JP6125350B2 - Superconducting wire connection and superconducting current lead - Google Patents

Superconducting wire connection and superconducting current lead Download PDF

Info

Publication number
JP6125350B2
JP6125350B2 JP2013132758A JP2013132758A JP6125350B2 JP 6125350 B2 JP6125350 B2 JP 6125350B2 JP 2013132758 A JP2013132758 A JP 2013132758A JP 2013132758 A JP2013132758 A JP 2013132758A JP 6125350 B2 JP6125350 B2 JP 6125350B2
Authority
JP
Japan
Prior art keywords
superconducting
superconducting wire
layer
electrode
wedge member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013132758A
Other languages
Japanese (ja)
Other versions
JP2015008076A (en
Inventor
高橋 亨
亨 高橋
康雄 引地
康雄 引地
昌啓 箕輪
昌啓 箕輪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SWCC Showa Cable Systems Co Ltd
Original Assignee
SWCC Showa Cable Systems Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SWCC Showa Cable Systems Co Ltd filed Critical SWCC Showa Cable Systems Co Ltd
Priority to JP2013132758A priority Critical patent/JP6125350B2/en
Publication of JP2015008076A publication Critical patent/JP2015008076A/en
Application granted granted Critical
Publication of JP6125350B2 publication Critical patent/JP6125350B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Description

本発明は、超電導線材の端部に金属電極が接続されてなる超電導線材の接続部に関し、特に、低温部に設置される超電導応用機器と常温部に設置される外部機器を接続するための超電導電流リードに有用な技術に関する。   The present invention relates to a connecting portion of a superconducting wire in which a metal electrode is connected to an end of a superconducting wire, and more particularly to superconducting for connecting a superconducting application device installed in a low temperature portion and an external device installed in a normal temperature portion. The present invention relates to a technique useful for a current lead.

近年、超電導ケーブルや超電導マグネット等、超電導を利用した超電導応用機器の分野では、実用化に向けてさかんに研究、開発が行われている。一般に、超電導応用機器は低温部(低温容器)に設置され、常温部に設置された外部機器(例えば電源)と、電流リードを介して接続される。
超電導応用機器の運転は、極低温環境下で行われるため、低温部の断熱性が極めて重要となる。低温部の断熱性が悪く、低温部への熱侵入が大きいと、超電導応用機器の冷却効率が低下して超電導状態を維持するための冷却コストが増大することとなり、場合によっては超電導応用機器を運転できなくなってしまうためである。この低温部への熱侵入の経路としては、低温容器を伝熱する経路、電流リードを伝熱する経路が考えられる。
In recent years, in the field of superconducting applied equipment using superconductivity such as superconducting cables and superconducting magnets, research and development have been conducted for practical use. In general, a superconducting application device is installed in a low temperature part (low temperature container) and connected to an external device (for example, a power source) installed in the normal temperature part via a current lead.
Since the operation of superconducting equipment is performed in a cryogenic environment, the heat insulation of the low temperature part is extremely important. If the heat insulation property of the low temperature part is poor and the heat penetration into the low temperature part is large, the cooling efficiency of the superconducting application equipment will decrease and the cooling cost for maintaining the superconducting state will increase. This is because it becomes impossible to drive. As a path of heat penetration into the low temperature part, a path for transferring heat through the low temperature container and a path for transferring heat through the current leads are conceivable.

低温容器を介した熱侵入を防止するための手法としては、液体窒素等の冷媒及び超電導応用機器を収容する冷媒槽と、冷媒槽の外側に設けられる真空槽とを有する二重構造の低温容器が知られている。この低温容器によれば、真空断熱により低温部への熱侵入が低減される。   As a technique for preventing heat intrusion through a cryogenic vessel, a dual-structure cryogenic vessel having a refrigerant tank containing a refrigerant such as liquid nitrogen and a superconducting application device and a vacuum tank provided outside the refrigerant vessel It has been known. According to this low-temperature container, heat penetration into the low-temperature part is reduced by vacuum insulation.

電流リードを介した熱侵入を防止するための手法としては、酸化物超電導体を用いた超電導電流リードが提案されている。酸化物超電導体は、銅などの金属導体に比較して電気抵抗が小さく、かつ熱伝導率が小さい(銅の数10分の1)。そのため、超電導電流リードにおいては、通電時にジュール熱の発生はなく、低温部への伝熱量も極めて小さくなる。したがって、超電導電流リードによれば、低温部への熱侵入が低減される。   As a technique for preventing heat intrusion through the current lead, a superconducting current lead using an oxide superconductor has been proposed. An oxide superconductor has a lower electrical resistance and lower thermal conductivity than a metal conductor such as copper (a few tenths of copper). Therefore, in the superconducting current lead, Joule heat is not generated during energization, and the amount of heat transferred to the low temperature portion is extremely small. Therefore, according to the superconducting current lead, heat penetration into the low temperature portion is reduced.

従来の超電導電流リード50を図1に示す。図1Aは超電導電流リード50の全体図である。図1Bは図1AのI−I矢視断面図である。
図1Aに示すように、超電導電流リード50は、テープ状の超電導線材51と、超電導線材51の一端部(高温側)に配置される第1の金属電極52、及び超電導線材51の他端部(低温側)に配置される第2の金属電極53を備える。図1Bに示すように、第1の金属電極52は超電導線材51が挿入される凹部521を有する。
A conventional superconducting current lead 50 is shown in FIG. FIG. 1A is an overall view of a superconducting current lead 50. FIG. 1B is a cross-sectional view taken along the line II in FIG. 1A.
As shown in FIG. 1A, a superconducting current lead 50 includes a tape-shaped superconducting wire 51, a first metal electrode 52 disposed at one end (high temperature side) of the superconducting wire 51, and the other end of the superconducting wire 51. A second metal electrode 53 is provided on the (low temperature side). As shown in FIG. 1B, the first metal electrode 52 has a recess 521 into which the superconducting wire 51 is inserted.

一般に、接続作業が容易であり、良好な電気特性が得られることから、超電導線材51と第1の金属電極52とは半田によって接続される(例えば特許文献1)。具体的には、溶融した半田を金属電極52の凹部521に充填した状態で、凹部521に超電導線材51を挿入し、支持部材(図示略)によって鉛直に支持する。そして、冷却により半田が凝固すると、超電導線材51は金属電極52に固着される。つまり、超電導線材51と金属電極52とは、半田56を介して電気的に接続されることになる。超電導線材51と第2の金属電極53との接続部も同様である。   In general, since the connection work is easy and good electrical characteristics are obtained, the superconducting wire 51 and the first metal electrode 52 are connected by solder (for example, Patent Document 1). Specifically, the superconducting wire 51 is inserted into the recess 521 in a state where the melted solder is filled in the recess 521 of the metal electrode 52, and is vertically supported by a support member (not shown). When the solder is solidified by cooling, the superconducting wire 51 is fixed to the metal electrode 52. That is, the superconducting wire 51 and the metal electrode 52 are electrically connected via the solder 56. The connection between the superconducting wire 51 and the second metal electrode 53 is the same.

特開平10−275641号公報Japanese Patent Laid-Open No. 10-275641

しかしながら、上述した超電導線材の接続部においては、超電導線材の超電導層側の面(第1の面)と金属電極との間に介在する半田層の厚さが1mm程度になるため、接続抵抗が高くなる(例えば0.08〜0.20μΩ)。また、半田層の厚さが均一に制御されないため、所望の接続抵抗を安定的に得ることは困難である。さらには、複数の超電導線材を並べて1つの金属電極に接続する場合には、それぞれの接続部間で接続抵抗のばらつきが大きくなり、クエンチの原因となる偏流が生じる虞がある。   However, in the connection portion of the superconducting wire described above, since the thickness of the solder layer interposed between the surface (first surface) of the superconducting wire on the superconducting layer side and the metal electrode is about 1 mm, the connection resistance is low. It becomes higher (for example, 0.08 to 0.20 μΩ). Further, since the thickness of the solder layer is not uniformly controlled, it is difficult to stably obtain a desired connection resistance. Furthermore, when a plurality of superconducting wires are arranged side by side and connected to one metal electrode, variation in connection resistance between the respective connection portions becomes large, and there is a possibility that drift that causes quenching may occur.

本発明の目的は、接続抵抗を低減できるとともに、所望の接続抵抗を安定的に得ることができる超電導線材の接続部及び超電導電流リードを提供することである。   An object of the present invention is to provide a connection part of a superconducting wire and a superconducting current lead capable of reducing a connection resistance and stably obtaining a desired connection resistance.

本発明に係る超電導線材の接続部は、金属基板上に中間層、超電導層、安定化層が順に積層されたテープ状の超電導線材の端部が半田層を介して金属電極に接続されてなる超電導線材の接続部であって、
前記金属電極は、前記超電導線材の端部を収容する収容凹部を有し、
前記収容凹部に前記超電導線材の端部が挿入されるとともに、前記超電導線材の前記金属基板側の第1の面に沿って断面V字状の楔部材が挿入され、
前記超電導線材は、前記楔部材によって前記超電導層側の第2の面が半田層を介して前記金属電極に押し付けられた状態で固着され
前記収容凹部は、前記超電導線材の前記第2の面が押し付けられる第1の凹部内面と、前記第1の凹部内面に対向する第2の凹部内面を有し、
前記第2の凹部内面は、前記楔部材に線接触する少なくとも1つの段部を有し、
前記楔部材は、前記収容凹部の開口端縁と前記段部によって支持されていることを特徴とする。
The connecting portion of the superconducting wire according to the present invention is formed by connecting an end portion of a tape-like superconducting wire in which an intermediate layer, a superconducting layer, and a stabilizing layer are sequentially laminated on a metal substrate to a metal electrode via a solder layer. A connecting portion of a superconducting wire,
The metal electrode has an accommodating recess for accommodating an end of the superconducting wire,
An end of the superconducting wire is inserted into the housing recess, and a wedge member having a V-shaped cross section is inserted along the first surface of the superconducting wire on the metal substrate side,
The superconducting wire is fixed in a state where the second surface on the superconducting layer side is pressed against the metal electrode through the solder layer by the wedge member ,
The housing recess has a first recess inner surface against which the second surface of the superconducting wire is pressed, and a second recess inner surface facing the first recess inner surface,
The inner surface of the second recess has at least one step portion that makes line contact with the wedge member,
The wedge member is supported by an opening edge of the receiving recess and the stepped portion .

本発明に係る超電導電流リードは、低温部に設置される超電導応用機器と常温部に設置される外部機器とを接続するための超電導電流リードであって、上記の超電導線材の接続部を備えることを特徴とする。   A superconducting current lead according to the present invention is a superconducting current lead for connecting a superconducting application device installed in a low temperature part and an external device installed in a normal temperature part, and includes a connecting part of the above superconducting wire. It is characterized by.

本発明によれば、楔部材によって超電導線材は金属電極に均一な押圧力で押し付けられるので、超電導線材と金属電極との間に介在する半田層は極めて薄く、均一な厚さで形成される。したがって、接続抵抗を低減できるとともに、所望の接続抵抗を安定的に得ることができる。   According to the present invention, since the superconducting wire is pressed against the metal electrode by the wedge member with a uniform pressing force, the solder layer interposed between the superconducting wire and the metal electrode is extremely thin and has a uniform thickness. Therefore, the connection resistance can be reduced and a desired connection resistance can be stably obtained.

従来の超電導電流リードにおける超電導線材と電極との接続構造を示す図である。It is a figure which shows the connection structure of the superconducting wire and electrode in the conventional superconducting electric current lead. 本発明の一実施の形態に係る超電導電流リードを用いた超電導磁石装置を示す図である。It is a figure which shows the superconducting magnet apparatus using the superconducting current | flow lead which concerns on one embodiment of this invention. 超電導線材の一般的な構成を示す図である。It is a figure which shows the general structure of a superconducting wire. 超電導電流リードにおける超電導線材と第1の電極及び第2の電極との接続構造を示す図である。It is a figure which shows the connection structure of the superconducting wire in a superconducting electric current lead, a 1st electrode, and a 2nd electrode. 超電導線材と第1の電極との接続部を分解して示す斜視断面図である。It is a perspective sectional view which decomposes | disassembles and shows the connection part of a superconducting wire and a 1st electrode.

以下、本発明の実施の形態を図面に基づいて詳細に説明する。
図2は、本発明の一実施の形態に係る超電導電流リードを用いた超電導磁石装置を示す図である。図2に示すように、超電導磁石装置1は、超電導電流リード10、常電導電流リード15、超電導コイル20、電源30、及び低温容器40等を備える。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
FIG. 2 is a diagram showing a superconducting magnet device using a superconducting current lead according to an embodiment of the present invention. As shown in FIG. 2, the superconducting magnet device 1 includes a superconducting current lead 10, a normal conducting current lead 15, a superconducting coil 20, a power source 30, a cryogenic container 40, and the like.

低温容器40は、内側の冷媒槽41と外側の真空槽42とからなる二重構造を有する。冷媒槽41は冷凍機(図示略)に接続され、例えば液体ヘリウムによって内部を極低温(例えば77K)に保持される。真空槽42は真空ポンプ(図示略)に接続され、内部を真空状態に保持される。   The cryogenic container 40 has a double structure including an inner refrigerant tank 41 and an outer vacuum tank 42. The refrigerant tank 41 is connected to a refrigerator (not shown), and is kept at an extremely low temperature (for example, 77 K) by liquid helium, for example. The vacuum chamber 42 is connected to a vacuum pump (not shown), and the inside is kept in a vacuum state.

超電導コイル20は、超電導線材を巻線したコイルである。超電導コイル20は、低温部となる冷媒槽41内に配置される。超電導コイル20は、超電導電流リード10と接続するためのコイル電極21を有する。
電源30は、常温部となる低温容器40外に配置される。電源30は、常電導電流リード15及び超電導電流リード10を介して、超電導コイル20に電流を供給する。常電導電流リード15は、例えば銅線である。
The superconducting coil 20 is a coil wound with a superconducting wire. The superconducting coil 20 is disposed in a refrigerant tank 41 that is a low temperature part. The superconducting coil 20 has a coil electrode 21 for connecting to the superconducting current lead 10.
The power source 30 is disposed outside the low-temperature container 40 serving as a normal temperature part. The power supply 30 supplies current to the superconducting coil 20 via the normal conducting current lead 15 and the superconducting current lead 10. The normal conductive current lead 15 is, for example, a copper wire.

超電導電流リード10は、超電導線材11、第1の電極12、及び第2の電極13を有する。超電導電流リード10は、冷媒槽41内に配置される。
超電導線材11は、超電導層113(図3参照)を有するテープ状の線材である。超電導線材11の高温側となる一端部は第1の電極12に接続され、低温側となる他端部は第2の電極13に接続される。
The superconducting current lead 10 includes a superconducting wire 11, a first electrode 12, and a second electrode 13. The superconducting current lead 10 is disposed in the refrigerant tank 41.
The superconducting wire 11 is a tape-like wire having a superconducting layer 113 (see FIG. 3). One end of the superconducting wire 11 on the high temperature side is connected to the first electrode 12, and the other end on the low temperature side is connected to the second electrode 13.

第1の電極12(高温側電極)は、銅又は銅合金等の金属材料で構成される。第1の電極12は、冷媒槽41の底面近傍に配置され、導体引出部(図示略)を介して常電導電流リード15に接続される。第1の電極12の近傍の温度は、例えば77Kである。
第2の電極13(低温側電極)は、銅又は銅合金等の金属材料で構成される。第2の電極13は、超電導コイル20の近傍に配置され、超電導コイル20のコイル電極21に接続される。第2の電極13の近傍の温度は、例えば4.2Kである。
The 1st electrode 12 (high temperature side electrode) is comprised with metal materials, such as copper or a copper alloy. The first electrode 12 is disposed in the vicinity of the bottom surface of the refrigerant tank 41 and is connected to the normal conductive current lead 15 via a conductor lead-out portion (not shown). The temperature in the vicinity of the first electrode 12 is, for example, 77K.
The second electrode 13 (low temperature side electrode) is made of a metal material such as copper or a copper alloy. The second electrode 13 is disposed in the vicinity of the superconducting coil 20 and connected to the coil electrode 21 of the superconducting coil 20. The temperature in the vicinity of the second electrode 13 is, for example, 4.2K.

図3は、超電導線材11の一般的な構成を示す図である。図3に示すように、超電導線材11は、テープ状の金属基板111上に、中間層112、超電導層113、安定化層114が順に形成された積層構造を有する。   FIG. 3 is a diagram showing a general configuration of the superconducting wire 11. As shown in FIG. 3, the superconducting wire 11 has a laminated structure in which an intermediate layer 112, a superconducting layer 113, and a stabilizing layer 114 are formed in this order on a tape-shaped metal substrate 111.

金属基板111は、Ni−Cr系(例えばハステロイ(登録商標))、W−Mo系、Fe−Cr系(例えばオーステナイト系ステンレス)、又はFe−Ni系の材料に代表される低磁性の無配向金属基板である。   The metal substrate 111 has a low magnetic non-orientation represented by Ni—Cr (for example, Hastelloy (registered trademark)), W—Mo, Fe—Cr (for example, austenitic stainless), or Fe—Ni materials. It is a metal substrate.

中間層112は、例えば金属基板111からの元素の拡散が超電導層113に及ぶのを防止するための第1の中間層(拡散防止層)と、超電導層113の結晶を一定の方向に配向させるための第2の中間層(配向層)とを有する。第1の中間層は、例えばガリウムドープ酸化亜鉛層(GZO)又はイットリウム安定化ジルコニア層(YSZ)で構成される。第1の中間層の成膜には、例えばイオンビームアシスト蒸着法(IBAD:Ion Beam Assisted Deposition)を適用できる。第2の中間層は、例えば酸化セリウム層(CeO)で構成される。第2の中間層の成膜には、例えばRFスパッタ法を適用できる。 The intermediate layer 112 has, for example, a first intermediate layer (diffusion prevention layer) for preventing the diffusion of elements from the metal substrate 111 to reach the superconducting layer 113, and orients crystals of the superconducting layer 113 in a certain direction. A second intermediate layer (alignment layer). The first intermediate layer is composed of, for example, a gallium-doped zinc oxide layer (GZO) or an yttrium-stabilized zirconia layer (YSZ). For example, an ion beam assisted deposition (IBAD) can be applied to form the first intermediate layer. The second intermediate layer is composed of, for example, a cerium oxide layer (CeO 2 ). For example, an RF sputtering method can be applied to form the second intermediate layer.

超電導層113は、例えばRE系超電導体(RE:希土類元素)等の酸化物超電導体で構成される。RE系超電導体としては、YBaCuで表されるイットリウム系超電導体が代表的である。超電導層113の成膜には、パルスレーザ蒸着法(PLD:Pulsed Laser Deposition)又は有機金属気相成長法(MOCVD:Metal Organic Chemical Vapor Deposition)を適用できる。 The superconducting layer 113 is made of, for example, an oxide superconductor such as an RE-based superconductor (RE: rare earth element). A typical example of the RE-based superconductor is an yttrium-based superconductor represented by YBa 2 Cu 3 O 7 . The superconducting layer 113 can be formed by pulsed laser deposition (PLD) or metal organic chemical vapor deposition (MOCVD).

安定化層114は、超電導層113を保護するとともに、超電導状態が部分的に破れて抵抗が発生(常電導転移)した場合に電流を迂回させるための層である。安定化層114は、例えば銀で構成される。安定化層114の成膜には、例えばスパッタ法を適用できる。
超電導線材11において、金属基板111側の面を第1の面11A、超電導層113側(安定化層114側)の面を第2の面11Bと称する。
The stabilization layer 114 is a layer for protecting the superconducting layer 113 and bypassing the current when the superconducting state is partially broken and resistance is generated (normal conducting transition). The stabilization layer 114 is made of silver, for example. For example, a sputtering method can be applied to form the stabilization layer 114.
In the superconducting wire 11, the surface on the metal substrate 111 side is referred to as a first surface 11A, and the surface on the superconducting layer 113 side (stabilization layer 114 side) is referred to as a second surface 11B.

本実施の形態では、超電導線材11と第1の電極12及び第2の電極13とを接続するに際し、断面V字状(先端が平坦な形状を含む)の楔部材14を用いる。
図4は、超電導電流リード10における超電導線材11と第1の電極12との接続部を示す図である。図4Aは超電導電流リード10の全体図である。図4Bは図4AのIV−IV矢視断面図である。図5は、超電導線材11と第1の電極12との接続部を分解して示す斜視断面図である。図5では、半田層16が省略されている。
なお、図4、図5には超電導線材11と第1の電極12との接続部を示しているが、超電導線材11と第2の電極13との接続部も同様である。
In the present embodiment, when the superconducting wire 11 is connected to the first electrode 12 and the second electrode 13, a wedge member 14 having a V-shaped cross section (including a shape having a flat tip) is used.
FIG. 4 is a diagram showing a connection portion between the superconducting wire 11 and the first electrode 12 in the superconducting current lead 10. FIG. 4A is an overall view of the superconducting current lead 10. 4B is a cross-sectional view taken along arrow IV-IV in FIG. 4A. FIG. 5 is an exploded perspective sectional view showing a connection portion between the superconducting wire 11 and the first electrode 12. In FIG. 5, the solder layer 16 is omitted.
4 and 5 show the connecting portion between the superconducting wire 11 and the first electrode 12, the connecting portion between the superconducting wire 11 and the second electrode 13 is the same.

図4、5に示すように、楔部材14は、超電導線材11に当接する第1の楔面14A及び第1の電極12に当接する第2の楔面14Bを有する。第2の楔面14Bは、第1の楔面14Aに対して、先端角度θで傾斜する。先端角度θは1〜5°であることが好ましい。先端角度θが1°未満の場合は、楔としての機能が発揮されない。また、先端角度θが5°よりも大きい場合は、所定の固定力を得るために第1の電極12が大きくなる虞がある。すなわち、楔部材14の先端角度θを1〜5°とすることにより、楔としての機能を喪失することなく、電流リードの小型化を図ることができる。   As shown in FIGS. 4 and 5, the wedge member 14 has a first wedge surface 14 </ b> A that contacts the superconducting wire 11 and a second wedge surface 14 </ b> B that contacts the first electrode 12. The second wedge surface 14B is inclined with respect to the first wedge surface 14A at the tip angle θ. The tip angle θ is preferably 1 to 5 °. When the tip angle θ is less than 1 °, the function as a wedge is not exhibited. When the tip angle θ is larger than 5 °, the first electrode 12 may become large in order to obtain a predetermined fixing force. That is, by setting the tip angle θ of the wedge member 14 to 1 to 5 °, the current lead can be reduced in size without losing the function as the wedge.

楔部材14は、第1の電極12と同等の熱収縮性を有するのが好ましく、より好ましくは、同じ材料(例えば銅又は銅合金)で構成される。超電導電流リード10が極低温環境下で用いられると、第1の電極12と楔部材14は、それぞれ熱収縮する。このとき、第1の電極12と楔部材14の熱収縮性が異なると、接合部が損壊する虞がある。本実施の形態では、楔部材14が第1の電極12と同等の熱収縮性を有しているので、極低温環境下において両者は同じように収縮する。したがって、熱収縮性の違いによって楔部材14と第1の電極12との接合部が損壊するのを防止できる。   The wedge member 14 preferably has the same heat shrinkability as the first electrode 12, and more preferably is made of the same material (for example, copper or copper alloy). When the superconducting current lead 10 is used in a cryogenic environment, the first electrode 12 and the wedge member 14 are thermally contracted. At this time, if the first electrode 12 and the wedge member 14 have different heat shrinkability, the joint may be damaged. In the present embodiment, since the wedge member 14 has the same heat shrinkability as that of the first electrode 12, both contract similarly in a cryogenic environment. Therefore, it is possible to prevent the joint portion between the wedge member 14 and the first electrode 12 from being damaged due to the difference in heat shrinkability.

第1の電極12は、超電導線材11の端部及び楔部材14を収容する収容凹部121を有する。収容凹部121は略直方体状に形成される。収容凹部121の寸法は、収容する超電導線材11及び楔部材14に応じて適宜設定される。   The first electrode 12 has an accommodating recess 121 that accommodates the end portion of the superconducting wire 11 and the wedge member 14. The housing recess 121 is formed in a substantially rectangular parallelepiped shape. The dimensions of the housing recess 121 are appropriately set according to the superconducting wire 11 and the wedge member 14 to be housed.

収容凹部121は、収容される超電導線材11の厚さ方向に対向する第1の凹部内面121A、及び第2の凹部内面121Bを有する。
第1の凹部内面121Aは平坦に形成される。第2の凹部内面121Bには、深さ方向略中央部に段部121Cが形成される。この段部121Cは、段部121Cの角部と収容凹部121の開口端縁を結ぶ稜線が、楔部材14の第2の楔面14Bと平行になるように形成される。
The housing recess 121 has a first recess inner surface 121A and a second recess inner surface 121B that face each other in the thickness direction of the superconducting wire 11 to be stored.
The first recess inner surface 121A is formed flat. On the second recess inner surface 121B, a stepped portion 121C is formed at a substantially central portion in the depth direction. The step portion 121C is formed such that a ridge line connecting the corner portion of the step portion 121C and the opening end edge of the housing recess 121 is parallel to the second wedge surface 14B of the wedge member 14.

収容凹部121に半田を充填して溶融させた状態で、収容凹部121に超電導線材11の端部が挿入される。このとき、超電導線材11の第2の面11Bが収容凹部121の第1の凹部内面121Aに対向し、超電導線材11の第1の面11Aが収容凹部121の第2の凹部内面121Bに対向する。   The end of the superconducting wire 11 is inserted into the housing recess 121 in a state where the housing recess 121 is filled with solder and melted. At this time, the second surface 11B of the superconducting wire 11 faces the first recess inner surface 121A of the housing recess 121, and the first surface 11A of the superconducting wire 11 faces the second recess inner surface 121B of the housing recess 121. .

また、収容凹部121には、超電導線材11の第1の面11Aに沿って楔部材14が挿入される。楔部材14を所定の挿入力で収容凹部121に押し込む(例えばハンマーによる叩打)ことにより、超電導線材11の第2の面11Bが半田層16を介して第1の電極12に押し付けられる。この状態で、冷却により半田が凝固すると、超電導線材11は金属電極12に固着される。   In addition, the wedge member 14 is inserted into the accommodating recess 121 along the first surface 11 </ b> A of the superconducting wire 11. By pushing the wedge member 14 into the housing recess 121 with a predetermined insertion force (for example, hammering), the second surface 11B of the superconducting wire 11 is pressed against the first electrode 12 via the solder layer 16. In this state, when the solder is solidified by cooling, the superconducting wire 11 is fixed to the metal electrode 12.

収容凹部121に楔部材14を挿入する際、超電導線材11の第1の面11Aによって第1の楔面14Aが支持されるとともに、収容凹部121の開口端縁及び段部121Cの角部によって第2の楔面14Bが支持される。つまり、楔部材14は安定した状態で収容凹部121に挿入され、超電導線材11に対して均一な押圧力を付与する。   When the wedge member 14 is inserted into the housing recess 121, the first wedge surface 14A is supported by the first surface 11A of the superconducting wire 11, and the first edge surface of the housing recess 121 and the corner of the step portion 121C are supported by the first edge 11A. Two wedge surfaces 14B are supported. That is, the wedge member 14 is inserted into the housing recess 121 in a stable state, and applies a uniform pressing force to the superconducting wire 11.

楔部材14によって超電導線材11は均一な押圧力で第1の電極12に押し付けられるので、超電導線材11と第1の電極12との間に介在する半田層16は、極めて薄く(例えば10〜100μm)、均一な厚さで形成される。したがって、超電導線材11と第1の電極12との接続部における接続抵抗は、従来の構造に比較して格段に低減される。また、複数の電流リード10を作製する場合に、所望の接続抵抗を安定的に得ることができる。   Since the superconducting wire 11 is pressed against the first electrode 12 by the wedge member 14 with a uniform pressing force, the solder layer 16 interposed between the superconducting wire 11 and the first electrode 12 is extremely thin (for example, 10 to 100 μm). ), With a uniform thickness. Therefore, the connection resistance at the connection portion between the superconducting wire 11 and the first electrode 12 is significantly reduced as compared with the conventional structure. Further, when a plurality of current leads 10 are produced, a desired connection resistance can be stably obtained.

さらには、第2の凹部内面121Bに設けられる段部121Cによって楔部材14の挿入方向が自己調整されるので、楔部材14をより安定した状態で容易に収容凹部121に挿入することができる。   Furthermore, since the insertion direction of the wedge member 14 is self-adjusted by the step portion 121C provided on the second concave portion inner surface 121B, the wedge member 14 can be easily inserted into the accommodating concave portion 121 in a more stable state.

このように、実施の形態に係る超電導電流リード10に適用される超電導線材の接続部は、金属基板(111)上に中間層(112)、超電導層(113)、安定化層(114)が順に積層されたテープ状の超電導線材(111)の端部が半田層(16)を介して金属電極(第1の電極12、第2の電極13)に接続された構成を有する。金属電極(12、13)は、超電導線材(11)の端部を収容する収容凹部(121)を有する。収容凹部(121)に超電導線材(11)の端部が挿入されるとともに、超電導線材(11)の金属基板(111)側の第1の面(11A)に沿って断面V字状の楔部材(14)が挿入される。超電導線材(11)は、楔部材(14)によって超電導層(113)側の第2の面(11B)が半田層(16)を介して金属電極(12、13)に押し付けられた状態で固着される。   As described above, the connecting portion of the superconducting wire applied to the superconducting current lead 10 according to the embodiment includes the intermediate layer (112), the superconducting layer (113), and the stabilizing layer (114) on the metal substrate (111). The ends of the tape-shaped superconducting wires (111) stacked in order are connected to the metal electrodes (first electrode 12 and second electrode 13) via the solder layer (16). The metal electrodes (12, 13) have a housing recess (121) that houses the end of the superconducting wire (11). The end of the superconducting wire (11) is inserted into the housing recess (121), and the wedge member has a V-shaped cross section along the first surface (11A) on the metal substrate (111) side of the superconducting wire (11). (14) is inserted. The superconducting wire (11) is fixed in a state where the second surface (11B) on the superconducting layer (113) side is pressed against the metal electrodes (12, 13) via the solder layer (16) by the wedge member (14). Is done.

楔部材(14)によって超電導線材(11)は金属電極(12、13)に均一な押圧力で押し付けられるので、超電導線材(11)と金属電極(12、13)との間に介在する半田層(16)が極めて薄く、均一になる。したがって、所望の接続抵抗を安定的に得ることができるとともに、接続抵抗を低減することができる。   Since the superconducting wire (11) is pressed against the metal electrodes (12, 13) by the wedge member (14) with a uniform pressing force, the solder layer interposed between the superconducting wire (11) and the metal electrodes (12, 13). (16) is extremely thin and uniform. Therefore, a desired connection resistance can be stably obtained and the connection resistance can be reduced.

[実施例]
実施例では、実施の形態で示した構造の超電導電流リードを作製し、複数のサンプルについて超電導線材と金属電極との接続部の評価を行った。具体的には、超電導電流リードを液体窒素中(77K)に配置し、臨界電流値(Ic)の測定、及び超電導線材と低温側電極との接続部の接続抵抗の測定を行った。
また、比較例として、従来の構造(図1参照)の超電導電流リードを作製し、実施例と同様の評価を行った。評価結果を表1に示す。
[Example]
In the example, a superconducting current lead having the structure shown in the embodiment was manufactured, and the connection between the superconducting wire and the metal electrode was evaluated for a plurality of samples. Specifically, the superconducting current lead was placed in liquid nitrogen (77K), the critical current value (Ic) was measured, and the connection resistance of the connecting portion between the superconducting wire and the low temperature side electrode was measured.
Further, as a comparative example, a superconducting current lead having a conventional structure (see FIG. 1) was produced and evaluated in the same manner as in the example. The evaluation results are shown in Table 1.

Figure 0006125350
Figure 0006125350

表1に示すように、超電導線材と低温側電極との接続部の接続抵抗は、比較例では0.096μΩであったのに対して、実施例では0.016μΩと約1/6に低減された。接続抵抗に基づいて算出されるジュール発熱量も1/6となり、全体の熱侵入量(熱伝導による熱侵入量+ジュール発熱量)としては、約1割低減することができた。
また、接続抵抗の標準偏差(サンプル間のばらつき)は、比較例では0.25であったのに対して、実施例では0.020と約1/10に抑えられていた。
さらに、比較例では設計通りの臨界電流値が得られなかったが、実施例では設計通りの臨海電流値が得られた。
As shown in Table 1, the connection resistance of the connection portion between the superconducting wire and the low-temperature side electrode was 0.096 μΩ in the comparative example, but was reduced to about 1/6, 0.016 μΩ in the example. It was. The Joule heat generation calculated based on the connection resistance was also 1/6, and the total heat penetration amount (heat penetration amount by heat conduction + Joule heat generation amount) could be reduced by about 10%.
In addition, the standard deviation (variation between samples) of the connection resistance was 0.25 in the comparative example, but was 0.020 and about 1/10 in the example.
Furthermore, the critical current value as designed was not obtained in the comparative example, but the coastal current value as designed was obtained in the example.

以上、本発明者によってなされた発明を実施の形態に基づいて具体的に説明したが、本発明は上記実施の形態に限定されるものではなく、その要旨を逸脱しない範囲で変更可能である。
例えば、実施の形態では、超電導電流リードにおいて、超電導線材と低温側電極との接続部及び超電導線材と高温側電極との接続部の両方に、本発明に係る超電導線材の接続部を適用しているが、いずれか一方にだけ適用してもよい。
また例えば、収容凹部の第2の凹部内面には、複数の段部を設けるようにしてもよい。
As mentioned above, the invention made by the present inventor has been specifically described based on the embodiment. However, the present invention is not limited to the above embodiment, and can be changed without departing from the gist thereof.
For example, in the embodiment, in the superconducting current lead, the connecting portion of the superconducting wire according to the present invention is applied to both the connecting portion between the superconducting wire and the low temperature side electrode and the connecting portion between the superconducting wire and the high temperature side electrode. However, it may be applied to only one of them.
Further, for example, a plurality of stepped portions may be provided on the inner surface of the second recessed portion of the housing recessed portion.

また、本発明は、超電導線材を複数本有する超電導電流リードに適用することもできる。それぞれの超電導線材と金属電極との接続部においては、安定した接続抵抗が得られるので、接続抵抗のばらつきは小さく、クエンチの要因となる偏流が生じるのを防止することができる。   The present invention can also be applied to a superconducting current lead having a plurality of superconducting wires. Since a stable connection resistance is obtained at the connection portion between each superconducting wire and the metal electrode, the variation in the connection resistance is small and it is possible to prevent the occurrence of a drift that causes quenching.

また、本発明は、円筒状のフォーマに複数の超電導線材を螺旋状に巻き付けた構造を有する超電導ケーブルと金属電極との接続部に適用することもできる。   The present invention can also be applied to a connection portion between a superconducting cable and a metal electrode having a structure in which a plurality of superconducting wires are spirally wound around a cylindrical former.

今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。   The embodiment disclosed this time should be considered as illustrative in all points and not restrictive. The scope of the present invention is defined by the terms of the claims, rather than the description above, and is intended to include any modifications within the scope and meaning equivalent to the terms of the claims.

1 超電導磁石装置
10 超電導電流リード
11 超電導線材
11A 第1の面(金属基板側)
11B 第2の面(超電導層側)
111 金属基板
112 中間層
113 超電導層
114 安定化層
12 第1の電極(高温側電極)
121 収容凹部
121A 第1の凹部内面
121B 第2の凹部内面
121C 段部
13 第2の電極(低温側電極)
14 楔部材
14A 第1の楔面
14B 第2の楔面
15 常電導電流リード
16 半田層
20 超電導コイル
30 電源
40 低温容器
1 Superconducting Magnet Device 10 Superconducting Current Lead 11 Superconducting Wire 11A First Surface (Metal Substrate Side)
11B 2nd surface (superconducting layer side)
111 Metal substrate 112 Intermediate layer 113 Superconducting layer 114 Stabilizing layer 12 First electrode (high temperature side electrode)
121 housing recess 121A first recess inner surface 121B second recess inner surface 121C step 13 second electrode (low temperature side electrode)
14 Wedge member 14A First wedge surface 14B Second wedge surface 15 Normal conductive current lead 16 Solder layer 20 Superconducting coil 30 Power source 40 Low temperature container

Claims (5)

金属基板上に中間層、超電導層、安定化層が順に積層されたテープ状の超電導線材の端部が半田層を介して金属電極に接続されてなる超電導線材の接続部であって、
前記金属電極は、前記超電導線材の端部を収容する収容凹部を有し、
前記収容凹部に前記超電導線材の端部が挿入されるとともに、前記超電導線材の前記金属基板側の第1の面に沿って断面V字状の楔部材が挿入され、
前記超電導線材は、前記楔部材によって前記超電導層側の第2の面が半田層を介して前記金属電極に押し付けられた状態で固着され
前記収容凹部は、前記超電導線材の前記第2の面が押し付けられる第1の凹部内面と、前記第1の凹部内面に対向する第2の凹部内面を有し、
前記第2の凹部内面は、前記楔部材に線接触する少なくとも1つの段部を有し、
前記楔部材は、前記収容凹部の開口端縁と前記段部によって支持されていることを特徴とする超電導線材の接続部。
An end portion of a tape-like superconducting wire in which an intermediate layer, a superconducting layer, and a stabilization layer are sequentially laminated on a metal substrate is a connecting portion of a superconducting wire that is connected to a metal electrode through a solder layer,
The metal electrode has an accommodating recess for accommodating an end of the superconducting wire,
An end of the superconducting wire is inserted into the housing recess, and a wedge member having a V-shaped cross section is inserted along the first surface of the superconducting wire on the metal substrate side,
The superconducting wire is fixed in a state where the second surface on the superconducting layer side is pressed against the metal electrode through the solder layer by the wedge member ,
The housing recess has a first recess inner surface against which the second surface of the superconducting wire is pressed, and a second recess inner surface facing the first recess inner surface,
The inner surface of the second recess has at least one step portion that makes line contact with the wedge member,
The connecting portion of the superconducting wire , wherein the wedge member is supported by an opening edge of the receiving recess and the stepped portion.
前記楔部材の先端角度が1〜5°であることを特徴とする請求項1に記載の超電導線材の接続部。 The connection part of the superconducting wire according to claim 1, wherein a tip angle of the wedge member is 1 to 5 °. 前記半田層の厚さが10〜100μmであることを特徴とする請求項1又は2に記載の超電導線材の接続部。 Connection of a superconducting wire according to claim 1 or 2 the thickness of the solder layer is characterized in that it is a 10 to 100 [mu] m. 前記楔部材は、前記金属電極と同等の熱収縮性を有することを特徴とする請求項1からのいずれか一項に記載の超電導線材の接続部。 The superconducting wire connecting portion according to any one of claims 1 to 3 , wherein the wedge member has a heat shrinkability equivalent to that of the metal electrode. 低温部に設置される超電導応用機器と常温部に設置される外部機器とを接続するための超電導電流リードであって、請求項1からのいずれか一項に記載の超電導線材の接続部を備えることを特徴とする超電導電流リード。 A superconducting current lead for connecting a superconducting application device installed in a low temperature part and an external device installed in a normal temperature part, wherein the superconducting wire connecting part according to any one of claims 1 to 4 is connected. A superconducting current lead comprising:
JP2013132758A 2013-06-25 2013-06-25 Superconducting wire connection and superconducting current lead Active JP6125350B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013132758A JP6125350B2 (en) 2013-06-25 2013-06-25 Superconducting wire connection and superconducting current lead

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013132758A JP6125350B2 (en) 2013-06-25 2013-06-25 Superconducting wire connection and superconducting current lead

Publications (2)

Publication Number Publication Date
JP2015008076A JP2015008076A (en) 2015-01-15
JP6125350B2 true JP6125350B2 (en) 2017-05-10

Family

ID=52338224

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013132758A Active JP6125350B2 (en) 2013-06-25 2013-06-25 Superconducting wire connection and superconducting current lead

Country Status (1)

Country Link
JP (1) JP6125350B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3619774A1 (en) * 2017-05-04 2020-03-11 Vision Electric Super Conductors GmbH Bus bar system element having a superconductor strand and a connection piece, and bus bar having a plurality of bus bar system elements of this type

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS517683U (en) * 1974-07-03 1976-01-20
JP3521612B2 (en) * 1996-05-13 2004-04-19 住友電気工業株式会社 Connection structure of superconducting conductor
GB9819545D0 (en) * 1998-09-09 1998-10-28 Bicc Plc Superconducting leads
JP5422494B2 (en) * 2010-06-18 2014-02-19 株式会社フジクラ Superconducting wire metal terminal joint structure and superconducting wire and metal terminal joining method

Also Published As

Publication number Publication date
JP2015008076A (en) 2015-01-15

Similar Documents

Publication Publication Date Title
JP4810268B2 (en) Superconducting wire connection method and superconducting wire
US9875833B2 (en) Superconduting coil device comprising coil winding and contacts
JPWO2013164918A1 (en) Superconducting wire connection structure, superconducting wire connection method, and superconducting wire for connection
KR20150005897A (en) Superconducting wire material, superconducting wire material connection structure, superconducting wire material connection method, and terminal treatment method of superconducting wire material
JP5022279B2 (en) Oxide superconducting current lead
JP2013175293A (en) Superconductive current lead, current lead device, and superconducting magnet device
JP5266852B2 (en) Superconducting current lead
JP6125350B2 (en) Superconducting wire connection and superconducting current lead
JP5675232B2 (en) Superconducting current lead
JP5789696B1 (en) Superconducting current lead and method of manufacturing superconducting current lead
JP6444549B2 (en) Superconducting current lead
JP2018055990A (en) Superconductive current lead and oxide superconducting wire material
JP6314022B2 (en) Superconducting current lead and method of manufacturing superconducting current lead
JP6353334B2 (en) Superconducting current lead
JP2009230912A (en) Oxide superconductive current lead
JP5925827B2 (en) Superconducting current lead
JP5882402B2 (en) Superconducting current lead
JP6364235B2 (en) Superconducting coil electrode structure
JP6238623B2 (en) Superconducting current lead
KR101574323B1 (en) Current Lead Terminal for Connecting Low-temperature Superconductor
JP5496175B2 (en) Superconducting current lead
JP2012064323A (en) Superconductive current lead
JP2008130860A (en) Superconductive device, and current lead
JP3766448B2 (en) Superconducting current lead
JP5614831B2 (en) Oxide superconducting current lead

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160412

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20161208

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161220

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170214

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170307

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170405

R150 Certificate of patent or registration of utility model

Ref document number: 6125350

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350