JPH04314311A - Superconductive current lead - Google Patents

Superconductive current lead

Info

Publication number
JPH04314311A
JPH04314311A JP7950491A JP7950491A JPH04314311A JP H04314311 A JPH04314311 A JP H04314311A JP 7950491 A JP7950491 A JP 7950491A JP 7950491 A JP7950491 A JP 7950491A JP H04314311 A JPH04314311 A JP H04314311A
Authority
JP
Japan
Prior art keywords
superconductor
superconducting
temperature side
current lead
superconductors
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7950491A
Other languages
Japanese (ja)
Other versions
JP2922663B2 (en
Inventor
▲つる▼永 和行
Kazuyuki Tsurunaga
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP7950491A priority Critical patent/JP2922663B2/en
Publication of JPH04314311A publication Critical patent/JPH04314311A/en
Application granted granted Critical
Publication of JP2922663B2 publication Critical patent/JP2922663B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To obtain high capacity ratio of a current lead which consists of a superconductor by inserting the superconductor with variable inductance in series between the terminal on the low-temperature side and the connection part of it. CONSTITUTION:Superconductor inductors 22c, 23c and 24c are inserted in series, whose inductances can be set at will, between the electrodes 22b, 23b and 24b of superconductors 22, 23 and 24 and the terminal of low temperature side 21b. In short, as for the superconductive current lead, when internal resistance and inductance of superconductors 22, 23 and 24 and an inter-metal bond resistance are thought to be zero, the equivalent circuit means a series circuit of junction resistance R22a, R23a and R24a between each superconductive bulk and the normal side electrodes 22a, 23a and 24a, junction resistances R22a, R23b, R24b of the electrodes 22b, 23b and 24b on the low temperature side and superconductive inductor reactances X22, X23 and X24.

Description

【発明の詳細な説明】[Detailed description of the invention]

[発明の目的] [Purpose of the invention]

【0001】0001

【産業上の利用分野】本発明は、各超電導体の分流比を
最適にできる超電導電流リードに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a superconducting current lead that can optimize the splitting ratio of each superconductor.

【0002】0002

【従来の技術】従来の超電導電流リードを図5に示す。 図6において、常温領域と液体ヘリウム温度(4.2K
)領域との間に液体窒素(77K)温度領域を設けて、
77Kと4.2K領域間を例えば液体窒素温度以上で超
電導となる酸化物超電導体11bで接続する。この超電
導体11bは酸化物のため熱伝導率が低く、金属製の電
流リードに比較した場合、77Kから4.2K領域への
伝導熱侵入量を大幅に低減することができる。また超電
導体故に導体抵抗が無いことから、従来の金属製電流リ
ードのように通電によるジュール損失も生じない等の利
点を持つ。従って、酸化物高温超電導体は、特に液体ヘ
リウムレベルの超電導機器用電流リードに応用すること
により、4.2K領域への熱侵入量を抑制して冷凍機等
冷却補機のコンパクト化と省電力化を図ることができる
2. Description of the Related Art A conventional superconducting current lead is shown in FIG. In Figure 6, the room temperature region and liquid helium temperature (4.2K
) A liquid nitrogen (77K) temperature region is provided between the
For example, the 77K and 4.2K regions are connected by an oxide superconductor 11b which becomes superconducting at a temperature higher than the liquid nitrogen temperature. Since this superconductor 11b is an oxide, its thermal conductivity is low, and compared to a metal current lead, the amount of conductive heat intrusion in the 77K to 4.2K region can be significantly reduced. Furthermore, since it is a superconductor, there is no conductor resistance, so it has the advantage of not causing joule loss due to current flow, unlike conventional metal current leads. Therefore, by applying oxide high-temperature superconductors to current leads for superconducting equipment, especially those using liquid helium, it is possible to suppress the amount of heat intrusion into the 4.2K region, thereby making cooling auxiliary equipment such as refrigerators more compact and saving power. It is possible to aim for

【0003】このような酸化物超電導電流リードを実用
化する場合、2つの主要な問題がある。その第1は、超
電導体を銀等の金属シースで覆うとその部分でリードの
断熱性が損われる為、この種の電流リードは基本的には
酸化物のバルク材でなければならない。第2は数kA級
以上の大電流電流リードを得ようとする場合、その直径
を大きくして目標の臨界電流値(以下、IC値と言う)
を達成するより、比較的小さい径のバルクを複数並列に
構成する方が技術的にもまた性能及び信頼性の点からも
容易且つ有利となる。すなわち、大きな直径のバルクを
得るには設備も大規模なものが必要となると同時に、バ
ルクの径が大きくなるほど全体にわたって均質な超電導
体を得にくくなるため単位断面積当たりの臨界電流値(
以下、臨界電流密度JCと言う)を維持することが技術
的に困難となる。このことは一定のIC値を得るのに、
より大きな断面積の電流リードが必要となること意味し
ており、断面積増加によって77Kから4.2K間の熱
抵抗が減少して断熱性能も低下することになる。従って
この様な事情を勘案すると、大容量の超電導電流リード
の実際的な構成としては例えば図7のようになる。 すなわち、図8のような比較的直径の小さい複数の酸化
物超電導体(本例では22,23,24の3本)を用い
て、常温側(77K)端子21aと低温側(4.2K)
端子21b間を接続するような構造とする。
There are two major problems when putting such oxide superconducting current leads into practical use. First, if a superconductor is covered with a metal sheath such as silver, the insulation properties of the lead will be impaired in that area, so this type of current lead must basically be made of a bulk oxide material. Second, when trying to obtain a large current lead of several kA class or higher, increase the diameter to reach the target critical current value (hereinafter referred to as IC value).
Rather than achieving this, it is easier and more advantageous to construct a plurality of relatively small diameter bulks in parallel from the viewpoint of technology, performance, and reliability. In other words, in order to obtain a bulk with a large diameter, large-scale equipment is required, and at the same time, the larger the diameter of the bulk, the more difficult it is to obtain a homogeneous superconductor throughout, so the critical current value per unit cross-sectional area (
It becomes technically difficult to maintain the critical current density JC (hereinafter referred to as critical current density JC). This means that in order to obtain a constant IC value,
This means that a current lead with a larger cross-sectional area is required, and due to the increased cross-sectional area, the thermal resistance between 77K and 4.2K decreases, and the insulation performance also decreases. Therefore, taking these circumstances into consideration, a practical configuration of a large-capacity superconducting current lead is as shown in FIG. 7, for example. That is, by using a plurality of oxide superconductors (in this example, three oxide superconductors 22, 23, and 24) with relatively small diameters as shown in FIG. 8, the normal temperature side (77K) terminal 21a and the low temperature side (4.2K)
The structure is such that the terminals 21b are connected.

【0004】0004

【発明が解決しようとする課題】以上、従来の技術とそ
れを応用した大容量電流リードの望ましい構造について
説明してきたが、図7のような構造の超電導電流リード
にした場合においても、次のような課題が残されている
[Problems to be Solved by the Invention] The conventional technology and the desirable structure of a large-capacity current lead using the same have been explained above, but even in the case of a superconducting current lead with the structure shown in Fig. 7, the following Similar issues remain.

【0005】その第1は、超電導バルクの両端部と端子
間に生じる接合抵抗のばらつきである。周知の通り、酸
化物超電導バルクの共通の課題として電極付けの難しさ
がある。すなわち超電導バルクと端子との電気的な接続
を行う場合には、図8に示すように超電導母材22の両
端部に何等かの金属を蒸着して電極22a,22bを構
成した上で、その電極部と端子21a,21bとを半田
付けするか、ろう付けする方法が用いられる。この時、
半田接合部分の抵抗値は無視できる程度に小さいが、問
題となるのが電極と超電導バルクとの間に生じる抵抗で
ある。一例として、直径10mmのBi系超電導バルク
材の両端表面に10mm長さの全周銀蒸着を施した時の
液体窒素中(77K)における電極はバルク間と接合抵
抗値を数サンプル評価したところ、10−6〜10−9
(Ω)の範囲で“ばらつき”が見られた。この原因は、
蒸着の良否に起因するものと考えられ分類上は酸化物超
電導体と蒸着金属膜間の境界抵抗と推測される。このよ
うな10−9(Ω)オーダーと言った極めて小さいレベ
ルの境界抵抗値の“ばらつき”を無くすことは、現状の
技術では困難な状況である。しかし、このような接続抵
抗値のばらつきを許容したまま、図7に示す電流リード
を製作した場合、各超電導体22,23,24を流れる
電流の比は102 オーダーにもおよび、実質的には最
も接合抵抗値の小さい超電導体のみに電流が集中して並
列化した効果が無くなる。
The first problem is the variation in junction resistance that occurs between both ends of the superconducting bulk and the terminals. As is well known, a common problem with bulk oxide superconductors is the difficulty of attaching electrodes. In other words, when electrically connecting a superconducting bulk and a terminal, as shown in FIG. A method is used in which the electrode portion and the terminals 21a, 21b are soldered or brazed. At this time,
Although the resistance value of the solder joint is negligibly small, the problem is the resistance generated between the electrode and the superconducting bulk. As an example, we evaluated the bulk-to-bulk and junction resistance values of several samples of electrodes in liquid nitrogen (77K) when a 10-mm length of silver was deposited on both end surfaces of a Bi-based superconducting bulk material with a diameter of 10 mm. 10-6 to 10-9
"Variation" was observed in the range of (Ω). The cause of this is
This is thought to be due to the quality of vapor deposition, and is classified as boundary resistance between the oxide superconductor and the vapor-deposited metal film. With the current technology, it is difficult to eliminate such "variations" in boundary resistance values at an extremely small level of the order of 10-9 (Ω). However, if the current lead shown in FIG. 7 is manufactured while allowing such variations in connection resistance values, the ratio of the currents flowing through each superconductor 22, 23, and 24 will be on the order of 102, which is substantially Current concentrates only on the superconductor with the lowest junction resistance value, and the effect of paralleling is lost.

【0006】第2の問題点としては、超電導体のIC値
のばらつきである。この種の超電導バルクは未だ理論的
解明も十分で無く、一定形状に成形し且つ同様の超電導
化処理を行ったとしても、それらのIC値を同程度にコ
ントロールすることは現状において困難である。すなわ
ち、仮に前述の接合抵抗値がほぼ一定の値に揃ったとし
ても、超電導バルクのIC値にばらつきがあった場合に
は、3本の超電導体22,23,24の内の最も低いI
C値の3倍の電流値までしか実際には電流を流せないと
いう不合理が生じる。
The second problem is the variation in IC values of superconductors. This type of superconducting bulk has not yet been sufficiently theoretically elucidated, and even if it is formed into a certain shape and subjected to similar superconducting treatment, it is currently difficult to control the IC values to the same degree. In other words, even if the aforementioned junction resistance value becomes almost constant, if there is variation in the IC value of the superconducting bulk, the lowest I of the three superconductors 22, 23, 24
An unreasonable situation arises in that a current can actually only flow up to a current value three times the C value.

【0007】以上のように、複数の酸化物超電導体を並
列に構成した従来の超電導電流リードにおいては、超電
導体と電極間の接合抵抗値や超電導体自身のIC値のば
らつきにより、並列に構成しても効率的に大容量化が図
れなかった。本発明の目的は、並列に構成された超電導
体から構成される電流リードの大容量化が可能になる超
電導電流リードを提供することにある。 [発明の構成]
As described above, in conventional superconducting current leads in which multiple oxide superconductors are configured in parallel, variations in the junction resistance between the superconductors and the electrodes and in the IC value of the superconductors themselves make it difficult to configure them in parallel. However, it was not possible to efficiently increase capacity. SUMMARY OF THE INVENTION An object of the present invention is to provide a superconducting current lead that can increase the capacity of a current lead made of superconductors arranged in parallel. [Structure of the invention]

【0008】[0008]

【課題を解決するための手段】上記目的を達成するため
に本発明は、常温側端子と低温側端子を有し、これらの
端子間に常温側端子へ一端が接続され低温側端子へ他端
が接続される超電導体を複数設けた超電導電流リードに
おいて、低温側端子接続部と低温側端子との間に設定可
能なインダクタンスを有する超電導体を直列に設ける。
[Means for Solving the Problems] In order to achieve the above object, the present invention has a normal temperature side terminal and a low temperature side terminal, and between these terminals, one end is connected to the normal temperature side terminal and the other end is connected to the low temperature side terminal. In a superconducting current lead including a plurality of superconductors to which a superconductor is connected, a superconductor having a settable inductance is provided in series between a low-temperature side terminal connection part and a low-temperature side terminal.

【0009】[0009]

【作用】このような構成において、接合抵抗値がばらつ
いたり各超電導体のIC値が相違する場合でも、各低温
側端子接続部と低温側端子との間に直列に設けた超電導
体のインダクタンス値を調整することにより、分流を最
適にした大容量化が可能になる。
[Function] In such a configuration, even if the junction resistance value varies or the IC value of each superconductor differs, the inductance value of the superconductor provided in series between each low temperature side terminal connection part and the low temperature side terminal By adjusting , it becomes possible to increase the capacity by optimizing the shunting.

【0010】0010

【実施例】以下、本発明の実施例を図面を参照して説明
する。なお図7及び図8と同様な部分については説明を
省略する。図1は本発明の超電導電流リードの構成図、
図2は本発明の超電導電流リードの各超電導体の構成図
、図3は本発明の超電導電流リードの等価回路である。
Embodiments Hereinafter, embodiments of the present invention will be described with reference to the drawings. Note that description of parts similar to those in FIGS. 7 and 8 will be omitted. FIG. 1 is a configuration diagram of the superconducting current lead of the present invention,
FIG. 2 is a block diagram of each superconductor of the superconducting current lead of the present invention, and FIG. 3 is an equivalent circuit of the superconducting current lead of the present invention.

【0011】本発明は、超電導体22,23,24の電
極22b,23b,24bと低温側端子21bとの間に
、そのインダクタンスを任意に設定できる超電導インダ
クタ22c,23c,24cを直列に設けたことを特徴
とする。従って、この超電導電流リードは超電導体22
,23,24内部の抵抗及びインダクタンスや各電極と
端子間と言ったいわゆる金属間接合抵抗を零と考えると
、その等価回路は図3に示すように、各超電導バルクと
常温側電極22a,23a,24aとの接合抵抗R22
a,R23a,R24aと、低温側電極22b,23b
,24b部の接合抵抗R22b,R23b,R24b、
及び超電導インダクタのリアクタンスX22,X23,
X24の直列回路となっている。尚、超電導インダクタ
22c,23c,24cは、金属系の超電導線を用いた
任意形状及び任意インダクタンス値を有する超電導コイ
ルとなっており、金属または高熱伝導性のセラミックコ
イルボビン22d,23d,24dに各々巻装、保持さ
れると同時に、その一端は各超電導体電極22b,23
b,24bにまた他端は低温側端子21bに各々半田付
け等の方法により接合されている。また超電導インダク
タ22c,23c,24cは所定のピッチで巻かれてお
り、そのインダクタンス値を必要な値に設定する場合に
は、ターン間を超電導線で必要数短絡する等の手段によ
り容易に調整できるような構造となっている。
[0011] In the present invention, superconducting inductors 22c, 23c, 24c, whose inductances can be arbitrarily set, are provided in series between the electrodes 22b, 23b, 24b of the superconductors 22, 23, 24 and the low temperature side terminal 21b. It is characterized by Therefore, this superconducting current lead is connected to the superconductor 22.
, 23, 24 and the so-called intermetallic junction resistance between each electrode and terminal are assumed to be zero, and the equivalent circuit is as shown in FIG. , 24a junction resistance R22
a, R23a, R24a, and low temperature side electrodes 22b, 23b
, 24b portion junction resistance R22b, R23b, R24b,
and the reactance of the superconducting inductor X22, X23,
It is a series circuit of X24. The superconducting inductors 22c, 23c, and 24c are superconducting coils using metallic superconducting wires having arbitrary shapes and arbitrary inductance values, and are wound around metallic or highly thermally conductive ceramic coil bobbins 22d, 23d, and 24d, respectively. At the same time, one end of each superconductor electrode 22b, 23
b, 24b, and the other end is connected to the low temperature side terminal 21b by a method such as soldering. In addition, the superconducting inductors 22c, 23c, and 24c are wound at a predetermined pitch, and when setting the inductance value to a required value, it can be easily adjusted by short-circuiting the required number of turns with a superconducting wire. It has a structure like this.

【0012】図4は、本超電導電流リードの仕上がり特
性の一例を示す等価回路である。本例では、超電導体2
2及び23の電極部境界抵抗R22a,R23a,R2
2b,R23bが、1箇所当たり1×10−6(Ω)、
超電導体24の電極部境界抵抗R24a,R24bが各
々1×10−9(Ω)、超電導体22,23,24のI
C値としては、条件を簡略化するため各々1000A,
1000A,1500Aとなっているものとする。また
、本発明の特徴である超電導インダクタ22c,23C
,24cは、有効巻き数20回でそのインダクタンスは
各々0.5(μH)になっているものとする。また、イ
ンダクタンスL22,L23,L24は、コイルターン
数Nの2乗に比例して変化するものとする。     L22=L23=L24=k0 ・N2   
    (H)        k0 :比例定数=0
.5×10−6/202 =1.25×10−9
FIG. 4 is an equivalent circuit showing an example of the finished characteristics of the present superconducting current lead. In this example, superconductor 2
2 and 23 electrode part boundary resistance R22a, R23a, R2
2b, R23b is 1 x 10-6 (Ω) per location,
The electrode portion boundary resistances R24a and R24b of the superconductor 24 are each 1×10-9 (Ω), and the I of the superconductors 22, 23, and 24 is
The C values are 1000A, 1000A and 1000A, respectively, to simplify the conditions.
Assume that they are 1000A and 1500A. In addition, superconducting inductors 22c and 23C, which are a feature of the present invention,
, 24c have an effective number of turns of 20 turns and an inductance of 0.5 (μH). Further, it is assumed that the inductances L22, L23, and L24 change in proportion to the square of the number N of coil turns. L22=L23=L24=k0 ・N2
(H) k0: Constant of proportionality = 0
.. 5 x 10-6/202 = 1.25 x 10-9

【0013】本例では、超電導体22,23のIC値が
24のIC値の1/1.5となっていることから、超電
導体22,23の回路インピーダンスZ22,Z23は
、超電導体24の回路インピーダンスZ24の1.5倍
にする必要がある。こうすることによって、各超電導体
のクエンチが同期して電流リードの通電容量が最大とな
る。
In this example, since the IC value of the superconductors 22 and 23 is 1/1.5 of the IC value of 24, the circuit impedances Z22 and Z23 of the superconductors 22 and 23 are equal to that of the superconductor 24. It is necessary to make it 1.5 times the circuit impedance Z24. By doing so, the quenching of each superconductor is synchronized and the current carrying capacity of the current lead is maximized.

【0014】次に、超電導インダクタの設定値について
説明する。前述の臨界電流値の比から、各回路インピー
ダンスZ22,Z23,Z24の関係は下記の等式で表
される。 Z22=Z23=k1 ・Z24        …(
1)ここに、 (1)式から超電導インダクタ24cの必要リアクタン
スを求める。 (2)式において、挿入するリアクタンス分を最小にす
る(X22=X23=0)と 超電導インダクタ24cの必要インダクタンス値L24
は ∴L24=X24/(2・π・f) =4.23×10−9(H) 但し、f=50Hz となる。 従って、本例においては、超電導インダクタ24の必要
ターン数N24は となる。
Next, the setting values of the superconducting inductor will be explained. Based on the above-mentioned ratio of critical current values, the relationship between each circuit impedance Z22, Z23, and Z24 is expressed by the following equation. Z22=Z23=k1 ・Z24...(
1) Here, the required reactance of the superconducting inductor 24c is determined from equation (1). In equation (2), if the reactance to be inserted is minimized (X22=X23=0), the required inductance value L24 of the superconducting inductor 24c is
is ∴L24=X24/(2・π・f) =4.23×10−9(H) However, f=50Hz. Therefore, in this example, the required number of turns N24 of the superconducting inductor 24 is as follows.

【0015】本実施例では、以上のように超電導インダ
クタL22,L23を全短絡し、L24のみを約2ター
ン残して短絡することにより、各超電導体22,23,
24の最適な分流が行われる。
In this embodiment, as described above, superconducting inductors L22, L23 are completely short-circuited, and only L24 is short-circuited with about 2 turns remaining, so that each superconductor 22, 23,
24 optimal diversions are performed.

【0016】図5に、従来の電流リードと本案による電
流リードの電流分布及び許容通電電流値を示す。従来技
術においては、超電導体22,23,24が超電導状態
にある時、超電導体24に最大1500Aの電流が流れ
る。しかし、他の超電導体22,23には各々1.5A
の電流しか流れない。この電流アンバランスは、前述の
電極部境界抵抗のばらつきによるものであり、その結果
電流リードとしての全電流は1503Aとなる(従来ケ
ース1)。
FIG. 5 shows the current distribution and allowable current value of the conventional current lead and the current lead according to the present invention. In the prior art, when the superconductors 22, 23, and 24 are in a superconducting state, a maximum current of 1500 A flows through the superconductor 24. However, the other superconductors 22 and 23 each have 1.5A.
Only current flows. This current imbalance is due to the aforementioned variation in the electrode boundary resistance, and as a result, the total current as a current lead is 1503 A (conventional case 1).

【0017】次に、その全電流がわずかでも上昇すると
、まず超電導体24の超電導性が消失(以下、クエンチ
と言う)して超電導体24は数mΩの高抵抗体に相転移
する。その結果、全電流は他の超電導体22,23へ転
流し、ほぼ均等に分流する。超電導体22,23は、各
々1000AのIC値を有しているため、全電流が20
00A以内であれば電流リードとしての機能を果たすこ
とができる(従来ケース2)。しかし、超電導体がクエ
ンチすると大きなジュール損失が発生し、様々な弊害を
引き起こすため、一般的には前述のケース1の使い方を
守るのが基本である。
Next, when the total current increases even slightly, the superconductivity of the superconductor 24 first disappears (hereinafter referred to as quench), and the superconductor 24 undergoes a phase transition to a high resistance material of several mΩ. As a result, the entire current is commutated to the other superconductors 22, 23 and divided almost equally. Since the superconductors 22 and 23 each have an IC value of 1000 A, the total current is 20
If it is within 00A, it can function as a current lead (conventional case 2). However, when the superconductor quenches, a large Joule loss occurs, causing various adverse effects, and therefore, in general, it is basic to follow the above-mentioned case 1.

【0018】これに対し、本電流リードは、前述の超電
導インダクタ22c,23c,24cの作用によって超
電導体22,23,24のクエンチがほぼ同時に起きる
ように設定されている。すなわち、超電導体22,23
,24が共に超電導状態にある時、電流リードへの通電
電流を増やしていくと、超電導体22,23の分流電流
値が各々1000Aに、また超電導体24の分流電流値
が1500Aとなるところまで電流リードは超電導を維
持する。従って、本案電流リードは、全電流値が、35
00Aまでその機能を果たすことができる(本発明)。
On the other hand, the current leads are set so that the superconductors 22, 23, and 24 are quenched almost simultaneously by the action of the superconducting inductors 22c, 23c, and 24c. That is, superconductors 22, 23
, 24 are both in a superconducting state, when the current applied to the current leads is increased, the shunt current value of superconductors 22 and 23 reaches 1000A each, and the shunt current value of superconductor 24 reaches 1500A. The current leads maintain superconductivity. Therefore, in the proposed current lead, the total current value is 35
It can fulfill its function up to 00A (this invention).

【0019】以上、各超電導体のIC値が相異する場合
について説明してきたが、超電導体22,23,24の
内部抵抗がそれぞれ不規則に異なる場合においても、同
様の考え方に基き超電導インダクタ22c,23c,2
4cを各々所定の値に設定すれば良い。
The case where the IC values of the superconductors are different has been explained above, but even when the internal resistances of the superconductors 22, 23, and 24 are irregularly different, the superconducting inductor 22c can be adjusted based on the same concept. ,23c,2
4c may be set to predetermined values.

【0020】[0020]

【発明の効果】以上のように本発明は、常温側端子と低
温側端子を有し、これらの端子間に常温側端子へ一端が
接続され低温側端子へ他端が接続される超電導体を複数
設けた超電導電流リードにおいて、低温側端子接続部と
低温側端子との間に設定可能なインダクタンスを有する
超電導体を直列に設けたので、接合抵抗値がばらついた
り常温側と低温側の端子間に接続されるIC値が相異し
ている場合でも、直列に挿入した超電導体のインダクタ
ンス値を調整し分流を最適にすることで大容量化が可能
となる。さらに、断面積が小さいものでも前述の超電導
体のインダクタンス値を調整することで各超電導体のI
C値を見かけ上一定にすることができるので、コンパク
トにすることもできる。
[Effects of the Invention] As described above, the present invention provides a superconductor having a normal temperature side terminal and a low temperature side terminal, and between these terminals, one end is connected to the normal temperature side terminal and the other end is connected to the low temperature side terminal. In multiple superconducting current leads, a superconductor with a settable inductance is placed in series between the low-temperature side terminal connection part and the low-temperature side terminal, so the junction resistance value may vary and there may be problems between the normal temperature side and low temperature side terminals. Even if the IC values connected to the superconductors are different, it is possible to increase the capacity by adjusting the inductance value of the superconductors inserted in series and optimizing the shunting. Furthermore, even if the cross-sectional area is small, the I of each superconductor can be adjusted by adjusting the inductance value of the superconductor mentioned above.
Since the C value can be kept apparently constant, it can also be made compact.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】本発明の超電導電流リードの構成図。FIG. 1 is a configuration diagram of a superconducting current lead of the present invention.

【図2】本発明の超電導電流リードの超電導体の構成図
FIG. 2 is a configuration diagram of a superconductor of the superconducting current lead of the present invention.

【図3】本発明の超電導電流リードの等価回路。FIG. 3 is an equivalent circuit of the superconducting current lead of the present invention.

【図4】本発明の超電導電流リードの一例を示す等価回
路。
FIG. 4 is an equivalent circuit showing an example of the superconducting current lead of the present invention.

【図5】超電導電流リードの通電容量の特性図。FIG. 5 is a characteristic diagram of current carrying capacity of a superconducting current lead.

【図6】超電導機器の構成図。FIG. 6 is a configuration diagram of a superconducting device.

【図7】従来の超電導電流リードの構成図。FIG. 7 is a configuration diagram of a conventional superconducting current lead.

【図8】従来の超電導電流リードの超電導体の構成図。FIG. 8 is a configuration diagram of a superconductor of a conventional superconducting current lead.

【符号の説明】[Explanation of symbols]

21a…常温側端子 21b…低温側端子 22,23,24…超電導体 21a...Normal temperature side terminal 21b...low temperature side terminal 22, 23, 24...superconductor

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  常温側端子と低温側端子を有し、これ
らの端子間に前記常温側端子へ一端が接続され前記低温
側端子へ他端が接続される超電導体を複数設けた超電導
電流リードにおいて、前記低温側端子接続部と前記低温
側端子との間に、設定可能なインダクタンスを有する超
電導体を直列に設けたことを特徴とする超電導電流リー
ド。
1. A superconducting current lead having a normal temperature side terminal and a low temperature side terminal, and having a plurality of superconductors between these terminals, one end of which is connected to the normal temperature side terminal, and the other end of which is connected to the low temperature side terminal. A superconducting current lead according to claim 1, characterized in that a superconductor having a settable inductance is provided in series between the low temperature side terminal connection portion and the low temperature side terminal.
JP7950491A 1991-04-12 1991-04-12 Superconducting current lead Expired - Lifetime JP2922663B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7950491A JP2922663B2 (en) 1991-04-12 1991-04-12 Superconducting current lead

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7950491A JP2922663B2 (en) 1991-04-12 1991-04-12 Superconducting current lead

Publications (2)

Publication Number Publication Date
JPH04314311A true JPH04314311A (en) 1992-11-05
JP2922663B2 JP2922663B2 (en) 1999-07-26

Family

ID=13691770

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7950491A Expired - Lifetime JP2922663B2 (en) 1991-04-12 1991-04-12 Superconducting current lead

Country Status (1)

Country Link
JP (1) JP2922663B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008130860A (en) * 2006-11-22 2008-06-05 Toshiba Corp Superconductive device, and current lead

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008130860A (en) * 2006-11-22 2008-06-05 Toshiba Corp Superconductive device, and current lead
JP4703545B2 (en) * 2006-11-22 2011-06-15 株式会社東芝 Superconducting devices and current leads

Also Published As

Publication number Publication date
JP2922663B2 (en) 1999-07-26

Similar Documents

Publication Publication Date Title
RU2397589C2 (en) Electrotechnical current limitation device
JP3215697B2 (en) Superconducting coil that limits fault current
US6275365B1 (en) Resistive fault current limiter
US7589941B2 (en) Fault current limiter having superconducting bypass reactor for simultaneous quenching
JPH01303765A (en) Current limiter
US6809910B1 (en) Method and apparatus to trigger superconductors in current limiting devices
KR101615667B1 (en) Superconducting fault current limiter
KR20150026820A (en) Superconductor coil arrangement
JP2922663B2 (en) Superconducting current lead
RU2219607C2 (en) Current transformer with superconducting coils
EP3511953B1 (en) Low-temperature superconducting wire rod having low stabilizing matrix ratio, and superconducting coil having same
RU2366056C1 (en) Super conducting resistive current limiter module (versions)
EP0428993B1 (en) Use of an oxide superconducting conductor
Amemiya et al. Stability analysis of multi-strand superconducting cables
JP3363164B2 (en) Superconducting conductor
JPS6161275B2 (en)
JPH05109323A (en) Superconductive assembled conductor
WO2015158470A1 (en) High di/dt superconductive joint
JPH01144602A (en) Superconducting magnet
JP2002262450A (en) Transformer current-limiting method using superconducting membrane and current-limiting device
JP2000040426A (en) Superconducting reactor
JPH0669554A (en) Current lead using oxide superconductor
JPH088469A (en) Current lead for superconducting equipment and manufacture thereof
JPH04255203A (en) Oxide superconducting current lead
CN102820116A (en) High-temperature superconducting film magnet