JPS6161275B2 - - Google Patents

Info

Publication number
JPS6161275B2
JPS6161275B2 JP53048892A JP4889278A JPS6161275B2 JP S6161275 B2 JPS6161275 B2 JP S6161275B2 JP 53048892 A JP53048892 A JP 53048892A JP 4889278 A JP4889278 A JP 4889278A JP S6161275 B2 JPS6161275 B2 JP S6161275B2
Authority
JP
Japan
Prior art keywords
superconducting
current
superconducting wire
switch
wires
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP53048892A
Other languages
Japanese (ja)
Other versions
JPS54140171A (en
Inventor
Masatoshi Shinobu
Mitsuo Tanaka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP4889278A priority Critical patent/JPS54140171A/en
Publication of JPS54140171A publication Critical patent/JPS54140171A/en
Publication of JPS6161275B2 publication Critical patent/JPS6161275B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 この発明は大電流用の熱式永久電流スイツチに
関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a thermal persistent current switch for large currents.

磁気浮上列車やエネルギ蓄積装置等に用いられ
る超電導コイルでは、長時間にわたつて一定電流
値で励磁しつづける必要があるため、永久電流励
磁が行われることが多い。永久電流励磁のために
は通常永久電流スイツチが用いられる。
Superconducting coils used in magnetic levitation trains, energy storage devices, and the like need to be continuously excited at a constant current value over a long period of time, so persistent current excitation is often performed. A persistent current switch is usually used for persistent current excitation.

永久電流スイツチとしては機械接触式のものも
あるが、小形、軽量、操作の容易さなどの利点か
ら超電導式のスイツチが用いられるのが一般的で
ある。これは超電導線の超電導状態(電気抵抗
零)と常電導状態(電気抵抗有限)との間の遷移
を利用してスイツチ動作を行うものである。
Although there are mechanical contact types of persistent current switches, superconducting type switches are generally used because of their advantages such as small size, light weight, and ease of operation. This utilizes the transition between the superconducting state (zero electrical resistance) and the normal conducting state (finite electrical resistance) of the superconducting wire to perform a switching operation.

しかしこのような超電導式永久電流スイツチを
使用する際、最も大きな問題となるのは超電導線
のもつ不安定性である。例えばスイツチに超電導
状態で電流を流した場合、超電導線のもつ臨界電
流よりはるかに低い電流値で超電導破壊(クエン
チ)を生じてしまうことがしばしばある。通常の
超電導マグネツトなどの巻線に用いられる超電導
線では、このような不安定性を除くために、銅や
アルミニウム等の低温で電気抵抗の低い常電導金
属と超電導体とを一体化することにより安定化を
図つている。しかし永久電流スイツチにおいて
は、常電導状態の電気抵抗(スイツチ遮断時の抵
抗)をできるだけ高くする必要があるため、この
ような低抵抗の安定化線材を用いることはでき
ず、超電導線をかなり不安定な状態で使用せざる
を得ない。
However, when using such a superconducting persistent current switch, the biggest problem is the instability of the superconducting wire. For example, when a current is passed through a switch in a superconducting state, superconducting breakdown (quenching) often occurs at a current value far lower than the critical current of the superconducting wire. In order to eliminate this instability, superconducting wires used in the windings of normal superconducting magnets are stabilized by integrating the superconductor with a normal conducting metal such as copper or aluminum, which has low electrical resistance at low temperatures. We are trying to make this happen. However, in persistent current switches, it is necessary to make the electrical resistance in the normal conducting state (resistance when the switch is cut off) as high as possible, so such low-resistance stabilizing wires cannot be used, and superconducting wires are considerably unstable. It must be used in stable conditions.

しかも上記のような不安定性は大電流容量を得
るために超電導線の断面積を大きくするなど著し
くなるという傾向がある。例えば第1図は約60μ
m径のNb―Ti線305本を集合した撚線を単位素線
として、この単位素線を複数本用いた永久電流ス
イツチの単位素線本数と、単位素線1本当りの電
流容量との関係を示す図であるが、素線本数が増
すほど素線1本当りの電流容量が低下しているこ
とがわかる。このことは、所要電流値が大きくな
るほど飛躍的に大量の超電導線を用いねばならな
いことを意味し、小形、軽量の大電流用永久電流
スイツチの実現を困難にする。
Furthermore, the instability described above tends to become more pronounced when the cross-sectional area of the superconducting wire is increased in order to obtain a large current capacity. For example, Figure 1 shows approximately 60μ
A stranded wire consisting of 305 Nb-Ti wires with a diameter of m is used as a unit wire, and the number of unit wires of a persistent current switch using multiple unit wires and the current capacity per unit wire are calculated. It is a diagram showing the relationship, and it can be seen that as the number of strands increases, the current capacity per strand decreases. This means that as the required current value increases, a dramatically larger amount of superconducting wire must be used, making it difficult to realize a small and lightweight persistent current switch for large currents.

このような困難を解決する手段としては、第2
図に示すように断面積の小さい超電導線(すなわ
ち第1図の例では少い単位素線本数)の単位スイ
ツチ1を作製し、この単位スイツチ1を必要個数
だけ並列に接続して用いれば良いことは極めて容
易に考え得る。第1図に示す特性の超電導線を例
にとれば、1300Aの電流容量を持つ永久電流スイ
ツチを単一の単位スイツチで実現しようとすれば
6本の単位素線を用いねばならないが、1本の単
位素線を用いた単位スイツチ1を作製すれば、こ
れは約470Aの許容電流を持つから、これを3個
並列に用いれば十分であり、単一のスイツチに比
べ素線本数を1/2にすることができる。このよう
に単位スイツチの並列使用の方式をとれば、超電
導線の量を少くすることにより小形軽量のスイツ
チが実現でき、又、常電導抵抗も高くとれるとい
う利点の他に、1個の単位スイツチを設計してお
けばあとは個数を増すだけですべての電流値をカ
バーできるため、設計、製作上の著しい簡略化が
図れるという利点もある。
As a means to solve such difficulties, the second
As shown in the figure, a unit switch 1 made of a superconducting wire with a small cross-sectional area (that is, a small number of unit wires in the example shown in Figure 1) is fabricated, and the necessary number of unit switches 1 are connected in parallel. This is extremely easy to imagine. Taking a superconducting wire with the characteristics shown in Figure 1 as an example, if we wanted to realize a persistent current switch with a current capacity of 1300A with a single unit switch, we would have to use six unit wires, but only one If the unit switch 1 is made using unit wires, it has an allowable current of about 470A, so it is sufficient to use three of them in parallel, and the number of wires is reduced to 1/1 compared to a single switch. Can be made 2. By using this method of using unit switches in parallel, a small and lightweight switch can be realized by reducing the amount of superconducting wire, and in addition to the advantages of high normal conduction resistance, one unit switch can be used in parallel. Once designed, all current values can be covered by simply increasing the number of devices, which has the advantage of significantly simplifying the design and manufacturing process.

しかるに、このような単位スイツチを用いる方
式には以下に述べるような大きな難点が存在す
る。すなわち複数個の単位スイツチ1を並列接続
する場合、超電導線2と例えば超電導コイルのリ
ード線等のこれに接続すべき外部超電導体3との
接続部4において個々の超電導線を均一な接続抵
抗をもつように接続することが極めて困難なため
である。以下このことを詳細に述べる。
However, the system using such a unit switch has major drawbacks as described below. That is, when connecting a plurality of unit switches 1 in parallel, the individual superconducting wires are connected with uniform connection resistance at the connection part 4 between the superconducting wire 2 and the external superconductor 3 to be connected to it, such as the lead wire of a superconducting coil. This is because it is extremely difficult to connect them properly. This will be described in detail below.

通常、超電導線の接続部では、超電導体どうし
を溶接やろう付によつて直接接続する方法はとら
れない。何故なら、このような接続部ではその電
流容量が他の部分より低下してしまうことが多い
し、また最近一般に用いられている極細多芯超電
導線(FM線)などでは、常電導金属基材を除去
して超電導芯線を露出させてこれらを互に接続す
るのは技術的にも困難であり、接続部での特性が
著しく低下する恐れがあるからである。このた
め、通常、超電導線の接続は常電導金属基材(多
くは銅)で覆われたままの状態でソルダ等による
ろう付け接続が行われる。永久電流スイツチに用
いられる超電導線は常電導状態での高抵抗を確保
するため、低抵抗の基材を除去したものが用いら
れるが、超電導コイルのリード線などの外部超電
導線と接続すべき両端の接続部は、上記の理由か
ら、常電導金属被覆を残しておき、この常電導金
属被覆と外部超電導線とをソルダでろう付け接続
するのが普通である。
Normally, superconductors are not directly connected to each other by welding or brazing at the joints of superconducting wires. This is because the current capacity of such connections is often lower than that of other parts, and in the case of ultrafine multifilamentary superconducting wires (FM wires) that are commonly used these days, the normal conducting metal base material This is because it is technically difficult to remove the superconducting core wires to expose the superconducting core wires and connect them to each other, and there is a risk that the characteristics at the connection portion will be significantly degraded. For this reason, the superconducting wires are usually connected by brazing with solder or the like while the superconducting wires remain covered with a normally conducting metal base material (often copper). The superconducting wire used in persistent current switches has a low-resistance base material removed in order to ensure high resistance in the normal conduction state, but both ends of the wire, which should be connected to external superconducting wires such as superconducting coil lead wires, are used. For the above-mentioned reasons, it is common practice to leave the normal conducting metal coating and connect the normal conducting metal coating to the external superconducting wire by brazing with solder.

第3図はこのような接続部の縦断面図であるが
芯線である超電導線2を流れる電流は接続部4で
は常電導金属5、ソルダ6および外部超電導線3
の常電導金属7を介して外部超電導線3に流れる
ことになるため、この接続部4で電気抵抗が存在
することになる。これが接続抵抗である。接続抵
抗は常電導金属5および7とソルダ6の抵抗によ
つて決るが、このうち支配的であるのはソルダ6
の抵抗値である。常電導金属として最も多く用い
られる無酸素銅と、ソルダとして一般的なPb―
60%Snハンダの液体ヘリウム温度での抵抗率を
比較すると、前者では1×10-8Ωcm程度、後者で
は5×10-7Ωcm程度と後者は前者の約50倍の値を
もつため、たとえ常電導金属層の厚さに比べてソ
ルダ層の厚さがかなり薄くともソルダ層の抵抗が
支配的となる。このような相対関係は常電導金属
としてアルミニウムを、ソルダ材料として他の低
融点合金などを考えてもそれほど変らない。
FIG. 3 is a longitudinal cross-sectional view of such a connection part, and the current flowing through the superconducting wire 2, which is the core wire, flows through the normal conductive metal 5, the solder 6, and the external superconducting wire 3 at the connection part 4.
Since it flows to the external superconducting wire 3 via the normal conducting metal 7, an electrical resistance exists at this connection portion 4. This is the connection resistance. The connection resistance is determined by the resistance of the normally conducting metals 5 and 7 and the solder 6, but the dominant one is the resistance of the solder 6.
is the resistance value of Oxygen-free copper, which is most commonly used as a normal conducting metal, and Pb, which is commonly used as a solder.
Comparing the resistivity of 60% Sn solder at liquid helium temperature, the former has a resistivity of about 1 × 10 -8 Ωcm, and the latter has a value of about 5 × 10 -7 Ωcm, which is about 50 times that of the former. Even if the thickness of the solder layer is considerably thinner than the thickness of the normally conducting metal layer, the resistance of the solder layer becomes dominant. Such a relative relationship does not change much even if we consider aluminum as the normal conducting metal and other low melting point alloys as the solder material.

上述のように接続抵抗が主としてソルダ6の抵
抗によつて決るとすると、接続抵抗値がかなり大
きなバラツキをもつことは避け難い。何故ならソ
ルダ6の層の厚さや幅はろう付けの際の加熱温
度、超電導線の表面状態、超電導線間の圧着力な
どにより大きく変化する可能性があるためであ
る。第4図は、1.6mm×3.2mmの矩形断面の無酸素
銅の基材即ち常電導金属の中に60μm径のNb―
Ti超電導芯線365本が埋め込まれた2本のFM線
を互いにPb―60%Snハンダで接続した長さ5cm
の接続部の接続抵抗を測定した結果である。測定
は全く同一条件で作製された5個の試料につい
て、通常の4端子法により、外部磁界5KGを印加
し、500Aの電流を流して行われた。第4図から
明らかなように、全く同じように作製した試料で
あるにもかかわらず接続抵抗はかなり大きく変動
しており、最大と最小で約4倍も異ることがわか
る。
If the connection resistance is mainly determined by the resistance of the solder 6 as described above, it is inevitable that the connection resistance values will vary considerably. This is because the thickness and width of the solder layer 6 may vary greatly depending on the heating temperature during brazing, the surface condition of the superconducting wires, the pressure bonding force between the superconducting wires, and the like. Figure 4 shows a 60 μm diameter Nb-
Two FM wires embedded with 365 Ti superconducting core wires are connected to each other with Pb-60%Sn solder, length 5 cm.
This is the result of measuring the connection resistance of the connection part. Measurements were carried out on five samples prepared under exactly the same conditions using the usual four-terminal method, applying an external magnetic field of 5 KG and passing a current of 500 A. As is clear from FIG. 4, although the samples were manufactured in exactly the same way, the connection resistance varied considerably, and the maximum and minimum values differed by a factor of about 4.

さて、先に述べたような単位スイツチを並列接
続して使用する場合を考える。第5図はn個の単
位スイツチを並列接続した場合の等価回路図であ
る。第5図においてL1,L2…,Loは各単位スイ
ツチの自己誘導係数、r1,r2…,roおよびr′1
r′2…,r′oは各単位スイツチとこれに接続される
リード線との接続部抵抗である。これに電流I0
流れた場合、各単位スイツチに流れる電流I1,I2
…,I0は定常状態では次式で与えられる。
Now, let us consider the case where the unit switches mentioned above are connected in parallel. FIG. 5 is an equivalent circuit diagram when n unit switches are connected in parallel. In Fig. 5, L 1 , L 2 ..., Lo are self-induction coefficients of each unit switch, r 1 , r 2 ..., r o and r' 1 ,
r′ 2 ..., r′ o are the connection resistances between each unit switch and the lead wire connected to it. When current I 0 flows through this, currents I 1 and I 2 flow through each unit switch.
..., I 0 is given by the following equation in steady state.

I1=R/RI0,I2=R/RI0,……Io=R
/RI0(1) ここに、 1/R=1/R+1/R+……+1/R (2) R1=r1+r′1,R2 =r2+r′2,……,Ro=ro+r′o (3) 各々の単位スイツチの許容電流をIqとすると
(1)式で与えられる分流電流の中、最も大きい値、
すなわち最も小さい接続抵抗をもつ単位スイツチ
の電流値がIqに達したときの全電流値が全体の
許容電流となる。今仮りにIq=500Aの単位スイ
ツチを4個並列に用いた場合を例にとつて考え
る。4個の単位スイツチの接続抵抗R1,R2
R3,R4がすべて等しい場合には、I1,I2,I3,I4
も等しくなりこの値がIqに達したところで全体
の許容電流Iqtが決る。従つて、Iqt=4Iq
2000Aとなる。ところが接続抵抗にバラツキがあ
り、例えばR1:R2:R3:R4=1:2:3:4に
なつていたとすると、I1:I2:I3:I4=1:1/2:1
/3: 1/4となる。I1=Iqで全体の許容電流が決るから、 Iqt=25/12Iq=1042Aとなり、先の場合の約1/2
に なつてしまう。
I 1 = R t /R 1 I 0 , I 2 = R t /R 2 I 0 , ... I o = R
t
/R o I 0 (1) Here, 1/R t = 1/R 1 +1/R 2 +...+1/R o (2) R 1 = r 1 + r' 1 , R 2 = r 2 + r ' 2 ,..., R o = r o + r' o (3) If the allowable current of each unit switch is I q ,
The largest value among the shunt currents given by equation (1),
That is, the total current value when the current value of the unit switch with the smallest connection resistance reaches Iq becomes the total allowable current. Let us now consider as an example the case where four unit switches with I q =500A are used in parallel. Connection resistance of four unit switches R 1 , R 2 ,
If R 3 and R 4 are all equal, I 1 , I 2 , I 3 , I 4
When these values reach Iq , the total allowable current Iqt is determined. Therefore, I qt =4I q =
It becomes 2000A. However, if there are variations in the connection resistance, for example, R 1 : R 2 : R 3 : R 4 = 1:2:3:4, I 1 : I 2 : I 3 : I 4 = 1:1/ 2:1
/3: becomes 1/4. Since the total allowable current is determined by I 1 = I q , I qt = 25/12 I q = 1042 A, which is about 1/2 of the previous case.
I'm getting used to it.

過渡状態を考えると、L1,L2…,LoがR1,R2
…Roに比べて十分大きいとすると、励磁中でI0
が変化している時にはI1,I2,…Ioは、ほぼL1
L2,…,Loで決る電流分布をとり、I0=一定に
なると、R1,R2…,Roで決る電流分布に徐々に
移行して行く。このときの電流変化の時定数はτ
=L/R,τ=L/R…τo=L/R
となる。そしてこの 過程で最も接続抵抗の小さな単位スイツチの電流
値がIqに達した時にクエンチする。すなわち時
間遅れを伴つたクエンチ現象が現われる。
Considering the transient state, L 1 , L 2 ..., Lo are R 1 , R 2
...If it is sufficiently large compared to R o , I 0 during excitation
When is changing, I 1 , I 2 , ... I o are approximately L 1 ,
A current distribution determined by L 2 , ..., Lo is taken, and when I 0 becomes constant, the current distribution gradually shifts to a current distribution determined by R 1 , R 2 ..., Ro . The time constant of current change at this time is τ
1 =L 1 /R 1 , τ 2 =L 2 /R 2 ...τ o =L o /R o
becomes. In this process, when the current value of the unit switch with the smallest connection resistance reaches Iq , the process is quenched. In other words, a quench phenomenon accompanied by a time delay appears.

以上のように単位スイツチを複数個並列接続し
て1個の永久電流スイツチを作る従来の方法では
希望通りの電流容量を持ち、長時間にわたつて電
流を流し続ける信頼性の高いスイツチを得ること
ができないという欠点があつた。
As described above, with the conventional method of connecting multiple unit switches in parallel to create one persistent current switch, it is difficult to obtain a highly reliable switch that has the desired current capacity and continues to flow current for a long time. The drawback was that it was not possible.

本発明の目的は、従来のもののかかる欠点を無
くし、各単位スイツチの電流分布を均一化してそ
の許容電流一ぱいまで流すことにより、これらを
並列接続して成る永久電流スイツチの許容電流を
増し、時間遅れのクエンチを排除し長時間安定に
電流を流し得るようにすることによつて小型で電
流容量の大きな熱式永久電流スイツチを提供する
ことである。
The purpose of the present invention is to eliminate such drawbacks of the conventional ones, to equalize the current distribution of each unit switch and to allow the current to flow up to its maximum allowable current, thereby increasing the allowable current of persistent current switches formed by connecting these units in parallel, and To provide a thermal persistent current switch which is small in size and has a large current capacity by eliminating delay quench and allowing current to flow stably for a long time.

すなわち本発明では超電導状態と常電導状態と
に遷移させる装置を有する単位スイツチの超電導
線材として、低温で10-5Ωcm乃至10-4の高い電気
抵抗を持つ例えばキユプロニツケル(登録商標)
等の常電導金属の基材の中に超電導線が芯線とし
て埋め込まれたものを用い、この線材を例えば巻
方向反対の2つの渦巻線を平行に配置するなどし
て無誘導に配置する。このようにすれば、接続部
での接続抵抗値が均一化されると同時にL1
L2,L3…Loが零に近い値になり、τi=L/Rが小
さ くなる。従つてスイツチング動作後速やかに各単
位スイツチの電流分布が均一化される。
That is, in the present invention, a superconducting wire for a unit switch having a device for transitioning between a superconducting state and a normal conducting state is made of, for example, Cypronickel (registered trademark), which has a high electrical resistance of 10 -5 Ωcm to 10 -4 at low temperatures.
A superconducting wire is embedded as a core wire in a normal conducting metal base material such as, for example, and the wire is arranged in a non-inductive manner, for example, by arranging two spiral wires with opposite winding directions in parallel. In this way, the connection resistance value at the connection part is made uniform, and at the same time L 1 ,
L 2 , L 3 . . . Lo becomes a value close to zero, and τ i =L i /R i becomes small. Therefore, the current distribution of each unit switch is made uniform immediately after the switching operation.

常電導金属の抵抗率が10-5Ωcmよりも小さいと
超電導線が不安定になり、10-4Ωcmよりも大きい
と単位スイツチと外部超電導線との間の抵抗が大
きくなり過ぎて有害である。
If the resistivity of the normal conducting metal is less than 10 -5 Ωcm, the superconducting wire becomes unstable, and if it is greater than 10 -4 Ωcm, the resistance between the unit switch and the external superconducting wire becomes too large, which is harmful. .

発明者らが行つた試験結果の一例では L=1×10-6(H),R=2×10-8(Ω) τ=1×10−6/2×10−8=50(sec) であり、巻線を工夫すればLはもつと小さい値に
することが可能で、τも同時に小さくできる。
An example of the test results conducted by the inventors is: L = 1 x 10 -6 (H), R = 2 x 10 -8 (Ω) τ = 1 x 10 -6 /2 x 10 -8 = 50 (sec) By devising the winding, L can be made to a small value, and τ can be made small at the same time.

一方、キユプロニツケルの液体ヘリウム温度で
の抵抗率は4×10-5Ω程度とPb―60%Soハンダ
の約80倍の大きさを持つため、接続抵抗はほとん
どキユプロニツケル基材で決ると考えられるが、
キユプロニツケル基材の抵抗は、超電導線の幾何
学的形状が同じであればほぼ同じ値をとるためで
ある。第6図は常電導金属である0.3mm径のキユ
プロニツケル基材に超電導線が芯線として114本
が埋め込まれたFM線即ち超電導線と常電導金属
が2.1mm径の銅基材であるFM線即ち外部超電導線
を長さ15cmにわたるPb―60%Snハンダで接続し
た場合接続部の抵抗を測定した結果を示す。測定
は同一条件で作製された18個の試料について外部
磁界5KGを印加して100Aの電流で行われたが、
図から明らかなように接続抵抗のバラツキは12%
以内であり、第4図の場合に比べて極めて小さい
ことがわかる。
On the other hand, the resistivity of Cypronickel at liquid helium temperature is about 4 × 10 -5 Ω, which is about 80 times that of P b -60% So solder, so it is thought that the connection resistance is mostly determined by the Cypronickel base material. However,
This is because the resistance of the Cypronickel base material takes approximately the same value if the geometric shape of the superconducting wire is the same. Figure 6 shows an FM wire in which 114 superconducting wires are embedded as core wires in a Cupronickel base material with a diameter of 0.3 mm, which is a normal conducting metal, and an FM wire in which the normal conducting metal is a copper base material with a diameter of 2.1 mm. The results of measuring the resistance of the connection section when external superconducting wires are connected with P b -60% Sn solder over a length of 15 cm are shown. Measurements were performed on 18 samples prepared under the same conditions with an external magnetic field of 5KG applied and a current of 100A.
As is clear from the figure, the variation in connection resistance is 12%.
It can be seen that the value is within 100%, which is extremely small compared to the case shown in FIG.

第7図は本発明の1実施例として、第6図の測
定で用いたと同じ0.3mm径のキユプロニツケル基
材FM線の6本撚線を用いて単位スイツチを作製
し、これを並列接続して熱式永久電流スイツチを
作製した場合の並列個数と、スイツチの許容電流
値との関係を示した図である。1個の単位スイツ
チは約550Aの許容電流値をもつているが、これ
を並列接続すると許容電流は並列個数にほぼ比例
して増加しており1個当りの許容電流値の低下は
見られない。又、この単位スイツチ3個を用いた
ものに1400Aの電流を6時間以上流し続けたが、
その間クエンチは起こらず、先に述べたような時
間遅れを伴つたクエンチ現象も全くない。
Fig. 7 shows an example of the present invention in which a unit switch is fabricated using six strands of Cypronickel-based FM wires with a diameter of 0.3 mm, which are the same as those used in the measurements shown in Fig. 6, and these are connected in parallel. FIG. 3 is a diagram showing the relationship between the number of parallel switches and the allowable current value of the switch when a thermal persistent current switch is manufactured. One unit switch has an allowable current value of approximately 550A, but when these are connected in parallel, the allowable current increases almost in proportion to the number of parallel switches, and there is no decrease in the allowable current value per unit. . In addition, a current of 1400A was continuously applied to a device using three of these unit switches for more than 6 hours,
During this time, no quench occurs, and there is no quench phenomenon accompanied by a time delay as described above.

以上のようにキユプロニツケル基材により被覆
された超電導線を無誘導に巻線した単位スイツチ
を複数個並列接続することにより容易に大電流用
の信頼性の高い永久電流スイツチを得ることがで
きる。
As described above, a highly reliable persistent current switch for large currents can be easily obtained by connecting in parallel a plurality of unit switches each made of a non-inductively wound superconducting wire coated with a Cypronickel base material.

上記実施例では単位スイツチに0.3mm径のキユ
プロニツケル基材のFM線の6本撚線を用いた
が、線の数、サイズ等はこれに限るものではな
い。又、キユプロニツケル基材にスイツチを構成
する超電導線の全長にわたつて存在する必要はな
く、接続部のみに存在するだけで十分である。
In the above embodiment, six stranded FM wires made of Cypronickel base material with a diameter of 0.3 mm were used for the unit switch, but the number of wires, size, etc. are not limited to this. Further, it is not necessary that the superconducting wire exists over the entire length of the superconducting wire constituting the switch on the Cypronickel base material, and it is sufficient that the superconducting wire exists only at the connecting portion.

さらに、基材材料としてはキユプロニツケルに
限るものではなく、低温でこれと同程度の抵抗
率、すなわち10-5Ωcm以上の抵抗率を有する他の
金属、例えばマンガニン、コンスタンタ、モネ
ル、インコネル、オーステナイト系ステンレス鋼
などを用いても同様の効果が期待できることは上
述の説明から明白である。
Furthermore, the base material is not limited to Cypronickel, but other metals that have a similar resistivity at low temperatures, that is, a resistivity of 10 -5 Ωcm or more, such as manganin, constanta, monel, inconel, and austenite. It is clear from the above description that similar effects can be expected even if stainless steel or the like is used.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の熱式永久電流スイツチにおける
超電導線の素線本数と素線1本当りの許容電流の
関係を示すグラフ、第2図は単位スイツチを複数
個並列接続した場合を示すブロツク図、第3図は
超電導線間をソルダで接続した接続部を示す断面
図、第4図は2本の銅被覆超電導線を互いにPb
―60%Soハンダで接続した場合の接続抵抗の試
料による違いを示すグラフ、第5図は単位スイツ
チを複数個並列接続した場合の等価回路図、第6
図は本発明の1実施例として用いられたキユプロ
ニツケル被覆超電導線と銅被覆超電導線とをPb
―60%Soハンダで接続した場合の接続部の抵抗
の試料による違いを示すグラフ、第7図は本発明
の1実施例にもとづく熱式永久電流スイツチの、
単位スイツチの個数と許容電流の関係を示すグラ
フである。 図において1は単位スイツチ、2は超電導線、
3は外部超電導線、4は接続部、5は常電導金
属、6はソルダ、7は常電導金属である。
Figure 1 is a graph showing the relationship between the number of strands of superconducting wire and the allowable current per strand in a conventional thermal persistent current switch, and Figure 2 is a block diagram showing the case where multiple unit switches are connected in parallel. , Fig. 3 is a cross-sectional view showing a connection section where two superconducting wires are connected with solder, and Fig. 4 is a cross-sectional view showing a connection part where two copper-covered superconducting wires are connected to each other by P b
- 60% S o A graph showing the difference in connection resistance depending on the sample when connected with solder. Figure 5 is an equivalent circuit diagram when multiple unit switches are connected in parallel. Figure 6 is an equivalent circuit diagram when multiple unit switches are connected in parallel.
The figure shows P b
- 60% S o A graph showing the difference in resistance of the connection part depending on the sample when connected with solder, Figure 7 shows a thermal persistent current switch based on an embodiment of the present invention.
It is a graph showing the relationship between the number of unit switches and allowable current. In the figure, 1 is a unit switch, 2 is a superconducting wire,
3 is an external superconducting wire, 4 is a connecting portion, 5 is a normal conducting metal, 6 is a solder, and 7 is a normal conducting metal.

Claims (1)

【特許請求の範囲】 1 各々の少なくとも一部が常電導金属により被
覆された複数の超電導線と、上記超電導線を超電
導状態と常電導状態とに遷移させる装置とを有す
る単位スイツチを複数個並列接続して成り、上記
超電導線は上記単位スイツチが並列接続される接
続部において上記常電導金属を介してハンダによ
り外部超電導線に接続された熱式永久電流に於
て、上記常電導金属が、上記超電導線が超電導状
態を呈する温度において10-5Ωcm乃至10-4Ωcmの
電気抵抗率を有する金属であることを特徴とする
熱式永久電流スイツチ。 2 上記超電導線が、無誘導状態に配置された特
許請求の範囲第1項記載の熱式永久電流スイツ
チ。 3 上記常電導金属が、キユブロニツケル、マン
ガニン、コンスタンタン、インコネル、オーステ
ナイト系ステンレス鋼等からなる群から選んだい
ずれか一つの金属である特許請求の範囲第1項あ
るいは第2項記載の熱式永久電流スイツチ。
[Claims] 1. A plurality of unit switches in parallel each having a plurality of superconducting wires, each of which is at least partially coated with a normal conducting metal, and a device for transitioning the superconducting wire between a superconducting state and a normal conducting state. The superconducting wire is connected to the external superconducting wire by solder through the normal conducting metal at the connection point where the unit switches are connected in parallel. A thermal persistent current switch characterized in that the superconducting wire is made of a metal having an electrical resistivity of 10 -5 Ωcm to 10 -4 Ωcm at a temperature at which it exhibits a superconducting state. 2. The thermal persistent current switch according to claim 1, wherein the superconducting wire is arranged in a non-inductive state. 3. Thermal persistent current according to claim 1 or 2, wherein the normally conductive metal is any one metal selected from the group consisting of cube nickel, manganin, constantan, inconel, austenitic stainless steel, etc. Switch.
JP4889278A 1978-04-24 1978-04-24 Thermal permanent current switch Granted JPS54140171A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4889278A JPS54140171A (en) 1978-04-24 1978-04-24 Thermal permanent current switch

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4889278A JPS54140171A (en) 1978-04-24 1978-04-24 Thermal permanent current switch

Publications (2)

Publication Number Publication Date
JPS54140171A JPS54140171A (en) 1979-10-31
JPS6161275B2 true JPS6161275B2 (en) 1986-12-24

Family

ID=12815912

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4889278A Granted JPS54140171A (en) 1978-04-24 1978-04-24 Thermal permanent current switch

Country Status (1)

Country Link
JP (1) JPS54140171A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0716029B2 (en) * 1983-10-26 1995-02-22 株式会社東芝 Superconducting wire
JPH0716030B2 (en) * 1983-10-26 1995-02-22 株式会社東芝 Superconducting wire manufacturing method
JPS60109291A (en) * 1983-11-18 1985-06-14 Toshiba Corp Manufacture of thermal superconductive switch
JPH10256030A (en) * 1997-03-11 1998-09-25 Mitsubishi Electric Corp Superconducting coil device

Also Published As

Publication number Publication date
JPS54140171A (en) 1979-10-31

Similar Documents

Publication Publication Date Title
JP3073993B2 (en) Fault current limiter
US5828291A (en) Multiple compound conductor current-limiting device
US10186858B2 (en) Device for a current limiter and a current limiter comprising said device
JP3984303B2 (en) High temperature superconductor and method of using the high temperature superconductor
Mulder et al. Development of joint terminals for a new six-around-one ReBCO-CORC cable-in-conduit conductor rated 45 kA at 10 T/4 K
JP2000032654A (en) Current limiting element using oxide superconductor, and current limiter thereof
US4409425A (en) Cryogenically stabilized superconductor in cable form for large currents and alternating field stresses
JP3892605B2 (en) Superconducting coil device for current limiting element
JPS6161275B2 (en)
JP3977884B2 (en) Current limiting element, current limiter using oxide superconductor, and manufacturing method thereof
US20030164749A1 (en) Superconducting conductors and their method of manufacture
JP2009049257A (en) Superconducting current-limiting element
US4395584A (en) Cable shaped cryogenically cooled stabilized superconductor
JP4391066B2 (en) Multi-layered superconducting conductor terminal structure and manufacturing method thereof
JPH08321416A (en) Current lead for superconducting device
JPS62593B2 (en)
JP6913570B2 (en) Superconducting tape wire, superconducting current lead using this superconducting tape wire, permanent current switch and superconducting coil
WO2000010176A1 (en) Superconducting conductors and their method of manufacture
JPH03156809A (en) Application of oxide superconductive conductor
JP5118412B2 (en) Assembled conductor of oxide superconducting wire and method for producing the assembled conductor
JP2859953B2 (en) Superconducting device and permanent current switch used for the superconducting device
JP2001283660A (en) Connection structure for superconducting wire
JP5472682B2 (en) Superconducting current limiting element
JPH05327041A (en) Persistent current switch
JP3568745B2 (en) Oxide superconducting cable