JP2008130860A - Superconductive device, and current lead - Google Patents

Superconductive device, and current lead Download PDF

Info

Publication number
JP2008130860A
JP2008130860A JP2006315021A JP2006315021A JP2008130860A JP 2008130860 A JP2008130860 A JP 2008130860A JP 2006315021 A JP2006315021 A JP 2006315021A JP 2006315021 A JP2006315021 A JP 2006315021A JP 2008130860 A JP2008130860 A JP 2008130860A
Authority
JP
Japan
Prior art keywords
superconducting
superconductive
oxide
current lead
side electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006315021A
Other languages
Japanese (ja)
Other versions
JP4703545B2 (en
Inventor
Koichi Osemochi
光一 大勢持
Yusuke Ishii
祐介 石井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2006315021A priority Critical patent/JP4703545B2/en
Publication of JP2008130860A publication Critical patent/JP2008130860A/en
Application granted granted Critical
Publication of JP4703545B2 publication Critical patent/JP4703545B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Superconductors And Manufacturing Methods Therefor (AREA)
  • Containers, Films, And Cooling For Superconductive Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a miniaturized and easily manufactured current lead, applicable in a superconductive device which receives a plurality of superconductive instruments into a common vacuum heat insulating vessel and employs oxide superconductive material, and to provide a superconductive device employing the lead. <P>SOLUTION: The superconductive device is provided with a plurality of superconductive instruments 3, the vacuum heat insulating vessel 2 for receiving the superconductive instruments 3 and a current lead for connecting a power supply 30 to the superconductive instruments 3. The current lead is provided with a usual state conductive current lead 1a, which penetrates the vacuum heat insulating vessel 2 and consisting of a right conductive metal while being common with a plurality of superconductive instruments, a high-temperature terminal side electrode 11a, consisting of the right conductive metal and arranged in the vacuum vessel while the usual state conductive current lead 1a is connected thereto, and a plurality of oxide superconductive bodies 10, connecting the high-temperature side electrode 11a and a plurality of superconductive instruments 3 respectively. The oxide superconductor 10 is constituted of an oxide superconductive bulk material or an oxide superconductive thin film tape filament. The high-temperature terminal side electrode 11a can have a plurality of branches with a plurality of oxide superconductors 10 connected respectively thereto. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、酸化物超電導導体を用いた電流リードと、かかる電流リードを有する超電導装置に関するものである。   The present invention relates to a current lead using an oxide superconductor and a superconducting device having such a current lead.

超電導現象の最大の特徴は、臨界温度で超電導導体の電気抵抗がゼロになるため、通電しても熱が発生せず、そのため無損失で大電流を流すことができるということである。超電導電力貯蔵システムに使用される超電導マグネット装置は、この超電導現象を応用したその代表的な装置である。   The greatest feature of the superconducting phenomenon is that the electric resistance of the superconducting conductor becomes zero at the critical temperature, so that no heat is generated even when energized, so that a large current can flow without loss. A superconducting magnet device used in a superconducting power storage system is a typical device that applies this superconducting phenomenon.

従来の典型的な超電導マグネット装置においては、超電導マグネットをクライオスタットと称する真空断熱容器の熱シールド内に収納され、真空断熱容器に取り付けられた冷凍機で超電導マグネットを冷却する構成になっている(特許文献1参照)。この超電導マグネット装置には、室温に設置された電源から極低温下に設置された超電導マグネットまで電流を供給する電流リードが必要である。電流リードは、良導電性金属からなる常伝導電流リードと酸化物超電導体からなる超電導電流リードが接続されている。電流リードは冷凍機や冷却媒体により冷却される構造になっている。   In the conventional typical superconducting magnet device, the superconducting magnet is housed in a heat shield of a vacuum heat insulating container called a cryostat, and the superconducting magnet is cooled by a refrigerator attached to the vacuum heat insulating container (patent) Reference 1). This superconducting magnet device requires a current lead for supplying a current from a power source installed at room temperature to a superconducting magnet installed at a very low temperature. The current lead is connected to a normal current lead made of a highly conductive metal and a superconducting current lead made of an oxide superconductor. The current lead is structured to be cooled by a refrigerator or a cooling medium.

近年では、超電導マグネットシステムにおいて、同一クライオスタット内に複数のマグネットを収納したマルチあるいはハイブリット構成などの多段マグネット構成システムが開発されている。   In recent years, in a superconducting magnet system, a multistage magnet configuration system such as a multi- or hybrid configuration in which a plurality of magnets are housed in the same cryostat has been developed.

同時に超電導マグネットに適用するための高温酸化物超電導導体の開発が進められてきており、Bi系酸化物導体を用いたマグネットも製作されている。また次世代マグネット適用を睨み、数100μmの低熱伝導金属基板上に数μmの薄膜状Y系酸化物超電導材を形成した酸化物超電導薄膜テープ線材の開発が行われており、この酸化物超電導薄膜テープ線材の臨界電流値は数100Aという高い性能を持っている。
特開2004−111581号公報
At the same time, development of high-temperature oxide superconducting conductors for application to superconducting magnets has been underway, and magnets using Bi-based oxide conductors have also been manufactured. In view of the application of next-generation magnets, an oxide superconducting thin film tape wire in which a thin-film Y-based oxide superconducting material of several μm is formed on a low heat conductive metal substrate of several hundreds of μm has been developed. The critical current value of the tape wire has a high performance of several hundred A.
JP 2004-111581 A

近年開発が行われている超電導マグネット装置の中には、大電流を通電する超電導コイルで構成されるものがあり、特に超電導電力貯蔵装置システムに使用される超電導マグネット装置は、その1つである。   Among superconducting magnet devices that have been developed in recent years, there are those composed of superconducting coils that carry a large current, and the superconducting magnet device used in the superconducting power storage system is one of them. .

数個のマグネットからなる多段マグネット構成システムにおいては、電流リードシステムがマグネットごとに必要であり、システムが複雑化し、コスト高になる。また同一容器内に収納する場合、設置スペースの問題が生じてくる。   In a multistage magnet configuration system composed of several magnets, a current lead system is required for each magnet, which complicates the system and increases costs. Moreover, when it accommodates in the same container, the problem of installation space arises.

これまでに開発され、種々の装置に適用されてきているBi系酸化物超電導導体やY系バルク状酸化物超電導導体を用いた酸化物超電導電流リードにおいて、取り扱いが比較的簡単で、1本で大電流通電に対応できる酸化物電流リードは少なく、現状の酸化物超電導電流リードは高価なものが多い。また、次世代線材として薄膜状Y系酸化物超電導材の開発が進められており、超電導マグネット以外の適用も考えられている。しかしこの導体は薄膜状態による薄膜劣化や良導電性金属体など異材との接合が難しいという問題がある。   Oxide superconducting current leads using Bi-based oxide superconducting conductors and Y-based bulk oxide superconducting conductors developed so far and applied to various devices are relatively easy to handle There are few oxide current leads that can handle large currents, and current oxide superconducting current leads are often expensive. Further, development of a thin film Y-based oxide superconducting material as a next-generation wire is underway, and applications other than superconducting magnets are also considered. However, this conductor has a problem that thin film deterioration due to a thin film state and bonding with a different material such as a highly conductive metal body is difficult.

本発明は、上記の事情に鑑みてなされたもので、複数の超電導機器を共通の真空断熱容器内に収容した超電導装置において適用可能で、酸化物超電導材を用いた、小形で製造容易な電流リード、および、これを採用した超電導装置を提供することを目的とする。   The present invention has been made in view of the above circumstances, and is applicable to a superconducting device in which a plurality of superconducting devices are housed in a common vacuum heat insulating container, and is a small and easily manufactured current using an oxide superconducting material. An object is to provide a lead and a superconducting device using the lead.

上記目的を達成するために、本発明に係る超電導装置は、低温に冷却されて超電導状態に置かれる複数の超電導機器と、前記複数の超電導機器を共通して収容する真空断熱容器と、前記真空断熱容器の外側の電源と前記複数の超電導機器とを接続し、前記真空断熱容器とは電気的に絶縁された電流リードと、を有する超電導装置において、前記電流リードは、前記真空容器を貫通し良導電性金属からなり、前記複数の超電導機器に共通の常伝導電流リード部と、良導電性金属からなり、前記真空容器内に配置されて前記常伝導電流リード部が接続された、前記複数の超電導機器に共通の高温端側電極と、前記高温端側電極と前記複数の超電導機器とを個々に接続する複数の酸化物超電導導体と、を有すること、を特徴とする。   In order to achieve the above object, a superconducting device according to the present invention includes a plurality of superconducting devices that are cooled to a low temperature and placed in a superconducting state, a vacuum insulation container that accommodates the plurality of superconducting devices in common, and the vacuum In the superconducting apparatus, the current lead penetrating the vacuum container, the power supply connecting the power supply outside the heat insulation container and the plurality of superconducting equipment, and having a current lead electrically insulated from the vacuum insulation container. The plurality of normal conductive current leads made of a highly conductive metal, common to the plurality of superconducting devices, and the conductive current lead made of a highly conductive metal and connected to the normal conductive current lead. And a plurality of oxide superconducting conductors that individually connect the high temperature end side electrode and the plurality of superconducting devices.

また、本発明に係る電流リードは、共通の真空断熱容器内に収容され低温に冷却されて超電導状態に置かれる複数の超電導機器と、前記真空断熱容器の外側の電源と、を接続し、前記真空断熱容器とは電気的に絶縁された電流リードであって、前記真空容器を貫通し良導電性金属からなり、前記複数の超電導機器に共通の常伝導電流リード部と、良導電性金属からなり、前記真空容器内に配置されて前記常伝導電流リード部が接続された、前記複数の超電導機器に共通の高温端側電極と、前記高温端側電極と前記複数の超電導機器とを個々に接続する複数の酸化物超電導導体と、を有すること、を特徴とする。   Further, the current lead according to the present invention is connected to a plurality of superconducting devices housed in a common vacuum insulation container, cooled to a low temperature and placed in a superconducting state, and a power supply outside the vacuum insulation container, A vacuum heat insulating container is an electrically insulated current lead made of a highly conductive metal that penetrates the vacuum container, a normal conductive current lead portion common to the plurality of superconducting devices, and a highly conductive metal. The high temperature end side electrode common to the plurality of superconducting devices, which is arranged in the vacuum vessel and connected to the normal current lead portion, and the high temperature end side electrode and the plurality of superconducting devices individually. And a plurality of oxide superconducting conductors to be connected.

本発明によれば、複数の超電導機器を共通の真空断熱容器内に収容した超電導装置において適用可能で、酸化物超電導材を用いた、小形で製造容易な電流リード、および、これを採用した超電導装置を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, it can apply in the superconducting apparatus which accommodated the several superconducting apparatus in the common vacuum heat insulation container, and it is a superconducting which employ | adopted the small and easy current lead using an oxide superconducting material, and this An apparatus can be provided.

以下に、本発明に係る超電導装置の実施形態について図面を参照しながら説明する。ここで、互いに同一または類似の部分には共通の符号を付して、重複説明は省略する。   Embodiments of a superconducting device according to the present invention will be described below with reference to the drawings. Here, the same or similar parts are denoted by common reference numerals, and redundant description is omitted.

[第1の実施形態]
図1は本発明の第1の実施形態に係る電流リードとその周辺を示す立面図である。この図に示すように、一つの共通の真空断熱容器2内に複数の超電導機器(たとえば超電導マグネット)3が収容されている。超電導機器3に電流を供給するための電源30は真空断熱容器2の外に配置されている。電流導入端子8が、真空断熱容器2の上部を貫通して配置され、電流導入端子8を介して真空断熱容器2内の常伝導電流リード1aと電源30が電気的に接続されている。常伝導電流リード1aは良導電性金属からできている。常伝導電流リード1aおよび電源30は、電流導入端子8で、真空断熱容器2に対しては電気的に絶縁されている。
[First Embodiment]
FIG. 1 is an elevational view showing a current lead and its periphery according to a first embodiment of the present invention. As shown in this figure, a plurality of superconducting devices (for example, superconducting magnets) 3 are accommodated in one common vacuum heat insulating container 2. A power supply 30 for supplying current to the superconducting device 3 is disposed outside the vacuum heat insulating container 2. A current introduction terminal 8 is disposed through the upper portion of the vacuum heat insulating container 2, and the normal current lead 1 a in the vacuum heat insulation container 2 and the power supply 30 are electrically connected via the current introduction terminal 8. The normal current lead 1a is made of a highly conductive metal. The normal current lead 1 a and the power supply 30 are electrically insulated from the vacuum heat insulating container 2 by the current introduction terminal 8.

真空断熱容器2内で、常伝導電流リード1aの下端が高温端側電極11aに接続されている。高温端側電極11aは、水平方向に延びる棒状であって、良導電性金属からできていて、超電導機器3の上方に配置されている。高温端側電極11aには複数の酸化物超電導導体10が接続されている。酸化物超電導導体10は、それぞれが互いに平行に鉛直方向に延び、それぞれの上端が高温端側電極11aに接続され、下端は、それぞれが個別に対応する低温端側電極11bを介して各超電導機器3に接続されている。酸化物超電導導体10は、たとえば、酸化物超電導バルク材あるいは酸化物超電導薄膜テープ線材である。この実施形態では、各酸化物超電導導体10は互いに同一形状、同一寸法である。   In the vacuum heat insulating container 2, the lower end of the normal conduction current lead 1a is connected to the high temperature end side electrode 11a. The high temperature end side electrode 11 a is a bar shape extending in the horizontal direction, is made of a highly conductive metal, and is disposed above the superconducting device 3. A plurality of oxide superconductors 10 are connected to the high temperature end electrode 11a. The oxide superconducting conductors 10 extend in the vertical direction in parallel with each other, the upper ends thereof are connected to the high temperature end side electrodes 11a, and the lower ends are individually connected to the respective superconducting devices via the corresponding low temperature end side electrodes 11b. 3 is connected. The oxide superconducting conductor 10 is, for example, an oxide superconducting bulk material or an oxide superconducting thin film tape wire. In this embodiment, the oxide superconducting conductors 10 have the same shape and the same dimensions.

高温端側電極11aには伝熱板6が取り付けられ、伝熱板6は絶縁板7を介して冷凍機5に接続されている。冷凍機5は真空断熱容器2に取り付けられている。高温端側電極11aは、伝熱板6および絶縁板7を通じて冷凍機5と熱的に接続されて冷却される。超電導機器3の冷却は、この冷凍機5によってもよいし、図示しない別の冷凍機によって超電導機器3を直接冷却してもよい。   A heat transfer plate 6 is attached to the high temperature end side electrode 11 a, and the heat transfer plate 6 is connected to the refrigerator 5 through an insulating plate 7. The refrigerator 5 is attached to the vacuum heat insulating container 2. The high temperature end side electrode 11 a is cooled by being thermally connected to the refrigerator 5 through the heat transfer plate 6 and the insulating plate 7. The superconducting device 3 may be cooled by the refrigerator 5 or the superconducting device 3 may be directly cooled by another refrigerator (not shown).

この実施形態によれば、1系統の電源30から電流を供給して、これを真空断熱容器2内部で分岐するので、装置の小型化が可能であり、製造も容易であり、コストダウンになる。   According to this embodiment, current is supplied from the power supply 30 of one system, and this is branched inside the vacuum heat insulating container 2, so that the apparatus can be reduced in size, manufactured easily, and the cost is reduced. .

[第2の実施形態]
図2は本発明の第2の実施形態に係る電流リードを示す立面図である。この実施形態では、高温端側電極11aの下部に複数のスリット(切り欠き)12が形成され、互いに隣接する二つのスリットに挟まれた部分それぞれが下方に延びる突出部32になっている。そして、各突出部32の下端部に一つずつの酸化物超電導導体10が接続されている。この実施形態では、各突出部32は互いに同一形状、同一寸法である。その他の部分の構成は第1の実施形態と同様である。
[Second Embodiment]
FIG. 2 is an elevation view showing a current lead according to the second embodiment of the present invention. In this embodiment, a plurality of slits (notches) 12 are formed in the lower portion of the high temperature end electrode 11a, and each portion sandwiched between two adjacent slits is a protrusion 32 extending downward. One oxide superconductor 10 is connected to the lower end of each protrusion 32. In this embodiment, the protrusions 32 have the same shape and the same dimensions. The structure of other parts is the same as that of the first embodiment.

この実施形態によれば、第1の実施形態による作用・効果に加えて、各超電導機器3に流れる電流を均一化することができる。すなわち、高温端側電極11aの各突出部32が互いに同一形状、同一寸法であることから、各突出部32に流れる電流が均一化される。これは、超電導部分ではその形状にかかわりなく電気抵抗がゼロになることから、高温端側電極11aの中で電流が分岐している各突出部32での電気抵抗の比が電流の分配比に対して支配的影響があることによる。   According to this embodiment, in addition to the operations and effects of the first embodiment, the current flowing through each superconducting device 3 can be made uniform. That is, since each protrusion part 32 of the high temperature end side electrode 11a is mutually the same shape and the same dimension, the electric current which flows into each protrusion part 32 is equalized. This is because, in the superconducting portion, the electric resistance becomes zero regardless of the shape thereof, and the ratio of the electric resistance at each protrusion 32 where the current branches in the high temperature end electrode 11a is the current distribution ratio. This is due to the dominant influence.

[第3の実施形態]
図3は、本発明の第3の実施形態に係る電流リードを示す立面図である。この実施形態は第2の実施形態の変形であって、高温端側電極11aの各突出部32の長さLが互いに異なるものである。この実施形態では、各突出部32の長さLが互いに異なることから、この部分の電気抵抗に差が生じる。すなわち、突出部32の長さLが長い部分ほど電気抵抗が大きくなる。このため、突出部32の長さLが長い部分ほど電流が小さくなる。
[Third Embodiment]
FIG. 3 is an elevation view showing a current lead according to the third embodiment of the present invention. This embodiment is a modification of the second embodiment, and the lengths L of the protrusions 32 of the high temperature end side electrode 11a are different from each other. In this embodiment, since the length L of each protrusion part 32 differs mutually, a difference arises in the electrical resistance of this part. That is, the electrical resistance increases as the length L of the protruding portion 32 increases. For this reason, an electric current becomes small, so that the length L of the protrusion part 32 is long.

この実施形態によれば、各超電導機器3に流れる電流の分配を必要に応じて積極的に不均一にすることができる。なお、図3の例では突出部32の長さLの違いに合わせて、Lが大きいものほど酸化物超電導導体10を短くしているが、各酸化物超電導導体10の電気抵抗はその長さにかかわりなくゼロであるから、酸化物超電導導体10の長さは互いに同じでも違っていてもよい。   According to this embodiment, the distribution of the current flowing through each superconducting device 3 can be positively made uneven as necessary. In addition, in the example of FIG. 3, according to the difference in the length L of the protrusion part 32, the oxide superconductor 10 is shortened, so that L is large, but the electrical resistance of each oxide superconductor 10 is the length. Regardless, the length of the oxide superconducting conductor 10 may be the same or different.

[第4の実施形態]
図4は本発明の第4の実施形態に係る電流リードを示す立面図であり、図5は図4の電流リードのV−V線矢視水平断面図である。この実施形態は第2または第3の実施形態の変形であって、高温端側電極11aの各突出部32の長さLは互いに等しいが、その厚さが互いに異なるものである。これにより、各突出部32の横断面積が互いに相違し、それによってこの部分の電気抵抗が相違することになる。これにより、第3の実施形態と同様に、各超電導機器3に流れる電流の分配を必要に応じて積極的に不均一にすることができる。
[Fourth Embodiment]
FIG. 4 is an elevation view showing a current lead according to the fourth embodiment of the present invention, and FIG. 5 is a horizontal sectional view of the current lead of FIG. This embodiment is a modification of the second or third embodiment, and the lengths L of the protrusions 32 of the high temperature end side electrode 11a are equal to each other, but their thicknesses are different from each other. Thereby, the cross-sectional areas of the protrusions 32 are different from each other, and the electric resistance of this portion is thereby different. As a result, as in the third embodiment, the distribution of the current flowing through each superconducting device 3 can be actively made non-uniform as necessary.

[第5の実施形態]
図6は本発明の第5の実施形態に係る電流リードを示す立面図である。この実施形態は第2または第3の実施形態の変形であって、高温端側電極11aの各突出部32の長さLは互いに等しいが、各突出部32と、これに接続される酸化物超電導導体10との接触面積が互いに異なるものである。これにより、各接触面での電気抵抗が相違することになる。これにより、第3および第4の実施形態と同様に、各超電導機器3に流れる電流の分配を必要に応じて積極的に不均一にすることができる。
[Fifth Embodiment]
FIG. 6 is an elevation view showing a current lead according to the fifth embodiment of the present invention. This embodiment is a modification of the second or third embodiment, and the lengths L of the protrusions 32 of the high temperature end side electrode 11a are equal to each other, but the protrusions 32 and the oxides connected thereto. The contact areas with the superconducting conductor 10 are different from each other. Thereby, the electrical resistance in each contact surface will differ. As a result, as in the third and fourth embodiments, the distribution of the current flowing through each superconducting device 3 can be actively made non-uniform as necessary.

[他の実施形態]
以上説明した各実施形態は単なる例示であって、本発明はこれらに限定されるものではない。
[Other Embodiments]
Each embodiment described above is merely an example, and the present invention is not limited thereto.

たとえば第4の実施形態(図4、図5)では、各突出部32の厚さが互いに異なることとしたが、各突出部32の太さ(横断面積)が異なればよいのであって、複数の突出部32の配列方向の幅が互いに異なるようにしても同様の効果が得られる。   For example, in the fourth embodiment (FIGS. 4 and 5), the thicknesses of the protrusions 32 are different from each other. However, the thicknesses (cross-sectional areas) of the protrusions 32 only need to be different. Even if the widths of the protruding portions 32 in the arrangement direction are different from each other, the same effect can be obtained.

また、第3、第4および第5の実施形態(図3〜図6)の特徴を組み合わせることもできる。すなわち、たとえば、高温端側電極11aの各突出部32の長さLと太さ、さらには各突出部32と酸化物超電導導体10との接触面積を種々に変えて組み合わせてもよい。   Further, the features of the third, fourth, and fifth embodiments (FIGS. 3 to 6) can be combined. That is, for example, the length L and thickness of each protrusion 32 of the high temperature end electrode 11a, and further the contact area between each protrusion 32 and the oxide superconductor 10 may be variously changed and combined.

また、上記実施形態では真空断熱容器内に収容する超電導機器として超伝導マグネットを例にとって説明したが、その他の超電導機器であってもよい。   In the above embodiment, a superconducting magnet has been described as an example of a superconducting device accommodated in a vacuum heat insulating container, but other superconducting devices may be used.

また、上記実施形態の説明における上下関係は説明の便宜のためであって、本発明は重力の方向にかかわりなく適用可能である。   Further, the vertical relationship in the description of the above embodiment is for convenience of description, and the present invention can be applied regardless of the direction of gravity.

本発明の第1の実施形態に係る電流リードとその周辺を示す立面図。1 is an elevation view showing a current lead and its periphery according to a first embodiment of the present invention. 本発明の第2の実施形態に係る電流リードを示す立面図。FIG. 5 is an elevation view showing a current lead according to a second embodiment of the present invention. 本発明の第3の実施形態に係る電流リードを示す立面図。FIG. 6 is an elevation view showing a current lead according to a third embodiment of the present invention. 本発明の第4の実施形態に係る電流リードを示す立面図。FIG. 9 is an elevation view showing a current lead according to a fourth embodiment of the present invention. 図4の電流リードのV−V線矢視水平断面図。FIG. 5 is a horizontal cross-sectional view of the current lead of FIG. 本発明の第5の実施形態に係る電流リードを示す立面図。FIG. 9 is an elevation view showing a current lead according to a fifth embodiment of the present invention.

符号の説明Explanation of symbols

1・・・電流リード
1a・・・常伝導電流リード
2・・・真空断熱容器
3・・・超電導マグネット(超電導機器)
5・・・冷凍機
6・・・伝熱板
7・・・絶縁板
8・・・電流導入端子
10・・・酸化物超電導導体
11a・・・高温端側電極
11b・・・低温端側電極
12・・・スリット(切り欠き)
30・・・電源
32・・・突出部
DESCRIPTION OF SYMBOLS 1 ... Current lead 1a ... Normal conduction current lead 2 ... Vacuum insulation container 3 ... Superconducting magnet (superconducting equipment)
5 ... Refrigerator 6 ... Heat transfer plate 7 ... Insulating plate 8 ... Current introduction terminal 10 ... Oxide superconducting conductor 11a ... High temperature end side electrode 11b ... Low temperature end side electrode 12 ... Slit (notch)
30 ... Power source 32 ... Projection

Claims (7)

低温に冷却されて超電導状態に置かれる複数の超電導機器と、
前記複数の超電導機器を共通して収容する真空断熱容器と、
前記真空断熱容器の外側の電源と前記複数の超電導機器とを接続し、前記真空断熱容器とは電気的に絶縁された電流リードと、
を有する超電導装置において、
前記電流リードは、
前記真空容器を貫通し良導電性金属からなり、前記複数の超電導機器に共通の常伝導電流リード部と、
良導電性金属からなり、前記真空容器内に配置されて前記常伝導電流リード部が接続された、前記複数の超電導機器に共通の高温端側電極と、
前記高温端側電極と前記複数の超電導機器とを個々に接続する複数の酸化物超電導導体と、
を有すること、を特徴とする超電導装置。
A plurality of superconducting devices that are cooled to a low temperature and placed in a superconducting state;
A vacuum insulation container for commonly storing the plurality of superconducting devices;
Connecting the power supply outside the vacuum insulation container and the plurality of superconducting devices, current leads electrically insulated from the vacuum insulation container;
In a superconducting device having
The current lead is
A normal conductive lead common to the plurality of superconducting devices, made of a highly conductive metal that penetrates the vacuum vessel; and
A high-temperature end-side electrode common to the plurality of superconducting devices, made of a highly conductive metal, arranged in the vacuum vessel and connected to the normal-current lead portion,
A plurality of oxide superconducting conductors individually connecting the high temperature end side electrode and the plurality of superconducting devices;
A superconducting device characterized by comprising:
前記酸化物超電導導体は、酸化物超電導バルク材あるいは酸化物超電導薄膜テープ線材で構成されていること、を特徴とする請求項1に記載の超電導装置。   The superconducting device according to claim 1, wherein the oxide superconducting conductor is made of an oxide superconducting bulk material or an oxide superconducting thin film tape wire. 前記高温端側電極は、前記複数の酸化物超電導導体のそれぞれが接続された複数の分岐部を有すること、を特徴とする請求項1または請求項2に記載の超電導装置。   The superconducting device according to claim 1, wherein the high temperature end side electrode has a plurality of branch portions to which the plurality of oxide superconducting conductors are connected. 前記高温端側電極の複数の分岐部の長さが、前記複数の超電導機器の各所要電流の大きさに応じて互いに異なること、を特徴とする請求項3に記載の超電導装置。   4. The superconducting device according to claim 3, wherein lengths of the plurality of branch portions of the high-temperature end-side electrode are different from each other according to magnitudes of required currents of the plurality of superconducting devices. 前記高温端側電極の複数の分岐部の太さが、前記複数の超電導機器の各所要電流の大きさに応じて互いに異なること、を特徴とする請求項3または請求項4に記載の超電導装置。   5. The superconducting device according to claim 3, wherein thicknesses of the plurality of branch portions of the high-temperature end-side electrode are different from each other according to magnitudes of required currents of the plurality of superconducting devices. . 前記高温端側電極と前記複数の酸化物超電導導体の各接触面積が、前記複数の超電導機器の各所要電流の大きさに応じて互いに異なること、を特徴とする請求項1ないし請求項5のいずれか一項に記載の超電導装置。   6. The contact area between the high temperature end electrode and the plurality of oxide superconducting conductors is different from each other according to the required current of each of the plurality of superconducting devices. The superconducting device according to any one of the above. 共通の真空断熱容器内に収容され低温に冷却されて超電導状態に置かれる複数の超電導機器と、前記真空断熱容器の外側の電源と、を接続し、前記真空断熱容器とは電気的に絶縁された電流リードであって、
前記真空容器を貫通し良導電性金属からなり、前記複数の超電導機器に共通の常伝導電流リード部と、
良導電性金属からなり、前記真空容器内に配置されて前記常伝導電流リード部が接続された、前記複数の超電導機器に共通の高温端側電極と、
前記高温端側電極と前記複数の超電導機器とを個々に接続する複数の酸化物超電導導体と、
を有すること、を特徴とする電流リード。
A plurality of superconducting devices housed in a common vacuum insulation container and cooled to a low temperature and placed in a superconducting state are connected to a power supply outside the vacuum insulation container, and are electrically insulated from the vacuum insulation container. Current leads,
A normal conductive lead common to the plurality of superconducting devices, made of a highly conductive metal that penetrates the vacuum vessel; and
A high-temperature end-side electrode common to the plurality of superconducting devices, made of a highly conductive metal, arranged in the vacuum vessel and connected to the normal current lead portion,
A plurality of oxide superconducting conductors individually connecting the high temperature end side electrode and the plurality of superconducting devices;
Having a current lead.
JP2006315021A 2006-11-22 2006-11-22 Superconducting devices and current leads Expired - Fee Related JP4703545B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006315021A JP4703545B2 (en) 2006-11-22 2006-11-22 Superconducting devices and current leads

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006315021A JP4703545B2 (en) 2006-11-22 2006-11-22 Superconducting devices and current leads

Publications (2)

Publication Number Publication Date
JP2008130860A true JP2008130860A (en) 2008-06-05
JP4703545B2 JP4703545B2 (en) 2011-06-15

Family

ID=39556383

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006315021A Expired - Fee Related JP4703545B2 (en) 2006-11-22 2006-11-22 Superconducting devices and current leads

Country Status (1)

Country Link
JP (1) JP4703545B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103413645A (en) * 2013-08-09 2013-11-27 中国科学院电工研究所 Separated primary current lead device
JP2014183138A (en) * 2013-03-19 2014-09-29 Toshiba Corp Superconducting device
CN108573789A (en) * 2018-06-29 2018-09-25 宁波健信核磁技术有限公司 A kind of fixing device of high-temperature superconductive lead wire

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04314311A (en) * 1991-04-12 1992-11-05 Toshiba Corp Superconductive current lead
JPH07297025A (en) * 1994-04-28 1995-11-10 Mitsubishi Electric Corp Oxide superconducting current lead device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04314311A (en) * 1991-04-12 1992-11-05 Toshiba Corp Superconductive current lead
JPH07297025A (en) * 1994-04-28 1995-11-10 Mitsubishi Electric Corp Oxide superconducting current lead device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014183138A (en) * 2013-03-19 2014-09-29 Toshiba Corp Superconducting device
CN103413645A (en) * 2013-08-09 2013-11-27 中国科学院电工研究所 Separated primary current lead device
CN108573789A (en) * 2018-06-29 2018-09-25 宁波健信核磁技术有限公司 A kind of fixing device of high-temperature superconductive lead wire
CN108573789B (en) * 2018-06-29 2024-04-19 宁波健信超导科技股份有限公司 Fixing device for high-temperature superconductive current lead

Also Published As

Publication number Publication date
JP4703545B2 (en) 2011-06-15

Similar Documents

Publication Publication Date Title
EP3401930B1 (en) Flexible superconducting lead assembly
US20080227647A1 (en) Current lead with high temperature superconductor for superconducting magnets in a cryostat
US9552906B1 (en) Current lead for cryogenic apparatus
US20120309631A1 (en) High temperature superconductor current lead for connecting a superconducting load system to a current feed point
JP2011238613A (en) Transmission system having superconducting cable
JP4703545B2 (en) Superconducting devices and current leads
JP5022279B2 (en) Oxide superconducting current lead
JP5693915B2 (en) Superconducting current lead and superconducting magnet device
JP2012028041A (en) Superconducting current lead
JP3284406B2 (en) Superconducting wire connecting device for cryogenic equipment
KR101574323B1 (en) Current Lead Terminal for Connecting Low-temperature Superconductor
JP4734004B2 (en) Superconducting current lead
JP3450318B2 (en) Thermoelectric cooling type power lead
JP2007227167A (en) Superconductive wire material, and superconductive device using the same
KR100777182B1 (en) High temperature superconducting power cable
JP2013143474A (en) Superconducting magnet device and current lead for the same
WO2021014959A1 (en) Conduction-cooling-type superconducting magnet
KR101620697B1 (en) Reactor for superconduction and normal conduction
JP2012235008A (en) Superconductive lead and superconducting magnet device
RU208602U1 (en) Superconducting current limiting device for voltage class up to 1000 V
JP5749126B2 (en) Conduction cooled superconducting magnet system
JPH11297524A (en) Current lead for superconducting device
JP2000091651A (en) Superconducting current lead
JPH1012058A (en) Superconductive electrical energy transmission cable
JP2012186890A (en) Terminal structure of normal temperature insulation type superconductive cable

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090225

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110208

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110308

LAPS Cancellation because of no payment of annual fees