JP2000091651A - Superconducting current lead - Google Patents

Superconducting current lead

Info

Publication number
JP2000091651A
JP2000091651A JP10256488A JP25648898A JP2000091651A JP 2000091651 A JP2000091651 A JP 2000091651A JP 10256488 A JP10256488 A JP 10256488A JP 25648898 A JP25648898 A JP 25648898A JP 2000091651 A JP2000091651 A JP 2000091651A
Authority
JP
Japan
Prior art keywords
conductor
oxide superconducting
thermal conductivity
support member
conductors
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10256488A
Other languages
Japanese (ja)
Inventor
Masanobu Nozawa
正信 野澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP10256488A priority Critical patent/JP2000091651A/en
Publication of JP2000091651A publication Critical patent/JP2000091651A/en
Pending legal-status Critical Current

Links

Landscapes

  • Containers, Films, And Cooling For Superconductive Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a compact superconducting current lead by reducing the deterioration of the critical current value of a superconducting conductor. SOLUTION: A first oxide superconducting conductor (positive side) 11 is arranged on a supporting member 14 having a low coefficient of thermal conductivity and a second oxide superconducting conductor (negative side) 12 is arranged on a supporting member 13 having a low coefficient of thermal conductivity and the members 13 and 14 are coaxially arranged in parallel with each other. Since the flowing directions of the currents flowing to the conductors 11 and 12 are opposite to each other, the magnetic fields impressed upon the conductors 11 and 12 are canceled.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、真空断熱容器内の
液体ヘリウム容器に液体ヘリウムとともに収容した超電
導コイルの両端末に接続し、外部電源からの電流を流す
電流リードの構造に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a current lead structure connected to both ends of a superconducting coil housed in a liquid helium container in a vacuum insulated container together with liquid helium, and for passing current from an external power supply.

【0002】[0002]

【従来の技術】超電導磁石装置の超電導コイルは、液体
ヘリウムなどの極低温冷媒により冷却されて超電導状態
を保持するので、液体窒素を用いた輻射シールドや多層
断熱層を有する真空断熱容器内の液体ヘリウムに浸漬し
た状態で収納される。また、電流リードは、液体ヘリウ
ムが気化した低温のヘリウムガスにより冷却され、常温
側からの侵入熱および電流リードで発生するジュール熱
が極低温部に侵入するのを極力低減するように構成され
る。従来、電流リードには、その導体として銅などの電
気良導体を用いていたが、銅は電気良導体であると同時
に良熱伝導体でもあるため、極低温部への侵入熱が増
し、高価な液体ヘリウムの気化損失が大きくなるという
欠点がある。
2. Description of the Related Art Since a superconducting coil of a superconducting magnet device is cooled by a cryogenic refrigerant such as liquid helium to maintain a superconducting state, a liquid in a vacuum insulation container having a radiation shield using liquid nitrogen and a multilayer insulation layer is provided. It is stored in a state immersed in helium. In addition, the current lead is cooled by a low-temperature helium gas that is vaporized from liquid helium, and is configured to minimize intrusion of heat from the room temperature side and Joule heat generated by the current lead from entering the cryogenic part. . In the past, electric current conductors such as copper were used for current leads, but copper is an electric conductor and also a good heat conductor. There is a disadvantage that helium vaporization loss increases.

【0003】そこで、電流リードの低温側に高温超電導
体である酸化物超電導導体を用い、ジュール熱を零にす
ると同時に、その低熱伝導性を利用して極低温側への侵
入熱を大幅に低減した電流リードが使用されている。こ
のような電流リードは、銅などの電気良導体よりなる高
温側導体部と、銀シース酸化物超電導体などの酸化物超
電導導体よりなる低温側導体部とからなり、高温側導体
部と低温側導体部とが導電結合部で結合される構成とな
っている。
Therefore, an oxide superconductor, which is a high-temperature superconductor, is used on the low-temperature side of the current lead to reduce the Joule heat to zero, and at the same time, greatly reduce the heat entering the cryogenic side by utilizing its low thermal conductivity. Current leads are used. Such a current lead is composed of a high-temperature conductor made of a good electrical conductor such as copper and a low-temperature conductor made of an oxide superconductor such as a silver sheath oxide superconductor. The parts are connected by a conductive coupling part.

【0004】[0004]

【発明が解決しようとする課題】低温側導体部の導体と
して熱侵入量の低い酸化物超電導導体を用いた電流リー
ドを使用する場合での問題点は、超電導導体の自己磁場
により臨界電流値が劣化することである。また、通電電
流の増加に伴い、必要とする銀シース材の枚数が増える
ことにより低温部での酸化物超電導導体の設置部の形状
が大きくなるため、よりコンパクトな形状が要求される
ことである。
The problem in the case of using a current lead using an oxide superconducting conductor having a low heat penetration as the conductor of the low-temperature side conductor is that the critical current value is reduced by the self-magnetic field of the superconducting conductor. Deterioration. Further, as the number of silver sheath materials required increases with an increase in the energizing current, the shape of the installation portion of the oxide superconductor in the low-temperature portion increases, so that a more compact shape is required. .

【0005】本発明の目的は、超電導導体の臨界電流値
の劣化を低減し、かつコンパクトな構造の電流リードを
提供することにある。
An object of the present invention is to provide a current lead having a compact structure in which the deterioration of the critical current value of the superconducting conductor is reduced.

【0006】[0006]

【課題を解決するための手段】上記課題を解決するため
に、本発明においては、電気良導体よりなる高温側導体
部と、テープ状酸化物超電導線材を積層してなる酸化物
超電導導体よりなる低温側導体部とから構成される導体
部を1対備え、一方の導体部の酸化物超電導導体を円筒
状の低熱伝導率支持部材にそのテープ面を円筒座標系に
おける周方向と平行に配置し、他方の導体部の酸化物超
電導導体を前記円筒状の低熱伝導率支持部材の外径寸法
とは異なる外径寸法の円筒状の低熱伝導率支持部材にそ
のテープ面を円筒座標系における周方向と平行に配置
し、両低熱伝導率支持部材を同軸平行に配置した。
In order to solve the above-mentioned problems, in the present invention, a high-temperature-side conductor portion made of an electric conductor and a low-temperature conductor made of an oxide superconducting conductor obtained by laminating a tape-shaped oxide superconducting wire are used. A pair of conductor portions composed of a side conductor portion, and the oxide superconducting conductor of one of the conductor portions is arranged on a cylindrical low thermal conductivity support member with its tape surface parallel to the circumferential direction in the cylindrical coordinate system, The tape surface of the oxide superconducting conductor of the other conductor part is placed on a cylindrical low thermal conductivity support member having an outer diameter different from the outer diameter of the cylindrical low thermal conductivity support member in a circumferential direction in a cylindrical coordinate system. The two low thermal conductivity support members were arranged in parallel and coaxially in parallel.

【0007】また、上記の超電導電流リードにおいて、
両酸化物超電導導体間に絶縁スペーサを配置した。
In the above superconducting current lead,
An insulating spacer was arranged between both oxide superconducting conductors.

【0008】[0008]

【発明の実施の形態】図1は、この発明の実施例を示す
超電導電流リードの低温側導体部の斜視図であり、ま
た、図2は図1の横断面図である。図1において、11
は第1の酸化物超電導導体(プラス側)、12は第2の
酸化物超電導導体(マイナス側)、13および14は低
熱伝導率の支持部材である。低熱伝導率の支持部材13
および14はそれぞれ円筒状であり、同軸平行に配置さ
れている。第1および第2の酸化物超電導導体11およ
び12は、テープ状の酸化物超電導線材を積層して形成
され、円筒状の支持部材13および14にそれぞれその
テープ面を円筒座標系における周方向と平行にして配置
される。内側の低熱伝導率の支持部材14に配置された
第1の酸化物超電導導体(プラス側)11は、外部に設
置された電源のプラス側に接続され、図示の向きに電流
が流れ、外側の低熱伝導率の支持部材13に配置された
第2の酸化物超電導導体(マイナス側)12は、外部に
設置された電源のマイナス側に接続され、図示の向きに
電流が流れる。すなわち、両電流の向きは互いに逆方向
となっており、後述するメカニズムにより酸化物超電導
導体内に印加される磁場のうち、特にテープ面に垂直な
方向の磁場がキャンセルされて低減することにより臨界
電流値の劣化が低減される。
FIG. 1 is a perspective view of a low-temperature side conductor portion of a superconducting current lead showing an embodiment of the present invention, and FIG. 2 is a cross-sectional view of FIG. In FIG. 1, 11
Is a first oxide superconducting conductor (positive side), 12 is a second oxide superconducting conductor (minus side), and 13 and 14 are supporting members having a low thermal conductivity. Low thermal conductivity support member 13
And 14 are each cylindrical and are arranged coaxially parallel. The first and second oxide superconducting conductors 11 and 12 are formed by laminating tape-shaped oxide superconducting wires, and the tape surfaces are respectively formed on cylindrical support members 13 and 14 in a circumferential direction in a cylindrical coordinate system. They are arranged in parallel. The first oxide superconducting conductor (positive side) 11 arranged on the inner low thermal conductivity support member 14 is connected to the positive side of a power supply installed outside, and a current flows in the direction shown in FIG. The second oxide superconducting conductor (minus side) 12 arranged on the support member 13 having low thermal conductivity is connected to the minus side of a power supply installed outside, and a current flows in the direction shown in the figure. In other words, the directions of the two currents are opposite to each other, and among the magnetic fields applied to the oxide superconductor by the mechanism described later, particularly the magnetic field in the direction perpendicular to the tape surface is canceled and reduced, and the criticality is increased. The deterioration of the current value is reduced.

【0009】なお、第1の酸化物超電導導体11を外側
の低熱伝導率の支持部材13に配置し、第2の酸化物超
電導導体12を内側の低熱伝導率の支持部材14に配置
しても、同様の効果を得ることができる。また、図1お
よび図2に示される低温側導体部の構成において、特
に、支持部材14および13が例えばステンレスのよう
な低熱伝導率の金属により形成される構成とすれば、酸
化物超電導導体11または12がクエンチした場合に支
持部材14または13に電流が流れるので、支持部材1
3および14に保護材としての機能をも兼ね備えさせる
ことができる。
It is to be noted that the first oxide superconducting conductor 11 is disposed on the outer low thermal conductivity support member 13 and the second oxide superconducting conductor 12 is disposed on the inner low thermal conductivity support member 14. The same effect can be obtained. In the configuration of the low-temperature side conductor shown in FIGS. 1 and 2, particularly, if the support members 14 and 13 are formed of a metal having a low thermal conductivity such as stainless steel, the oxide superconductor 11 Or 12 quench, a current flows through the support member 14 or 13, so that the support member 1
3 and 14 can also have a function as a protective material.

【0010】また、図1および図2に示される低温側導
体部の構成では、内径側の支持部材14に配置された第
1の酸化物超電導導体11と外径側の支持部材13に配
置された第2の酸化物超電導導体12とが同じ本数づつ
設けられ、かつ、第1の酸化物超電導導体11の各導体
の周方向位置と第2の酸化物超電導導体12の各導体の
周方向位置とが1対1の関係でそれぞれ一致するように
対向させて配設されている。内径側の第1の酸化物超電
導導体11と外径側の第2の酸化物超電導導体12とが
このような位置関係に配設されることにより、両導体に
互いに逆方向の電流が流れる際に、酸化物超電導導体内
に印加される磁場のうち、特にテープ面に垂直な方向の
磁場がキャンセルされて低減することにより臨界電流値
の劣化が低減される。
In the configuration of the low-temperature side conductor shown in FIGS. 1 and 2, the first oxide superconducting conductor 11 disposed on the inner diameter side support member 14 and the outer diameter side support member 13 are disposed. The same number of second oxide superconducting conductors 12 are provided, and the circumferential position of each conductor of the first oxide superconducting conductor 11 and the circumferential position of each conductor of the second oxide superconducting conductor 12 And are arranged so as to face each other so as to match each other in a one-to-one relationship. When the first oxide superconducting conductor 11 on the inner diameter side and the second oxide superconducting conductor 12 on the outer diameter side are arranged in such a positional relationship, when currents in opposite directions flow through both conductors. In addition, among magnetic fields applied in the oxide superconducting conductor, particularly, a magnetic field in a direction perpendicular to the tape surface is canceled and reduced, so that deterioration of the critical current value is reduced.

【0011】なお、上記の臨界電流値劣化の低減のメカ
ニズムの詳細は次の通りである。すなわち、上述のよう
な内径側の第1の酸化物超電導導体11の各導体と外径
側の第2の酸化物超電導導体12の各導体とがそれぞれ
対向する位置関係にあり、かつ、両酸化物超電導導体に
流れる電流の方向が互いに逆方向である場合には、両酸
化物超電導導体内に印加される磁場のうち、円筒状の支
持部材の半径方向すなわちテープ面に垂直な方向の磁場
は互いに打ち消し合う方向で働くことにより低減され、
支持部材の周方向すなわちテープ面に平行な方向の磁場
は互いに加え合う方向で働くことにより逆に増加する。
しかしながら、この酸化物超電導導体11,12を形成
するテープ状酸化物超電導線材は、テープ面と垂直な方
向に印加された磁場に対してはその臨界電流値が大きく
低下するが、テープ面と平行な方向に印加された磁場に
対しては、その臨界電流値がそれほど低下しないという
特性を有する。従って、上記の構成によるテープ面に垂
直な方向の磁場の減少が臨界電流値の劣化の低減に対し
て非常に効果的に作用して、酸化物超電導導体としての
臨界電流値の劣化を低減することができる。
The details of the mechanism for reducing the deterioration of the critical current value are as follows. That is, the conductors of the first oxide superconducting conductor 11 on the inner diameter side and the conductors of the second oxide superconducting conductor 12 on the outer diameter side are in a positional relationship facing each other as described above. When the directions of the currents flowing in the material superconducting conductor are opposite to each other, the magnetic field in the radial direction of the cylindrical support member, that is, the direction perpendicular to the tape surface, of the magnetic field applied in both oxide superconducting conductors is Reduced by working in directions that cancel each other,
The magnetic field in the circumferential direction of the support member, that is, in the direction parallel to the tape surface, increases in reverse by acting in directions that add to each other.
However, the tape-shaped oxide superconducting wire forming the oxide superconducting conductors 11 and 12 has a critical current value greatly reduced with respect to a magnetic field applied in a direction perpendicular to the tape surface. There is a characteristic that the critical current value does not decrease so much for a magnetic field applied in any direction. Therefore, the decrease in the magnetic field in the direction perpendicular to the tape surface according to the above configuration acts very effectively on the reduction in the critical current value, and reduces the critical current value as the oxide superconductor. be able to.

【0012】また、図1および図2に示される低温側導
体部の構成では、酸化物超電導導体11,12がテープ
状酸化物超電導線材を積層して形成される構成としてい
たが、1層のみのテープ状酸化物超電導線材により酸化
物超電導導体11,12が形成される構成とすることも
できる。また、図1および図2に示される低温側導体部
の構成では、酸化物超電導導体がテープ状酸化物超電導
線材により形成される構成としていたが、酸化物超電導
導体がバルク状酸化物超電導体より形成される構成で
も、上述と同様の臨界電流−磁場強度特性の磁場方向依
存性を利用して、臨界電流値の劣化を低減させることが
できる。なお、この場合に適用可能なバルク状酸化物超
電導体は、いずれかの方向の辺の長さが他方よりも長
い、長方形状等の横断面形状を有するものであり、その
幅の広い方の側面がテープ状酸化物超電導線材における
テープ面に対応するものとなり、テープ状酸化物超電導
線材におけるのと同様な臨界電流−磁場強度特性の磁場
方向依存性をもつ。このような形状のバルク状酸化物超
電導体を図1および図2に示される構成と同様に円筒状
の支持部材13,14にその幅の広い方の面を円筒座標
形における周方向と平行に配置させるとともに、内径側
の各導体と外径側の各導体とがそれぞれ対向する位置関
係にあるように配設する。このような構成とすることに
より、内径側と外径側との両導体に互いに逆方向の電流
が流れる際に、酸化物超電導導体内に印加される磁場の
うち、特にバルク状酸化物超電導体の幅の広い方の側面
に垂直な方向の磁場がキャンセルされて低減することに
より臨界電流値の劣化が低減される。
In the configuration of the low-temperature side conductor shown in FIGS. 1 and 2, the oxide superconductors 11 and 12 are formed by laminating tape-shaped oxide superconducting wires, but only one layer is formed. The oxide superconducting conductors 11 and 12 may be formed of the tape-shaped oxide superconducting wire of the present invention. Further, in the configuration of the low-temperature side conductor shown in FIGS. 1 and 2, the oxide superconducting conductor is formed of a tape-shaped oxide superconducting wire. Even in the formed configuration, it is possible to reduce the deterioration of the critical current value by utilizing the magnetic field direction dependency of the critical current-magnetic field strength characteristic as described above. Note that the bulk oxide superconductor applicable in this case has a cross-sectional shape such as a rectangular shape in which the length of the side in any direction is longer than the other, and has a larger width. The side surface corresponds to the tape surface of the tape-shaped oxide superconducting wire, and has the same magnetic field direction dependence of the critical current-magnetic field strength characteristics as in the tape-shaped oxide superconducting wire. The bulk-shaped oxide superconductor having such a shape is provided on the cylindrical support members 13 and 14 such that the wider surfaces thereof are parallel to the circumferential direction in the cylindrical coordinate form, similarly to the configuration shown in FIGS. The conductors are arranged so that the conductors on the inner diameter side and the conductors on the outer diameter side have a positional relationship to face each other. With such a configuration, when currents in opposite directions flow through both the inner diameter side and the outer diameter side conductors, among the magnetic fields applied in the oxide superconductor, particularly the bulk oxide superconductor The magnetic field in the direction perpendicular to the wider side surface is canceled and reduced, so that the deterioration of the critical current value is reduced.

【0013】図5は、この発明の実施例による超電導電
流リードを用いた超電導装置の概念図である。図5にお
いて、51は電源、53は銅などの電気良導体よりなる
高温側導体部、54はフランジ、55は真空断熱容器、
56は液体窒素シールド、57は超電導コイル、58は
GHe(ヘリウムガス)、59はLHe(液体ヘリウ
ム)である。また、低熱伝導率支持部材14の外周面に
第1の酸化物超電導導体11が配設されるとともに、低
熱伝導率支持部材13の外周面に第2の酸化物超電導導
体12が配設され、1対の低温側導体部を構成してい
る。高温側導体部53は常温端子部71を介して常温の
環境に設置された電源51に接続されている。また、1
対設けられた高温側導体部53のそれぞれが、中間接続
部72および72Aを介して上記の第1の酸化物超電導
導体11および第2の酸化物超電導導体12と接続され
ている。また、液体ヘリウム59に浸漬された超電導コ
イル57の1対のコイル端子部74のそれぞれが、低温
端子部73および73Aを介して上記の第1の酸化物超
電導導体11および第2の酸化物超電導導体12と接続
されている。このように高温側導体部と低温側導体部と
が直列接続されてなる1対の導体部を経由して電源51
から超電導コイル57に電力が供給される。なお、図5
において、外径側の低熱伝導率支持部材13を一部破砕
した形にして、内径側の低熱伝導率支持部材14および
第1の酸化物超電導導体11の構成を示すようにしてい
る。
FIG. 5 is a conceptual diagram of a superconducting device using a superconducting current lead according to an embodiment of the present invention. In FIG. 5, reference numeral 51 denotes a power source, 53 denotes a high-temperature side conductor portion made of a good electric conductor such as copper, 54 denotes a flange, 55 denotes a vacuum insulated container,
56 is a liquid nitrogen shield, 57 is a superconducting coil, 58 is GHe (helium gas), and 59 is LHe (liquid helium). In addition, the first oxide superconducting conductor 11 is disposed on the outer peripheral surface of the low thermal conductivity support member 14, and the second oxide superconducting conductor 12 is disposed on the outer peripheral surface of the low thermal conductivity support member 13, It constitutes a pair of low-temperature side conductors. The high-temperature side conductor 53 is connected to a power supply 51 installed in a normal temperature environment via a normal temperature terminal 71. Also, 1
Each of the paired high-temperature side conductor portions 53 is connected to the first oxide superconductor 11 and the second oxide superconductor 12 via the intermediate connection portions 72 and 72A. Further, each of the pair of coil terminals 74 of the superconducting coil 57 immersed in the liquid helium 59 is connected to the first oxide superconducting conductor 11 and the second oxide superconducting via the low-temperature terminals 73 and 73A. It is connected to the conductor 12. As described above, the power supply 51 is connected via the pair of conductors in which the high-temperature-side conductor and the low-temperature-side conductor are connected in series.
Supplies power to superconducting coil 57. FIG.
In FIG. 7, the configuration of the low thermal conductivity support member 14 on the inner diameter side and the first oxide superconducting conductor 11 is shown by partially crushing the low thermal conductivity support member 13 on the outer diameter side.

【0014】図3は、この発明の異なる実施例を示す超
電導電流リードの低温側導体部の縦断面図であり、ま
た、図4は、図3におけるスペーサの外観図である。図
3において、第1の酸化物超電導導体11と第2の酸化
物超電導導体12用の支持部材13との間にスペーサ2
1を配置し、酸化物超電導導体11,12間の絶縁を確
保している。図3に示される実施例の構成は、スペーサ
21を設ける点以外では、図1に示される実施例を同じ
である。スペーサ21の長さは酸化物超電導導体11,
12と同じ長さとしてもよいが、酸化物超電導導体1
1,12の存在する範囲に図示のようなスペーサ21を
長さ方向に複数個配置する構造としてもよい。
FIG. 3 is a longitudinal sectional view of a low-temperature side conductor portion of a superconducting current lead showing another embodiment of the present invention, and FIG. 4 is an external view of a spacer in FIG. In FIG. 3, a spacer 2 is provided between a first oxide superconducting conductor 11 and a supporting member 13 for a second oxide superconducting conductor 12.
1 to ensure insulation between the oxide superconductors 11 and 12. The configuration of the embodiment shown in FIG. 3 is the same as the embodiment shown in FIG. 1 except that a spacer 21 is provided. The length of the spacer 21 is the oxide superconducting conductor 11,
12 may be the same length, but the oxide superconducting conductor 1
A structure in which a plurality of spacers 21 as shown in the drawing are arranged in the length direction in a range where 1 and 12 are present may be adopted.

【0015】通電時に酸化物超電導導体11,12によ
り発生する電磁力は互いに反発する方向に働くが、酸化
物超電導導体11,12は支持部材13,14およびス
ペーサ21により歪まないように固定されている。ま
た、図4に示されるように、スペーサ21内に開けられ
た穴をヘリウムガス58が通過できる構造としてあるた
め、第1の酸化物超電導導体(プラス側)11と第2の
酸化物超電導導体(マイナス側)12間の温度差が発生
しにくい。なお、スペーサ21は窒化アルミニウムなど
の絶縁物で構成されている。
Electromagnetic forces generated by the oxide superconducting conductors 11 and 12 at the time of energization act in directions repelling each other, but the oxide superconducting conductors 11 and 12 are fixed by the support members 13 and 14 and the spacer 21 so as not to be distorted. I have. Further, as shown in FIG. 4, since the helium gas 58 can pass through the hole formed in the spacer 21, the first oxide superconductor 11 (positive side) 11 and the second oxide superconductor 11 (Minus side) The temperature difference between 12 is hardly generated. The spacer 21 is made of an insulating material such as aluminum nitride.

【0016】[0016]

【発明の効果】本発明によれば、従来の2本の酸化物超
電導導体を用いた電流リードの低温側導体部を1本の同
軸形の構造とするとともに、同軸形の低温側導体部の内
径側および外径側の導体構造を、それぞれテープ状酸化
物超電導線材を積層してなる酸化物超電導導体が円筒状
の低熱伝導率支持部材にそのテープ面を円筒座標系にお
ける周方向と平行に配置されてなるものとしたので、特
に酸化物超電導導体内においてテープ面に垂直な方向に
印加される磁場がキャンセルされて低減されることによ
り酸化物超電導導体の臨界電流値の劣化を低減すること
が出来るとともに、同軸形の構造としたことにより大容
量化に伴って断面積が増加する酸化物超電導導体を1対
の低温側導体部としてコンパクトに配置することが可能
になり、従来使用してきた高温側および低温側とも銅な
どの電気良導体で構成された電流リードとの互換性を保
持することができる。
According to the present invention, the low-temperature side conductor of the current lead using two conventional oxide superconducting conductors has a single coaxial structure, and the coaxial low-temperature side conductor has the same structure. The conductor structure on the inner diameter side and the outer diameter side is formed by laminating a tape-shaped oxide superconducting wire, and the oxide superconducting conductor is placed on a cylindrical low thermal conductivity support member with its tape surface parallel to the circumferential direction in the cylindrical coordinate system. Since the magnetic field applied in the direction perpendicular to the tape surface in the oxide superconducting conductor is cancelled and reduced in particular, the deterioration of the critical current value of the oxide superconducting conductor is reduced. In addition, the coaxial structure allows the oxide superconductor, whose cross-sectional area increases with increasing capacity, to be compactly arranged as a pair of low-temperature side conductors. Both have had the high temperature side and low temperature side can retain compatibility with current lead made of a good electrical conductors such as copper.

【図面の簡単な説明】[Brief description of the drawings]

【図1】この発明の実施例を示す超電導電流リードの低
温側導体部の斜視図
FIG. 1 is a perspective view of a low-temperature side conductor portion of a superconducting current lead showing an embodiment of the present invention.

【図2】図1の横断面図FIG. 2 is a cross-sectional view of FIG.

【図3】この発明の異なる実施例を示す超電導電流リー
ドの低温側導体部の縦断面図
FIG. 3 is a longitudinal sectional view of a low-temperature side conductor portion of a superconducting current lead showing a different embodiment of the present invention.

【図4】図3におけるスペーサの外観図FIG. 4 is an external view of a spacer in FIG. 3;

【図5】この発明の実施例による超電導電流リードを用
いた超電導装置の概念図
FIG. 5 is a conceptual diagram of a superconducting device using a superconducting current lead according to an embodiment of the present invention.

【符号の説明】[Explanation of symbols]

11…第1の酸化物超電導導体(プラス側)、12…第
2の酸化物超電導導体(マイナス側)、13,14…低
熱伝導率の支持部材、21…スペーサ、42…空隙(G
He流路)、58…GHe (ヘリウムガス)。
11: first oxide superconducting conductor (positive side), 12: second oxide superconducting conductor (minus side), 13, 14: low thermal conductivity support member, 21: spacer, 42: gap (G
He channel), 58 ... He (helium gas).

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】電気良導体よりなる高温側導体部と、テー
プ状酸化物超電導線材を積層してなる酸化物超電導導体
よりなる低温側導体部とから構成される導体部を1対備
え、一方の導体部の酸化物超電導導体を円筒状の低熱伝
導率支持部材にそのテープ面を円筒座標系における周方
向と平行に配置し、他方の導体部の酸化物超電導導体を
前記円筒状の低熱伝導率支持部材の外径寸法とは異なる
外径寸法の円筒状の低熱伝導率支持部材にそのテープ面
を円筒座標系における周方向と平行に配置し、両低熱伝
導率支持部材を同軸平行に配置したことを特徴とする超
電導電流リード。
1. A pair of a conductor portion composed of a high-temperature-side conductor portion made of a good electrical conductor and a low-temperature-side conductor portion made of an oxide superconducting conductor formed by laminating a tape-shaped oxide superconducting wire. The oxide superconducting conductor of the conductor portion is disposed on a cylindrical low thermal conductivity support member with its tape surface parallel to the circumferential direction in the cylindrical coordinate system, and the oxide superconducting conductor of the other conductor portion is connected to the cylindrical low thermal conductivity. The tape surface was arranged on a cylindrical low thermal conductivity support member having an outer diameter dimension different from the outer diameter dimension of the support member in parallel with the circumferential direction in the cylindrical coordinate system, and both low thermal conductivity support members were arranged coaxially parallel. A superconducting current lead.
【請求項2】請求項1に記載の超電導電流リードにおい
て、両酸化物超電導導体間に絶縁スペーサを配置したこ
とを特徴とする超電導電流リード。
2. The superconducting current lead according to claim 1, wherein an insulating spacer is disposed between both oxide superconducting conductors.
JP10256488A 1998-09-10 1998-09-10 Superconducting current lead Pending JP2000091651A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10256488A JP2000091651A (en) 1998-09-10 1998-09-10 Superconducting current lead

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10256488A JP2000091651A (en) 1998-09-10 1998-09-10 Superconducting current lead

Publications (1)

Publication Number Publication Date
JP2000091651A true JP2000091651A (en) 2000-03-31

Family

ID=17293345

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10256488A Pending JP2000091651A (en) 1998-09-10 1998-09-10 Superconducting current lead

Country Status (1)

Country Link
JP (1) JP2000091651A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010073856A (en) * 2008-09-18 2010-04-02 Toshiba Corp Superconducting magnet
JP2014187148A (en) * 2013-03-22 2014-10-02 Kobe Steel Ltd Current supply device
CN115172000A (en) * 2022-09-02 2022-10-11 山东奥新医疗科技有限公司 Current lead wire of magnetic resonance superconducting magnet and assembling method thereof

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010073856A (en) * 2008-09-18 2010-04-02 Toshiba Corp Superconducting magnet
JP2014187148A (en) * 2013-03-22 2014-10-02 Kobe Steel Ltd Current supply device
CN115172000A (en) * 2022-09-02 2022-10-11 山东奥新医疗科技有限公司 Current lead wire of magnetic resonance superconducting magnet and assembling method thereof
CN115172000B (en) * 2022-09-02 2022-11-11 山东奥新医疗科技有限公司 Current lead wire of magnetic resonance superconducting magnet and assembling method thereof

Similar Documents

Publication Publication Date Title
JP5386550B2 (en) Superconducting switch, superconducting magnet, and MRI
US20120094840A1 (en) Refrigerator cooling-type superconducting magnet
EP0596249B1 (en) Compact superconducting magnet system free from liquid helium
CN108878053B (en) Superconducting lead assembly, cryogenic system, and method of mounting superconducting lead assembly in cryogenic system
US4688132A (en) Superconducting magnet system for operation at 13k
JP2001244109A (en) High-temperature superconducting coil device
US5394130A (en) Persistent superconducting switch for conduction-cooled superconducting magnet
JPH0371518A (en) Superconductor
JP2002124142A (en) Superconductive power transmission cable
JPH10188691A (en) Superconductive current lead
JP3541123B2 (en) Superconducting current lead
JP2000091651A (en) Superconducting current lead
JP2756551B2 (en) Conduction-cooled superconducting magnet device
US3613006A (en) Stable superconducting magnet
JP3082397B2 (en) Superconducting device
JP4703545B2 (en) Superconducting devices and current leads
JP3450318B2 (en) Thermoelectric cooling type power lead
JP2607661Y2 (en) Cryogenic container
JPH10247532A (en) Current lead for superconductive device
JP2001119078A (en) Superconducting current lead
JP3127705B2 (en) Current lead using oxide superconductor
JPH04130605A (en) Current lead of superconducting electromagnet device
JPH11214215A (en) Current lead for chiller cooled superconducting magnet
McEvoy et al. Conduction cooling of a traveling wave maser superconducting magnet in a closed-cycle refrigerator
JPH0828533B2 (en) Superconducting device

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees