction is suppressed.

従って、本発明の超電導線材の絶縁被覆構造によれば、超電導線材の層間剥離を抑制することができ、超電導特性を良好に維持することができるという効果を奏する。   Therefore, according to the insulation coating structure of the superconducting wire of the present invention, it is possible to suppress delamination of the superconducting wire and to maintain the superconducting characteristics well.

本発明を具体化した実施形態の超電導線材を示す断面図であって、(a)は第1実施形態の超電導線材を示す断面図、(b)は第2実施形態の超電導線材を示す断面図。It is sectional drawing which shows the superconducting wire of embodiment which actualized this invention, Comprising: (a) is sectional drawing which shows the superconducting wire of 1st Embodiment, (b) is sectional drawing which shows the superconducting wire of 2nd Embodiment. . 第3実施形態の超電導線材を示す断面図。Sectional drawing which shows the superconducting wire of 3rd Embodiment. (a)は超電導線材による超電導コイルを示す平面図、(b)はその超電導コイルを示す断面図。(A) is a top view which shows the superconducting coil by a superconducting wire, (b) is sectional drawing which shows the superconducting coil. 第1実施形態の超電導コイルの超電導特性を示し、電流と電圧との関係を示すグラフ。The graph which shows the superconducting characteristic of the superconducting coil of 1st Embodiment, and shows the relationship between an electric current and a voltage. 第2実施形態の超電導コイルの超電導特性を示し、電流と電圧との関係を示すグラフ。The graph which shows the superconducting characteristic of the superconducting coil of 2nd Embodiment, and shows the relationship between an electric current and a voltage. 第3実施形態の超電導コイルの超電導特性を示し、電流と電圧との関係を示すグラフ。The graph which shows the superconducting characteristic of the superconducting coil of 3rd Embodiment, and shows the relationship between an electric current and a voltage. (a)及び(b)は、本発明の超電導線材における絶縁被覆層の別例を示す断面図。(A) And (b) is sectional drawing which shows another example of the insulation coating layer in the superconducting wire of this invention.

(第1実施形態)
以下、本発明の超電導線材の絶縁被覆構造を具体化した第1実施形態に関し、図面に基づいて詳細に説明する。
(First embodiment)
Hereinafter, a first embodiment of the superconducting wire insulation coating structure of the present invention will be described in detail with reference to the drawings.

図1(a)に示すように、第1実施形態の超電導線材11はテープ形状をなし、基板12上に中間層13を介して超電導層14が形成され、その超電導層14上に第1安定化層15及び第2安定化層16が被覆され、それらの各層を覆うように絶縁被覆層17が被覆されて構成されている。前記基板12は、ニッケル合金(ハステロイ)、銀、銀合金等の金属により、例えば厚さ100μm、幅10mmに形成されている。なお、ハステロイ(登録商標)は、ニッケルを主成分とし、クロム、モリブデン等を含む合金で、耐熱性、機械的強度等が良好である。中間層13は、ガドリニウム・ジルコニウム酸化物(Gd・Zr酸化物)、酸化マグネシウム(MgO)、イットリウム安定化ジルコニウム(YSZ)、バリウム・ジルコニウム酸化物(Ba・Zr酸化物)、酸化セリウム(CeO)等の化合物により、例えば厚さ500nm、幅10mmに形成されている。 As shown in FIG. 1A, the superconducting wire 11 of the first embodiment has a tape shape, and a superconducting layer 14 is formed on a substrate 12 via an intermediate layer 13, and the first stable on the superconducting layer 14 is formed. The insulating layer 15 and the second stabilizing layer 16 are covered, and the insulating covering layer 17 is covered so as to cover these layers. The substrate 12 is made of a metal such as nickel alloy (Hastelloy), silver, or silver alloy, and has a thickness of 100 μm and a width of 10 mm, for example. Note that Hastelloy (registered trademark) is an alloy containing nickel as a main component and containing chromium, molybdenum, and the like, and has good heat resistance, mechanical strength, and the like. The intermediate layer 13 includes gadolinium / zirconium oxide (Gd / Zr oxide), magnesium oxide (MgO), yttrium-stabilized zirconium (YSZ), barium / zirconium oxide (Ba / Zr oxide), cerium oxide (CeO 2 ). ) And the like, for example, a thickness of 500 nm and a width of 10 mm.

超電導層14は、希土類系酸化物超電導体のCVD法(化学蒸着法)により、例えば厚さ約1μm、幅10mmに形成されている。希土類元素としては、ランタン(La)、ネオジム(Nd)、サマリウム(Sm)、ユウロピウム(Eu)、ガドリニウム(Gd)、ジスプロシウム(Dy)、ホルミウム(Ho)、エルビウム(Er)、イットリウム(Y)、イッテルビウム(Yb)等が挙げられる。希土類系酸化物としては、RE・Ba・Cu・O等が挙げられる。但し、REは希土類元素を表す。この超電導層14として具体的には、イットリウム・バリウム・銅酸化物(Y・Ba・Cu酸化物)、ランタン・バリウム・銅酸化物(La・Ba・Cu酸化物)等が挙げられる。   The superconducting layer 14 is formed, for example, to a thickness of about 1 μm and a width of 10 mm by a rare earth oxide superconductor CVD method (chemical vapor deposition method). As rare earth elements, lanthanum (La), neodymium (Nd), samarium (Sm), europium (Eu), gadolinium (Gd), dysprosium (Dy), holmium (Ho), erbium (Er), yttrium (Y), And ytterbium (Yb). Examples of rare earth oxides include RE, Ba, Cu, and O. However, RE represents a rare earth element. Specific examples of the superconducting layer 14 include yttrium / barium / copper oxide (Y / Ba / Cu oxide) and lanthanum / barium / copper oxide (La / Ba / Cu oxide).

第1安定化層15は、銀等の金属のスパッタリング等により、例えば厚さ約15μm、幅10mmに形成されている。第2安定化層16は、例えば厚さ100μmの銅箔が第1安定化層15に貼り合せて形成されている。   The first stabilization layer 15 is formed to have a thickness of about 15 μm and a width of 10 mm, for example, by sputtering metal such as silver. The second stabilization layer 16 is formed, for example, by bonding a copper foil having a thickness of 100 μm to the first stabilization layer 15.

絶縁被覆層17は、柔軟性及び電気絶縁性を有する合成樹脂により前記各層の外周部を覆うように塗布法又は電着法により形成されている。超電導線材11の幅方向の両端部の絶縁被覆層17aの厚さDは、中間部における絶縁被覆層17の厚さdより厚くなるように構成されている。さらに、超電導線材11の幅方向の端部における絶縁被覆層17aの外面は、断面円弧状をなす曲面17bで構成されている。   The insulating coating layer 17 is formed by a coating method or an electrodeposition method so as to cover the outer peripheral portion of each layer with a synthetic resin having flexibility and electrical insulation. The thickness D of the insulating coating layer 17a at both ends in the width direction of the superconducting wire 11 is configured to be thicker than the thickness d of the insulating coating layer 17 at the intermediate portion. Furthermore, the outer surface of the insulating coating layer 17a at the end in the width direction of the superconducting wire 11 is formed by a curved surface 17b having an arcuate cross section.

前記絶縁被覆層17、17aを形成する合成樹脂としては、ポリイミド樹脂を主成分とする合成樹脂が好ましく、ポリイミド樹脂単独、ポリイミド樹脂を主成分とし、エポキシ樹脂を含む合成樹脂等を用いることができる。このような柔軟性及び電気絶縁性を有する合成樹脂を用いることにより、超電導線材11の幅方向端部で受ける曲げ応力等の応力を受け止め、形状を保持できるとともに、電界の集中を緩和することができる。   The synthetic resin for forming the insulating coating layers 17 and 17a is preferably a synthetic resin containing a polyimide resin as a main component, and a polyimide resin alone, a synthetic resin containing a polyimide resin as a main component and containing an epoxy resin, or the like can be used. . By using a synthetic resin having such flexibility and electrical insulation, stress such as bending stress received at the end in the width direction of the superconducting wire 11 can be received, the shape can be maintained, and electric field concentration can be reduced. it can.

前記超電導線材11の幅方向の端部における絶縁被覆層17aの厚さDは、中間部における絶縁被覆層17の厚さdより15〜35%厚く形成されることが好ましい。幅方向端部における絶縁被覆層17aの厚さDが中間部における絶縁被覆層17の厚さdより15%未満である場合には、幅方向端部における絶縁被覆層の厚さが不足して、曲げ応力等の応力による超電導線材11の層間剥離を抑制することが難しくなる。その一方、35%を超える場合には、曲げ応力等の応力による超電導線材11の層間剥離をそれ以上抑制することができず、かえって絶縁被覆層17aを均一に形成することが難しくなる。   The thickness D of the insulating coating layer 17a at the end portion in the width direction of the superconducting wire 11 is preferably formed to be 15 to 35% thicker than the thickness d of the insulating coating layer 17 at the intermediate portion. When the thickness D of the insulating coating layer 17a at the width direction end is less than 15% of the thickness d of the insulating coating layer 17 at the intermediate portion, the thickness of the insulating coating layer at the width direction end is insufficient. It becomes difficult to suppress delamination of the superconducting wire 11 due to stress such as bending stress. On the other hand, if it exceeds 35%, delamination of the superconducting wire 11 due to stress such as bending stress cannot be further suppressed, and it becomes difficult to form the insulating coating layer 17a uniformly.

また、超電導線材11の幅方向の端部における絶縁被覆層17aの厚さDは、15〜100μmであることが好ましい。この絶縁被覆層17aの厚さDが15μmを下回る場合、絶縁被覆層17aの厚さDが不十分であり、応力による超電導線材11の層間剥離を十分に抑制することが困難になる。一方、100μmを上回る場合、幅方向端部の絶縁被覆層17aを厚くする効果がそれ以上望めず、かえって絶縁被覆層17aの均一な形成が困難になる。   Moreover, it is preferable that the thickness D of the insulation coating layer 17a in the edge part of the width direction of the superconducting wire 11 is 15-100 micrometers. When the thickness D of the insulating coating layer 17a is less than 15 μm, the thickness D of the insulating coating layer 17a is insufficient, and it becomes difficult to sufficiently suppress delamination of the superconducting wire 11 due to stress. On the other hand, if the thickness exceeds 100 μm, the effect of increasing the thickness of the insulating coating layer 17a at the end in the width direction cannot be expected any more, and it becomes difficult to form the insulating coating layer 17a uniformly.

図3(a)、(b)に示すように、テープ状の超電導線材11を円筒状に巻回することにより超電導コイル(パンケーキコイル)20が形成され、超電導線材11の始端と終端にはそれぞれ図示しない電極が接続される。この場合、図示しない円筒状の内周枠を用い、その外周に超電導線材11を巻回することにより、超電導コイル20を容易に形成することができる。この超電導コイル20の外周面に絶縁被覆層17,17a用の合成樹脂を塗布法又は電着法で被覆することにより絶縁被覆層17,17aが形成される。塗布法では合成樹脂を加熱溶融させて超電導線材11の外周に塗布し、電着法では合成樹脂に電荷を与えて逆の電荷を有する超電導線材11の外周面を被覆する。なお、超電導コイル20の外周に図示しない外周枠を配置することにより、超電導コイル20が高磁場によるフープ応力(電磁応力)を受けたときに、超電導コイル20の拡径を抑えることができる。   As shown in FIGS. 3A and 3B, a superconducting coil (pancake coil) 20 is formed by winding a tape-shaped superconducting wire 11 into a cylindrical shape. Electrodes (not shown) are connected to each other. In this case, the superconducting coil 20 can be easily formed by using a cylindrical inner peripheral frame (not shown) and winding the superconducting wire 11 around the outer periphery. The insulating coating layers 17 and 17a are formed by coating the outer peripheral surface of the superconducting coil 20 with a synthetic resin for the insulating coating layers 17 and 17a by a coating method or an electrodeposition method. In the coating method, the synthetic resin is heated and melted and applied to the outer periphery of the superconducting wire 11, and in the electrodeposition method, the synthetic resin is charged to cover the outer peripheral surface of the superconducting wire 11 having the opposite charge. In addition, by disposing an outer peripheral frame (not shown) on the outer periphery of the superconducting coil 20, when the superconducting coil 20 receives a hoop stress (electromagnetic stress) due to a high magnetic field, the diameter of the superconducting coil 20 can be suppressed.

次に、上記のように構成された超電導線材11について作用を説明する。
さて、本実施形態の超電導線材11の幅方向端部における絶縁被覆層17aの厚さDが中間部における絶縁被覆層17の厚さdより厚くなるように構成され、幅方向端部における超電導線材11の保持力が高められている。このため、超電導線材11から超電導コイル20を製造する際に受ける曲げ応力や超電導コイル20を液体ヘリウム、液体窒素等で冷却するときに受ける熱膨張率の差に基づく応力が超電導線材11に作用したとき、その応力が超電導線材11の幅方向端部で十分に受け止められ、緩衝されて、超電導線材11は元の形状が保持される。従って、超電導線材11の幅方向端部において超電導線材11の各層間、特に超電導層14の剥離の起点となることが回避される。
Next, an effect | action is demonstrated about the superconducting wire 11 comprised as mentioned above.
Now, the thickness D of the insulating coating layer 17a at the end portion in the width direction of the superconducting wire 11 of the present embodiment is configured to be thicker than the thickness d of the insulating coating layer 17 at the intermediate portion, and the superconducting wire rod at the end portion in the width direction. 11 holding power is increased. For this reason, the stress based on the difference in the thermal expansion coefficient received when cooling the superconducting coil 20 with liquid helium, liquid nitrogen, etc. acted on the superconducting wire 11 when manufacturing the superconducting coil 20 from the superconducting wire 11. At that time, the stress is sufficiently received and buffered at the end of the superconducting wire 11 in the width direction, and the original shape of the superconducting wire 11 is maintained. Therefore, it is avoided that the superconducting wire 11 becomes the starting point of peeling of each layer of the superconducting wire 11, particularly the superconducting layer 14, at the end in the width direction of the superconducting wire 11.

また、超電導線材11の幅方向端部における絶縁被覆層17aの外面は円弧状をなす曲面17bで構成されている。このため、超電導コイル20を高磁場マグネット等として使用するときに超電導線材11が電界を受けたとき、超電導線材11の幅方向端部における絶縁被覆層17aの部分ではエッジがなく、電界が分散され、電界の局部的な集中が回避される。   Further, the outer surface of the insulating coating layer 17a at the end portion in the width direction of the superconducting wire 11 is constituted by a curved surface 17b having an arc shape. Therefore, when the superconducting coil 20 is used as a high magnetic field magnet or the like, when the superconducting wire 11 receives an electric field, there is no edge in the insulating coating layer 17a at the widthwise end of the superconducting wire 11, and the electric field is dispersed. , Local concentration of the electric field is avoided.

以上詳述した第1実施形態によって得られる効果を以下にまとめて記載する。
(1)この第1実施形態の超電導線材11では、その幅方向の端部における絶縁被覆層17aの厚さDが中間部における絶縁被覆層17の厚さdより厚くなるように構成されている。このため、超電導線材11に曲げ応力等の応力が作用したとき、超電導線材11の幅方向端部の肉厚に形成された絶縁被覆層17aがその応力を吸収し、超電導線材11が原形状を保持でき、幅方向端部において超電導層14の剥離の起点発生が抑えられる。
The effects obtained by the first embodiment described in detail above are collectively described below.
(1) The superconducting wire 11 according to the first embodiment is configured such that the thickness D of the insulating coating layer 17a at the end in the width direction is greater than the thickness d of the insulating coating layer 17 at the intermediate portion. . For this reason, when a stress such as a bending stress acts on the superconducting wire 11, the insulating coating layer 17a formed in the thickness of the end portion in the width direction of the superconducting wire 11 absorbs the stress, and the superconducting wire 11 has the original shape. It can hold | maintain and generation | occurrence | production origin of peeling of the superconducting layer 14 is suppressed in the width direction edge part.

従って、第1実施形態の超電導線材11の絶縁被覆構造によれば、超電導線材11の層間剥離を抑制することができ、超電導特性を良好に維持することができるという効果を奏する。
(2)前記超電導線材11の幅方向の端部における絶縁被覆層17aの厚さDは、中間部における絶縁被覆層17の厚さより15〜35%厚く形成されている。このため、超電導線材11の幅方向端部の絶縁被覆層17aの肉厚部分に基づく超電導線材11の層間剥離の抑制効果を十分に得ることができる。
(3)前記超電導線材11の幅方向の端部における絶縁被覆層17aの厚さは、15〜100μmに設定される。この場合、超電導線材11の幅方向端部における絶縁被覆層17aの厚さを十分に確保することができ、特に曲げ応力や冷却時の応力に十分に対処できて元の形状を保持することができ、超電導線材11の層間剥離を良好に抑制することができる。
(4)前記超電導線材11の幅方向の端部における絶縁被覆層17aの外面が断面円弧状をなす曲面17bで構成されている。このため、超電導線材11による超電導コイル20の使用時に電界を受けたとき、超電導線材11の幅方向端部における絶縁被覆層17aの外面にエッジがなく、その電界が超電導線材11の幅方向端部に集中することを抑制することができる。
(5)前記絶縁被覆層17,17aは、ポリイミド樹脂を主成分とする合成樹脂により形成されている。このため、曲げ応力や冷却時の応力に対して元の形状を十分に保持することができるとともに、超電導線材11の幅方向の端部における絶縁被覆層17aの外面を簡単に曲面形状に賦形でき、電界の集中を容易に抑制することができる。
(第2実施形態)
次に、本発明の超電導線材11の絶縁被覆構造を具体化した第2実施形態に関し、図面に基づいて説明する。なお、この第2実施形態では、主に前記第1実施形態と相違する部分について説明し、重複する部分について説明を省略する。
Therefore, according to the insulation coating structure of the superconducting wire 11 of the first embodiment, delamination of the superconducting wire 11 can be suppressed, and the superconducting characteristics can be maintained well.
(2) The thickness D of the insulating coating layer 17a at the end in the width direction of the superconducting wire 11 is 15 to 35% thicker than the thickness of the insulating coating layer 17 at the intermediate portion. For this reason, the effect of suppressing delamination of the superconducting wire 11 based on the thick portion of the insulating coating layer 17a at the end in the width direction of the superconducting wire 11 can be sufficiently obtained.
(3) The thickness of the insulating coating layer 17a at the end in the width direction of the superconducting wire 11 is set to 15 to 100 μm. In this case, the thickness of the insulating coating layer 17a at the end portion in the width direction of the superconducting wire 11 can be sufficiently ensured, and particularly, the original shape can be maintained by sufficiently dealing with bending stress and stress at the time of cooling. And delamination of the superconducting wire 11 can be satisfactorily suppressed.
(4) The outer surface of the insulating coating layer 17a at the end in the width direction of the superconducting wire 11 is composed of a curved surface 17b having an arcuate cross section. For this reason, when an electric field is received when the superconducting coil 20 is used with the superconducting wire 11, there is no edge on the outer surface of the insulating coating layer 17a at the widthwise end of the superconducting wire 11, and the electric field is in the widthwise end of the superconducting wire 11. It is possible to suppress concentration on the screen.
(5) The insulating coating layers 17 and 17a are formed of a synthetic resin whose main component is a polyimide resin. Therefore, the original shape can be sufficiently retained against bending stress and cooling stress, and the outer surface of the insulating coating layer 17a at the end in the width direction of the superconducting wire 11 can be easily shaped into a curved shape. And concentration of the electric field can be easily suppressed.
(Second Embodiment)
Next, a second embodiment in which the insulation coating structure of the superconducting wire 11 of the present invention is embodied will be described with reference to the drawings. In the second embodiment, portions that are different from the first embodiment will be mainly described, and description of overlapping portions will be omitted.

図1(b)に示すように、第2安定化層16は、銅等の金属のメッキにより基板12、中間層13、超電導層14及び第1安定化層15の全周を被覆するように構成されている。この第2安定化層16は、例えば厚さ約100μmに形成されている。絶縁被覆層17,17aは、第2安定化層16を被覆するように形成され、超電導線材11の幅方向両端部が中間部より厚くなるように断面円弧状に形成されている。   As shown in FIG. 1B, the second stabilizing layer 16 covers the entire periphery of the substrate 12, the intermediate layer 13, the superconducting layer 14, and the first stabilizing layer 15 by plating with a metal such as copper. It is configured. The second stabilization layer 16 is formed with a thickness of about 100 μm, for example. The insulating coating layers 17 and 17a are formed so as to cover the second stabilization layer 16, and are formed in a circular arc shape in cross section so that both end portions in the width direction of the superconducting wire 11 are thicker than the intermediate portion.

この第2実施形態では、第2安定化層16が基板12、中間層13、超電導層14及び第1安定化層15の全周を被覆するように構成されるとともに、絶縁被覆層17,17aがその第2安定化層16の全周を覆うように形成されている。このため、超電導線材11の幅方向端部に作用する応力や電界が第1実施形態の場合に比べて超電導層14等の層間に達し難い。従って、超電導線材11の層間剥離や絶縁破壊を第1実施形態の場合に比較して一層抑制することができ、超電導特性をさらに良好に維持することができる。
(第3実施形態)
次に、本発明の超電導線材11の絶縁被覆構造を具体化した第3実施形態に関し、図面に基づいて説明する。なお、この第3実施形態では、主に前記第2実施形態と相違する部分について説明し、重複する部分について説明を省略する。
In the second embodiment, the second stabilization layer 16 is configured to cover the entire circumference of the substrate 12, the intermediate layer 13, the superconducting layer 14, and the first stabilization layer 15, and the insulating coating layers 17, 17a. Is formed so as to cover the entire circumference of the second stabilization layer 16. For this reason, the stress and electric field acting on the end portion in the width direction of the superconducting wire 11 are less likely to reach the layers such as the superconducting layer 14 as compared with the case of the first embodiment. Therefore, delamination and dielectric breakdown of the superconducting wire 11 can be further suppressed as compared with the case of the first embodiment, and the superconducting characteristics can be maintained better.
(Third embodiment)
Next, a third embodiment that embodies the insulation coating structure of the superconducting wire 11 of the present invention will be described with reference to the drawings. In the third embodiment, portions that are different from the second embodiment will be mainly described, and descriptions of overlapping portions will be omitted.

図2に示すように、この第3実施形態の超電導線材11は、第2実施形態の超電導線材11が幅方向の中間部で長手方向に切断加工され、その切断加工された幅方向の端部に絶縁被覆層17,17aが被覆されて構成されている。絶縁被覆層17,17aは、基板12、中間層13、超電導層14、第1安定化層15及び第2安定化層16を被覆するように形成されている。この絶縁被覆層17,17aは、超電導線材11の幅方向の一端部では第2安定化層16を被覆するように形成され、他端部では切断加工面を覆うように形成されている。   As shown in FIG. 2, the superconducting wire 11 of the third embodiment is obtained by cutting the superconducting wire 11 of the second embodiment in the longitudinal direction at an intermediate portion in the width direction, and the end portion in the width direction cut and processed. Insulating coating layers 17 and 17a are coated. The insulating coating layers 17 and 17 a are formed so as to cover the substrate 12, the intermediate layer 13, the superconducting layer 14, the first stabilization layer 15, and the second stabilization layer 16. The insulating coating layers 17 and 17a are formed so as to cover the second stabilization layer 16 at one end in the width direction of the superconducting wire 11, and so as to cover the cut surface at the other end.

従って、この第3実施形態によれば、超電導線材11の幅方向の一端部では第2実施形態の効果が得られ、他端部では第1実施形態の効果が得られる。よって、超電導線材11を幅方向の中間部で長手方向に切断して細線化した場合でも、超電導線材11の層間剥離や絶縁破壊を有効に抑制することができ、超電導特性を良好に維持することができる。   Therefore, according to the third embodiment, the effect of the second embodiment can be obtained at one end of the superconducting wire 11 in the width direction, and the effect of the first embodiment can be obtained at the other end. Therefore, even when the superconducting wire 11 is cut in the longitudinal direction at the intermediate portion in the width direction and thinned, delamination and dielectric breakdown of the superconducting wire 11 can be effectively suppressed, and the superconducting characteristics can be maintained well. Can do.

以下に、前記第1実施形態〜第3実施形態の超電導線材11について、超電導特性を測定して評価した。
(実施例1)
実施例1では、前記第1実施形態の形状の超電導線材11で、幅10mm、長さが6mの超電導線材11を用い、内径50mmのシングルパンケーキコイルを製造した。このシングルパンケーキコイルについて、液体窒素(77K)と常温との間で10回冷熱サイクルを繰り返した後、液体窒素中で通電特性(電流−電圧曲線)を測定し、臨界電流とn値を評価した。比較のため、冷熱サイクルを実施しないシングルパンケーキコイルについても同様の試験を行った。なお、n値は電流−電圧曲線の臨界電流近傍での指数関数の指数を示し、超電導線材としての良否を判断する数値である。
Below, the superconducting characteristic was measured and evaluated about the superconducting wire 11 of the said 1st Embodiment-3rd Embodiment.
Example 1
In Example 1, a single pancake coil having an inner diameter of 50 mm was manufactured using the superconducting wire 11 having the shape of the first embodiment and the superconducting wire 11 having a width of 10 mm and a length of 6 m. This single pancake coil was subjected to 10 cycles of cooling and heating between liquid nitrogen (77K) and room temperature, and then the current-carrying characteristics (current-voltage curve) were measured in liquid nitrogen to evaluate the critical current and n value. did. For comparison, a similar test was performed on a single pancake coil that was not subjected to a thermal cycle. In addition, n value shows the exponent of the exponential function in the critical current vicinity of a current-voltage curve, and is a numerical value which judges the quality as a superconducting wire.

その結果、n値は21〜23を示し、超電導線材11として良好であった。また、通電特性の結果を図4に示した。
図4において、×は冷熱サイクルを実施したシングルパンケーキコイルの結果を示し、△は冷熱サイクルを実施しないシングルパンケーキコイルの結果を示す。
As a result, n value showed 21-23 and was favorable as the superconducting wire 11. In addition, the results of the energization characteristics are shown in FIG.
In FIG. 4, “x” indicates the result of the single pancake coil subjected to the cooling cycle, and “Δ” indicates the result of the single pancake coil not subjected to the cooling cycle.

図4に示した結果より、冷熱サイクルを実施したシングルパンケーキコイルは、冷熱サイクルを実施しないシングルパンケーキコイルとほぼ同等の特性が得られ、繰り返し応力を受けた後も超電導特性が保持された。
(実施例2)
実施例2では、前記第2実施形態の形状の超電導線材11で、幅10mm、長さが6mの超電導線材11を用い、内径50mmのシングルパンケーキコイルを製造した。このシングルパンケーキコイルについて、実施例1と同様に冷熱サイクルを繰り返した後、液体窒素中で通電特性を測定し、臨界電流とn値を測定し、評価した。比較のため、冷熱サイクルを実施しないシングルパンケーキコイルについても同様の試験を行った。その結果、n値は22〜23を示し、超電導線材11として良好であった。また、通電特性の結果を図5に示した。
From the results shown in FIG. 4, the single pancake coil that was subjected to the thermal cycle was able to obtain almost the same characteristics as the single pancake coil that was not subjected to the thermal cycle, and the superconducting characteristics were maintained even after repeated stress. .
(Example 2)
In Example 2, a single pancake coil having an inner diameter of 50 mm was manufactured using the superconducting wire 11 having the shape of the second embodiment and the superconducting wire 11 having a width of 10 mm and a length of 6 m. About this single pancake coil, after repeating the cooling-heating cycle similarly to Example 1, the current-carrying characteristics were measured in liquid nitrogen, and the critical current and the n value were measured and evaluated. For comparison, a similar test was performed on a single pancake coil that was not subjected to a thermal cycle. As a result, n value showed 22-23 and was favorable as the superconducting wire 11. In addition, the results of the energization characteristics are shown in FIG.

図5において、×は冷熱サイクルを実施したシングルパンケーキコイルの結果を示し、△は冷熱サイクルを実施しないシングルパンケーキコイルの結果を示す。
図5に示した結果より、冷熱サイクルを実施したシングルパンケーキコイルは、冷熱サイクルを実施しないシングルパンケーキコイルとほぼ同等の特性が得られ、超電導特性が維持された。
(実施例3)
実施例3では、前記第3実施形態の形状の超電導線材11で、幅5mm、長さが6mの超電導線材11を用い、内径50mmのシングルパンケーキコイルを製造した。このシングルパンケーキコイルについて、実施例1と同様に冷熱サイクルを5回又は10回繰り返した後、液体窒素中で通電特性を測定し、臨界電流とn値を測定し、評価した。比較のため、冷熱サイクルを実施しないシングルパンケーキコイルについても同様の試験を行った。その結果、n値は18〜21であり、超電導線材11として良好であった。また、通電特性の結果を図6に示した。
In FIG. 5, “x” indicates the result of the single pancake coil that was subjected to the cooling cycle, and “Δ” represents the result of the single pancake coil that was not subjected to the cooling cycle.
From the results shown in FIG. 5, the single pancake coil that was subjected to the cooling and heating cycle obtained characteristics substantially equivalent to the single pancake coil that was not subjected to the cooling and heating cycle, and the superconducting characteristics were maintained.
(Example 3)
In Example 3, a single pancake coil having an inner diameter of 50 mm was manufactured using the superconducting wire 11 having the shape of the third embodiment and a width of 5 mm and a length of 6 m. About this single pancake coil, after carrying out the cooling-heat cycle 5 times or 10 times similarly to Example 1, the electricity supply characteristic was measured in liquid nitrogen, and the critical current and n value were measured and evaluated. For comparison, a similar test was performed on a single pancake coil that was not subjected to a thermal cycle. As a result, the n value was 18 to 21, and it was good as the superconducting wire 11. In addition, the results of the energization characteristics are shown in FIG.

図6において、○は冷熱サイクルを5回実施したシングルパンケーキコイルの結果を示し、破線は冷熱サイクルを10回実施したシングルパンケーキコイルの結果を示し、×は冷熱サイクルを実施しないシングルパンケーキコイルの結果を示す。   In FIG. 6, ◯ indicates the result of the single pancake coil that was subjected to the cooling cycle 5 times, the broken line indicates the result of the single pancake coil that was subjected to the cooling cycle 10 times, and × represents the single pancake that was not subjected to the cooling cycle Coil results are shown.

図6に示した結果より、冷熱サイクルを5回又は10回実施したシングルパンケーキコイルは、冷熱サイクルを実施しないシングルパンケーキコイルとほぼ同等の特性が得られた。   From the results shown in FIG. 6, the single pancake coil that had been subjected to the thermal cycle 5 or 10 times had substantially the same characteristics as the single pancake coil that was not subjected to the thermal cycle.

なお、前記各実施形態を次のように変更して具体化することも可能である。
・ 図7(a)に示すように、超電導線材11の幅方向端部における絶縁被覆層17aを断面略四角形状になるように形成してもよい。但し、絶縁被覆層17aのコーナ部は、エッジとならないように面取り(アール形状)されている。
It should be noted that the embodiments described above can be modified and embodied as follows.
-As shown to Fig.7 (a), you may form the insulation coating layer 17a in the width direction edge part of the superconducting wire 11 so that a cross section may become a substantially square shape. However, the corner portion of the insulating coating layer 17a is chamfered (rounded) so as not to become an edge.

・ 図7(b)に示すように、超電導線材11の幅方向端部における絶縁被覆層17aを断面扇形状になるように形成してもよい。但し、絶縁被覆層17aのコーナ部は、エッジとならないように面取り(アール形状)されている。   -As shown in FIG.7 (b), you may form the insulation coating layer 17a in the width direction edge part of the superconducting wire 11 so that it may become a cross-sectional fan shape. However, the corner portion of the insulating coating layer 17a is chamfered (rounded) so as not to become an edge.

・ 前記超電導線材11の幅方向の一端部における絶縁被覆層17aと他端部における絶縁被覆層17aの形状、厚さ等が異なるように構成してもよい。
・ 前記超電導線材11の幅方向端部における絶縁被覆層17aを、異なる合成樹脂を用い、2層以上に積層して形成してもよい。
-You may comprise so that the shape, thickness, etc. of the insulation coating layer 17a in the one end part of the width direction of the said superconducting wire 11 may differ from the insulation coating layer 17a in the other end part.
The insulating coating layer 17a at the end in the width direction of the superconducting wire 11 may be formed by stacking two or more layers using different synthetic resins.

・ 前記超電導線材11の幅方向端部における絶縁被覆層17aの厚さを全体に均一になるように構成してもよい。   -You may comprise so that the thickness of the insulating coating layer 17a in the width direction edge part of the said superconducting wire 11 may become uniform on the whole.

11…超電導線材、12…基板、13…中間層、14…超電導層、15…第1安定化層、16…第2安定化層、17,17a…絶縁被覆層、17b…曲面、D…幅方向端部における絶縁被覆層の厚さ、d…幅方向中間部における絶縁被覆層の厚さ。   DESCRIPTION OF SYMBOLS 11 ... Superconducting wire, 12 ... Board | substrate, 13 ... Intermediate | middle layer, 14 ... Superconducting layer, 15 ... 1st stabilization layer, 16 ... 2nd stabilization layer, 17, 17a ... Insulation coating layer, 17b ... Curved surface, D ... Width The thickness of the insulating coating layer at the end in the direction, d... The thickness of the insulating coating layer at the intermediate portion in the width direction.

Claims (6)

基板上に中間層を介して希土類系酸化物超電導体の超電導層が形成され、その超電導層上に安定化層が形成されるとともに、それらの外周部に絶縁被覆層が形成されたテープ状をなす超電導線材の絶縁被覆構造であって、
前記超電導線材の幅方向の端部における絶縁被覆層の厚さを中間部における絶縁被覆層の厚さより厚くなるように構成したことを特徴とする超電導線材の絶縁被覆構造。
A superconducting layer of a rare earth oxide superconductor is formed on a substrate via an intermediate layer, a stabilization layer is formed on the superconducting layer, and an insulating coating layer is formed on the outer periphery thereof. A superconducting wire insulation coating structure,
An insulation coating structure for a superconducting wire, characterized in that the thickness of the insulation coating layer at the end in the width direction of the superconducting wire is greater than the thickness of the insulation coating layer at the intermediate portion.
前記超電導線材の幅方向の端部における絶縁被覆層の厚さは、中間部における絶縁被覆層の厚さより15〜35%厚く形成されていることを特徴とする請求項1に記載の超電導線材の絶縁被覆構造。 2. The superconducting wire according to claim 1, wherein a thickness of the insulating coating layer at an end portion in the width direction of the superconducting wire is formed to be 15 to 35% thicker than a thickness of the insulating coating layer in an intermediate portion. Insulation coating structure. 前記超電導線材の幅方向の端部における絶縁被覆層の厚さは、15〜100μmであることを特徴とする請求項1又は請求項2に記載の超電導線材の絶縁被覆構造。 The insulation coating structure for a superconducting wire according to claim 1 or 2, wherein a thickness of the insulation coating layer at an end portion in the width direction of the superconducting wire is 15 to 100 µm. 前記超電導線材の幅方向の端部における絶縁被覆層の外面を曲面で構成したことを特徴とする請求項1から請求項3のいずれか一項に記載の超電導線材の絶縁被覆構造。 The insulation coating structure for a superconducting wire according to any one of claims 1 to 3, wherein an outer surface of the insulation coating layer at an end portion in the width direction of the superconducting wire is configured by a curved surface. 前記超電導線材の幅方向の端部における絶縁被覆層の外面は断面円弧状に形成されていることを特徴とする請求項4に記載の超電導線材の絶縁被覆構造。 The insulation coating structure for a superconducting wire according to claim 4, wherein an outer surface of the insulation coating layer at an end portion in the width direction of the superconducting wire is formed in an arc shape in cross section. 前記絶縁被覆層は、ポリイミド樹脂を主成分とする合成樹脂により形成されていることを特徴とする請求項1から請求項5のいずれか一項に記載の超電導線材の絶縁被覆構造。 The insulation coating structure for a superconducting wire according to any one of claims 1 to 5, wherein the insulation coating layer is made of a synthetic resin containing a polyimide resin as a main component.
JP2012117340A 2012-05-23 2012-05-23 Insulation coating structure of superconducting wire rod Pending JP2013246881A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012117340A JP2013246881A (en) 2012-05-23 2012-05-23 Insulation coating structure of superconducting wire rod

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012117340A JP2013246881A (en) 2012-05-23 2012-05-23 Insulation coating structure of superconducting wire rod

Publications (1)

Publication Number Publication Date
JP2013246881A true JP2013246881A (en) 2013-12-09

Family

ID=49846517

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012117340A Pending JP2013246881A (en) 2012-05-23 2012-05-23 Insulation coating structure of superconducting wire rod

Country Status (1)

Country Link
JP (1) JP2013246881A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016017203A1 (en) * 2014-07-31 2016-02-04 住友電気工業株式会社 Superconducting wire rod
US10497494B2 (en) 2014-07-31 2019-12-03 Sumitomo Electric Industries, Ltd. Superconducting wire
CN111019344A (en) * 2019-11-28 2020-04-17 南京航空航天大学 Ultrasonic motor rotor friction material and preparation method thereof
US11665982B2 (en) 2015-11-11 2023-05-30 Sumitomo Electric Industries, Ltd. Superconducting wire

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016017203A1 (en) * 2014-07-31 2016-02-04 住友電気工業株式会社 Superconducting wire rod
JP2016033885A (en) * 2014-07-31 2016-03-10 住友電気工業株式会社 Superconducting wire rod
KR20170038029A (en) * 2014-07-31 2017-04-05 스미토모 덴키 고교 가부시키가이샤 Superconducting wire rod
CN106575551A (en) * 2014-07-31 2017-04-19 住友电气工业株式会社 Superconducting wire rod
US10460854B2 (en) 2014-07-31 2019-10-29 Sumitomo Electric Industries, Ltd. Superconducting wire
US10497494B2 (en) 2014-07-31 2019-12-03 Sumitomo Electric Industries, Ltd. Superconducting wire
KR102286710B1 (en) 2014-07-31 2021-08-05 스미토모 덴키 고교 가부시키가이샤 Superconducting wire rod
US11264151B2 (en) 2014-07-31 2022-03-01 Sumitomo Electric Industries, Ltd. Superconducting wire
US11665982B2 (en) 2015-11-11 2023-05-30 Sumitomo Electric Industries, Ltd. Superconducting wire
CN111019344A (en) * 2019-11-28 2020-04-17 南京航空航天大学 Ultrasonic motor rotor friction material and preparation method thereof

Similar Documents

Publication Publication Date Title
JP5525876B2 (en) Insulation coating oxide superconducting wire and resin impregnated superconducting coil
JP6725001B2 (en) Superconducting wire and superconducting coil
JP2017533579A (en) Metal assembly including superconductor
JP5921940B2 (en) Superconducting coil conductive cooling plate and superconducting coil device
JP2013246881A (en) Insulation coating structure of superconducting wire rod
JP2015028912A (en) Superconductive wire rod and superconductive coil using the same
JP6035050B2 (en) Superconducting coil device and manufacturing method thereof
JP6005386B2 (en) Superconducting coil device and manufacturing method thereof
JP2014165383A (en) Superconducting coil and method for manufacturing the same
JP2015023056A (en) Laminated superconducting pancake coil and superconducting apparatus including the same
JP2014013877A (en) Superconductive pancake coil, and method of manufacturing the same
JP2016157686A (en) Superconducting wire rod, superconducting coil and method for producing superconducting wire rod
JP6005428B2 (en) Superconducting coil and superconducting coil device
JP6364235B2 (en) Superconducting coil electrode structure
JP6721100B2 (en) Superconducting wire and superconducting coil
JP6991775B2 (en) Superconductor for non-insulated superconducting coil and superconducting coil using it
KR20210066542A (en) Manufacturing method of high-temperature superconducting coil using diffusion bonding and high-temperature superconducting coil manufactured by the method
CN110291597B (en) Superconducting wire and superconducting coil
JP2017010832A (en) Superconducting wire rod and superconducting coil using the same
JP6327794B2 (en) Superconducting coil device
JP2023032076A (en) superconducting coil
JP2013225399A (en) Oxide superconducting wire rod and superconducting coil
JP6214196B2 (en) Oxide superconducting coil and superconducting equipment provided with the same
WO2018216064A1 (en) Superconducting wire material and superconducting coil
JP2016184678A (en) Superconducting coil

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140423