JP2009049257A - Superconducting current-limiting element - Google Patents

Superconducting current-limiting element Download PDF

Info

Publication number
JP2009049257A
JP2009049257A JP2007215528A JP2007215528A JP2009049257A JP 2009049257 A JP2009049257 A JP 2009049257A JP 2007215528 A JP2007215528 A JP 2007215528A JP 2007215528 A JP2007215528 A JP 2007215528A JP 2009049257 A JP2009049257 A JP 2009049257A
Authority
JP
Japan
Prior art keywords
superconducting
current
superconducting thin
thin film
limiting element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007215528A
Other languages
Japanese (ja)
Inventor
Hirofumi Yamazaki
裕文 山崎
Kazuaki Arai
和昭 新井
Katsuyuki Kaiho
勝之 海保
Akihiko Nakagawa
愛彦 中川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2007215528A priority Critical patent/JP2009049257A/en
Publication of JP2009049257A publication Critical patent/JP2009049257A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Abstract

<P>PROBLEM TO BE SOLVED: To manufacture a superconducting thin film current-limiting element having a rated current equivalent to the sum of respective critical currents of a plurality of superconducting thin films even when the respective critical currents of the plurality of superconducting thin films are remarkably different from one another. <P>SOLUTION: The superconducting current-limiting element is characterized by having superconducting thin films respectively formed on a plurality of insulator substrates 3 and 4, and being composed of: superconducting thin films 1 and 2 with branch current protection films deposited on the respective superconducting thin films, and each formed of a pure metal or alloy; electrode parts 5-6, 7-8 deposited at both ends of the respective superconducting thin films 1 and 2 with branch current protection films, and each formed of a pure metal; and metal base material superconducting tapes 9 and 10 connected through solder between the electrode parts 5-7, 6-8 of the same polarity of the respective superconducting thin films 1 and 2 with branch current protection films, and connecting the respective superconducting thin films 1 and 2 with branch current protection films in parallel to each other. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、電路に流れる短絡電流等の過大な電流を限流する超電導限流素子に関する。   The present invention relates to a superconducting current limiting element that limits an excessive current such as a short-circuit current flowing in an electric circuit.

超電導体は、超電導状態においては電気抵抗がゼロとなるため、大きな電流を流すことができるが、ある決まった電流値(臨界電流I)より大きな電流を流すと電気抵抗が発生する。さらに電流を大きくして行くと、発生する熱のため超電導体の温度が上昇し、常電導状態になって、より大きな電気抵抗を生じる。このような超電導体の特徴を生かして、電力系統において、通常時は電気抵抗がゼロで大きな電流を流し、短絡事故時には大きな電気抵抗を発生させて事故電流の増大を抑制する超電導限流器が用いられている。 Since the superconductor has zero electric resistance in the superconducting state, a large current can flow. However, when a current larger than a predetermined current value (critical current I c ) flows, an electric resistance is generated. As the current is further increased, the temperature of the superconductor rises due to the generated heat and becomes a normal conducting state, resulting in a larger electrical resistance. Taking advantage of such superconductor characteristics, superconducting fault current limiters are used in power systems. It is used.

電力自由化を推進して行く上で大きな課題となっているのが、分散電源連系に伴う短絡事故電流の増大である。その対策として最も有望なのが、通常時は低インピーダンス、系統事故時には高インピーダンスとなって事故電流を抑制する限流器の導入である。電力の自由化を推進する立場から、低コストかつ高信頼性の限流器の実現に対する社会的要請は非常に高い。配電系統に限流器を導入することを想定すると、大面積超電導薄膜を用いた超電導薄膜限流器が、構造がコンパクトであり、過電流に対して瞬時に応答し、常時発生する交流損失が小さい等、多くの優れた点があり、信頼性・性能・体格・大容量化への拡張性の観点から最も優れていると考えられている。   A major issue in promoting the liberalization of electric power is the increase in short-circuit fault current associated with the distributed power supply interconnection. The most promising countermeasure is the introduction of a current limiter that suppresses the fault current with a low impedance during normal operation and a high impedance during system faults. From the standpoint of promoting the liberalization of electric power, there is a very high social demand for the realization of a low-cost and highly reliable current limiter. Assuming that a current limiter is introduced into the distribution system, the superconducting thin film current limiter using a large-area superconducting thin film has a compact structure, responds instantaneously to overcurrent, and constantly generates AC loss. There are many excellent points such as small size, and it is considered the most excellent from the viewpoint of reliability, performance, physique, and scalability to large capacity.

超電導薄膜限流器は、液体窒素温度(66〜77.3K)で動作する薄膜限流素子を電力系統の電路に直列接続し、短絡事故時の電流の増大とともに超電導薄膜を超電導状態(S)から常電導状態(N)に転移させ、その常電導抵抗によって系統電流を抑制するものであり、SN転移抵抗型限流器とも呼ばれている。従来、サファイア基板(アルミナ単結晶基板)等の絶縁体基板上に、必要に応じて適当なバッファ層を介してYBaCu(以下、YBCOと言う。)等の高温超電導酸化物の薄膜を作製した大面積超電導薄膜が用いられている。 The superconducting thin film current limiter has a thin film current limiting element that operates at a liquid nitrogen temperature (66-77.3 K) connected in series to the electric circuit of the power system. To the normal conduction state (N) and the system current is suppressed by the normal conduction resistance, which is also called an SN transition resistance type current limiter. Conventionally, a high-temperature superconducting oxide such as YBa 2 Cu 3 O 7 (hereinafter referred to as YBCO) is provided on an insulating substrate such as a sapphire substrate (alumina single crystal substrate) through an appropriate buffer layer as necessary. A large-area superconducting thin film with a thin film is used.

しかし、このような超電導薄膜を用いた場合、短絡事故直後において、最初に常電導転移した部分で局所的に温度が急上昇して超電導薄膜が破損すると言うホットスポット現象を生じる。超電導薄膜限流器では、それを防止するために、金や銀等の金属を超電導薄膜の上に蒸着して常電導転移時の分流保護層とするのが一般的である(非特許文献1、2参照)。しかし、一方、このような金属分流層を付加すると超電導線路の電気抵抗を大きく低下させてしまい、決まった電圧が印加される限流時の発熱を増大させるため、設計する電界(許容電界)が低下し、結果として長い超電導線路を必要とするため、高価な薄膜を多量に使うと言う問題点があった。これに対し、純金属よりも1桁近く抵抗率の高い金銀合金を超電導薄膜に蒸着して分流保護層とし、かつ、安価な無誘導巻抵抗を並列接続する超電導薄膜限流素子が考案され、40Vpeak/cm以上と言う従来の超電導薄膜限流素子より4倍以上高い許容電界が得られている(特許文献1、非特許文献3、4参照)。
B. Gromoll, G. Ries, W. Schmidt, H.-P. Kraemer,B.Seebacher, B. Utz, R. Nies, H.-W. Neumueller, E. Baltzer, S. Fischer and B.Heismann, "Resistive fault current limiters with YBCO films-100 kVA functionalmodel", IEEE Trans. Appl. Supercond. 9 (1999) 656-659 Ok-BaeHyun, Hye-Rim Kim, J. Sim, Y.-H. Jung, K.-B. Park,J.-S.Kang,B.W.Lee,and I.-S.Oh, "6.6 kV resistive superconducting fault current limiter based on YBCOfilms", IEEE Trans. Appl. Supercond. 15 (2005) 2027-2030 H. Yamasaki, M. Furuse, and Y. Nakagawa,"High-power-density fault-current limiting devices using superconductingYBa2Cu3O7 films and high-resistivity alloy shunt layers,” Appl. Phys. Lett. 85(2004) 4427-4429 H. Yamasaki, K. Arai, M. Furuse, K. Kaiho, and Y.Nakagawa,“Low-cost and high-power-density resistive fault-current limitingelements using YBCO thin films and Au-Ag alloy shunt layers," J. Phys.Conf. Ser. 43 (2006) 937-941 K. Kaiho, H. Yamasaki, K.Arai, M. Furuse, T. Manabe, and M. Sohma,“Study on the quench current of YBCOthin film FCL," IEEE Trans. Appl. Supercond., 17 (2007) 1795-1798. 特願2006−528493(平成18年9月14日) 特願2007−127740(平成19年5月14日)
However, when such a superconducting thin film is used, immediately after a short-circuit accident, a hot spot phenomenon occurs in which the temperature rises locally at the part where the normal conducting transition is first performed and the superconducting thin film is damaged. In a superconducting thin film current limiter, in order to prevent this, it is common to deposit a metal such as gold or silver on the superconducting thin film to form a shunt protective layer during normal conduction transition (Non-patent Document 1). 2). However, if such a metal shunt layer is added, the electrical resistance of the superconducting line is greatly reduced, and heat generation at the time of current limiting when a predetermined voltage is applied is increased. As a result, a long superconducting line is required, and there is a problem that a large amount of expensive thin film is used. On the other hand, a superconducting thin film current limiting device was devised, in which a gold-silver alloy having a resistivity that is nearly an order of magnitude higher than that of pure metal is deposited on the superconducting thin film to form a shunt protective layer, and an inexpensive non-inductive winding resistor is connected in parallel An allowable electric field that is 4 times or more higher than that of a conventional superconducting thin film current limiting element of 40 V peak / cm or more is obtained (see Patent Document 1, Non-Patent Documents 3 and 4).
B. Gromoll, G. Ries, W. Schmidt, H.-P. Kraemer, B. Seebacher, B. Utz, R. Nies, H.-W. Neumueller, E. Baltzer, S. Fischer and B. Heismann, "Resistive fault current limiters with YBCO films-100 kVA functionalmodel", IEEE Trans. Appl. Supercond. 9 (1999) 656-659 Ok-BaeHyun, Hye-Rim Kim, J. Sim, Y.-H. Jung, K.-B. Park, J.-S.Kang, BWLee, and I.-S.Oh, "6.6 kV resistive superconducting fault current limiter based on YBCOfilms ", IEEE Trans. Appl. Supercond. 15 (2005) 2027-2030 H. Yamasaki, M. Furuse, and Y. Nakagawa, "High-power-density fault-current limiting devices using superconductingYBa2Cu3O7 films and high-resistivity alloy shunt layers,” Appl. Phys. Lett. 85 (2004) 4427-4429 H. Yamasaki, K. Arai, M. Furuse, K. Kaiho, and Y. Nakagawa, “Low-cost and high-power-density resistive fault-current limiting elements using YBCO thin films and Au-Ag alloy shunt layers,” J Phys. Conf. Ser. 43 (2006) 937-941 K. Kaiho, H. Yamasaki, K. Arai, M. Furuse, T. Manabe, and M. Sohma, “Study on the quench current of YBCOthin film FCL,” IEEE Trans. Appl. Supercond., 17 (2007) 1795 -1798. Japanese Patent Application No. 2006-528493 (September 14, 2006) Japanese Patent Application No. 2007-127740 (May 14, 2007)

通常、限流器は、電力系統の事故電流の抑制のために用いられるが、超電導薄膜限流器で想定される定格電流は、配電系統で用いる小さいものでも200Arms 以上、66kV以上の送電・基幹系統では1kArms以上である。SN転移抵抗型限流素子の定格電流(交流)は、通常、そのピーク値が直流臨界電流値Iと等しくなるように決めるため、Irat(rms)=I/√2となる。これは、臨界電流が、通常、超電導体1cm当り1μVという微小電圧が発生する時、即ち電界E=10−4V/mとなるときの電流値として定義され、液体窒素で冷却されている超電導薄膜がクエンチ(急激に常電導転移)する電流値Iは、臨界電流の1.3倍程度以上であるため、妥当な設計である。 Normally, a current limiter is used to suppress the fault current in the power system, but the rated current assumed for the superconducting thin-film current limiter is 200 A rms or more and 66 kV or more for transmission / In the backbone system, it is 1 kA rms or more. Since the rated current (alternating current) of the SN transition resistance type current limiting element is usually determined such that its peak value is equal to the direct current critical current value I c , I rat (rms) = I c / √2. This is defined as the current value when the critical current is usually 1 μV per 1 cm of the superconductor, that is, when the electric field E 0 = 10 −4 V / m, and is cooled with liquid nitrogen. The current value I q at which the superconducting thin film quenches (rapidly normal conducting transition) is about 1.3 times the critical current or more, and is therefore a reasonable design.

従って、特許文献1および非特許文献2〜4に記載されているような5〜10mm幅の超電導薄膜(臨界電流が約45〜96A、定格電流約32〜68Arms)では電流容量が足りず、より幅広の超電導薄膜を用いたり、並列接続したりして、電流容量を増大させる必要がある。非特許文献2には、並列接続の際の均流化のために、超電導テープで作製した相間トランスを用いることが記載されている。また、特許文献2には、高抵抗率の合金分流層を有する薄膜限流素子の大電流容量化に伴うホットスポット現象の深刻化の対策として、小容量のコンデンサを並列接続する方式が提案されている。 Therefore, a superconducting thin film having a width of 5 to 10 mm as described in Patent Document 1 and Non-Patent Documents 2 to 4 (critical current is about 45 to 96 A, rated current is about 32 to 68 A rms ) has insufficient current capacity, It is necessary to increase the current capacity by using a wider superconducting thin film or by connecting in parallel. Non-Patent Document 2 describes the use of an interphase transformer made of superconducting tape for leveling in parallel connection. Patent Document 2 proposes a method of connecting small-capacitance capacitors in parallel as a countermeasure against the seriousness of the hot spot phenomenon accompanying the increase in the current capacity of a thin-film current limiting element having a high resistivity alloy shunt layer. ing.

複数の超電導薄膜を並列接続することによって電流容量を増大させる場合、それぞれの超電導薄膜の臨界電流が必ずしも同じとは限らず、臨界電流が大きく異なる超電導薄膜を並列接続することもあり得る。例えば、大面積超電導薄膜の作製技術が成熟しておらず、製品としての超電導薄膜の臨界電流にばらつきがある場合や、任意の定格電流に対応するため、臨界電流の大きな超電導薄膜と小さな超電導薄膜を組み合わせて並列接続する場合等が想定される。   When the current capacity is increased by connecting a plurality of superconducting thin films in parallel, the critical currents of the respective superconducting thin films are not necessarily the same, and superconducting thin films having greatly different critical currents may be connected in parallel. For example, if the manufacturing technology for large-area superconducting thin films is not mature and the critical current of the superconducting thin film as a product varies, or if it corresponds to any rated current, a superconducting thin film with a large critical current and a small superconducting thin film The case where it connects in parallel etc. is assumed.

図3は、特許文献2に記載されている超電導限流素子の構成を示す図である。
この超電導限流素子は、サファイア基板103上の、2cm幅で長さ6cmの高温超電導YBCO 薄膜101(膜厚300nm、臨界電流密度3.0MA/cmで、素子定格電流=直流臨界電流=180Apeak)と、サファイア基板104上の、1cm幅で長さ6cmの高温超電導YBCO薄膜102(膜厚300nm、臨界電流密度3.0MA/cmで、素子定格電流=直流臨界電流=90Apeak)とを用い、これらの高温超電導薄膜101、102の上面には、それぞれ金に約23wt%の銀を混ぜた組成の合金膜を約60nmの膜厚でスパッタ蒸着した後、両端の5mmずつに金を蒸着して、金電極105、106および金電極107、108を形成し、それぞれの金電極105、106および金電極107、108を常電導の電流リード109、110および電流リード111、112を介して銅電極113および114に接続することによって高温超電導薄膜101と高温超電導薄膜102とを並列に接続し、さらに図示されていないが、ホットスポット対策のため、合金線からなる無誘導巻で作製した外付け分流抵抗(0.33Ω)と50μFのコンデンサを銅電極113、114間に並列接続している。
FIG. 3 is a diagram showing the configuration of the superconducting current limiting element described in Patent Document 2. As shown in FIG.
This superconducting current-limiting element is a high-temperature superconducting YBCO thin film 101 having a width of 2 cm and a length of 6 cm on a sapphire substrate 103 (thickness 300 nm, critical current density 3.0 MA / cm 2 , element rated current = DC critical current = 180 A). peak ) and a high-temperature superconducting YBCO thin film 102 (film thickness 300 nm, critical current density 3.0 MA / cm 2 , element rated current = DC critical current = 90 A peak ) on the sapphire substrate 104 and 1 cm wide and 6 cm long. Then, on the upper surfaces of these high-temperature superconducting thin films 101 and 102, an alloy film having a composition in which about 23 wt% of silver is mixed with gold is sputter-deposited with a film thickness of about 60 nm, and then gold is deposited on each of 5 mm at both ends. The gold electrodes 105 and 106 and the gold electrodes 107 and 108 are formed by vapor deposition, and the gold electrodes 105 and 106 and the gold electrodes 107 and 108 are respectively formed. Is connected to the copper electrodes 113 and 114 via the normal conductive current leads 109 and 110 and the current leads 111 and 112 to connect the high temperature superconducting thin film 101 and the high temperature superconducting thin film 102 in parallel. In order to prevent hot spots, an external shunt resistor (0.33Ω) produced by non-inductive winding made of an alloy wire and a 50 μF capacitor are connected in parallel between the copper electrodes 113 and 114.

図4は、図3に示した超電導限流素子の通電試験を行った結果を示す図である。
同図に示すように、t=120ms以降の過電流領域において、約260Apeakの全通電電流に対して、1サイクル目は高温超電導薄膜101、102にほぼ同じ電流が流れたが、2サイクル目で臨界電流の小さな高温超電導薄膜102がクエンチして電圧が発生し始め、さらに、5サイクル目で高温超電導薄膜101もクエンチした。この構成では、2枚の高温超電導薄膜101、102の臨界電流の和180+90=270Apeakであるにも拘らず通電することができなかった。
FIG. 4 is a diagram showing a result of conducting an energization test of the superconducting current limiting element shown in FIG.
As shown in the figure, in the overcurrent region after t = 120 ms, almost the same current flows in the high-temperature superconducting thin films 101 and 102 in the first cycle with respect to the total conduction current of about 260 A peak. Then, the high temperature superconducting thin film 102 having a small critical current was quenched and voltage began to be generated, and the high temperature superconducting thin film 101 was also quenched at the fifth cycle. In this configuration, although the sum of the critical currents of the two high-temperature superconducting thin films 101 and 102 was 180 + 90 = 270 A peak , it could not be energized.

図5は図3に示した超電導限流素子の等価回路を示す図、図6は高温超電導薄膜の電流・電圧特性を示す図である。
図5において、電流リード109、110および電流リード111、112は、ほぼ同じ長さのインジウム線を用いたため、接触抵抗を含む電流リード109、110の接続抵抗Rc1と接触抵抗を含む電流リード111、112の接続抵抗のRc2は、Rc1≒Rc2≒1.2mΩである。また、通常、高温超電導薄膜に臨界電流I以上の電流を流した時に発生する電圧(磁束フロー電圧)と電流との関係は、図6に示すように、長さLの高温超電導薄膜では、V=V(I/I(V=LE、nはエヌ値と呼ばれ、n=20〜50で試料毎に異なる) と言う冪乗則で近似できることが知られている。即ち、高温超電導薄膜に臨界電流を超えた電流が流れた時、すぐに常電導時の抵抗値になるわけではなく、臨界電流近傍ではなだらかに抵抗が発生するが、その後急激に増加するような、磁束フロー抵抗R=V/I∝In−1を生ずる。通電電流が臨界電流以下の時には、磁束フロー抵抗Rf1=Rf2=0と見なせるため、2枚の高温超電導薄膜101、102に流れる電流の比(分流比)は、接続抵抗Rc1、Rc2の比で決まり、Rc1/Rc2=1である。
FIG. 5 is a diagram showing an equivalent circuit of the superconducting current limiting element shown in FIG. 3, and FIG. 6 is a diagram showing current / voltage characteristics of the high-temperature superconducting thin film.
In FIG. 5, since the current leads 109 and 110 and the current leads 111 and 112 use indium wires having substantially the same length, the connection leads R c1 of the current leads 109 and 110 including the contact resistance and the current lead 111 including the contact resistance are included. , R c2 in the connection resistance of 112 is R c1R c21.2mΩ. Also, usually, the relationship between the voltage generated when a current of critical current I c over current (magnetic flux flow voltage) and current to a high temperature superconducting thin film, as shown in FIG. 6, a high temperature superconducting thin film of length L, It is known that it can be approximated by a power law of V = V 0 (I / I c ) n (V 0 = LE 0 , where n is called an N value, and n = 20 to 50 and varies from sample to sample). . That is, when a current exceeding the critical current flows through the high-temperature superconducting thin film, it does not immediately become the resistance value at the time of normal conduction, but the resistance is gently generated in the vicinity of the critical current, but then suddenly increases. , Magnetic flux flow resistance R f = V / I∝I n−1 . Since the magnetic flux flow resistance R f1 = R f2 = 0 can be considered when the energizing current is less than the critical current, the ratio of the current flowing through the two high-temperature superconducting thin films 101 and 102 (the shunt ratio) is the connection resistance R c1 and R c2. R c1 / R c2 = 1.

図4に示した通電試験において、120≦t≦145msにおいては、交流電流のピーク値は120〜130Aであって、高温超電導薄膜102の臨界電流(90A)よりも大きいため、高温超電導薄膜102においてある程度の磁束フロー抵抗が発生していた。このとき、分流比はIfilm2/Ifilm1=Rc1/(Rc2+Rf2)と表されるが、Ifilm1≒Ifilm2であることから、磁束フロー抵抗Rf2は接続抵抗Rc2に比べて充分小さかったと考えられる。それでも、そのジュール発熱によって高温超電導薄膜102の温度が上昇し、臨界電流が下がるため、t=145msにおいて高温超電導薄膜102がクエンチしている。即ち、この超電導薄膜限流素子の場合、磁束フローが生じても、常電導接続抵抗値がそれより相当大きいため、分流比が常電導接続抵抗の比(≒1)で決まり、2枚の高温超電導薄膜101、102にほぼ同じ値の超電導電流が流れてしまい、通電できる電流は、臨界電流の小さな高温超電導薄膜に左右されてしまう。臨界電流が大きく異なる高温超電導薄膜101、102を並列接続する場合、通常の接続方法では、臨界電流の和に相当する定格電流を流せないことが分かる。 In the energization test shown in FIG. 4, when 120 ≦ t ≦ 145 ms, the peak value of the alternating current is 120 to 130 A, which is larger than the critical current (90 A) of the high-temperature superconducting thin film 102. A certain amount of magnetic flux flow resistance was generated. In this case, diversion ratio is expressed as I film2 / I film1 = R c1 / (R c2 + R f2), since it is I film1I film2, the magnetic flux flow resistance R f2 is compared to connection resistance R c2 It is thought that it was small enough. Still, the temperature of the high-temperature superconducting thin film 102 rises due to the Joule heat generation, and the critical current decreases, so that the high-temperature superconducting thin film 102 is quenched at t = 145 ms. That is, in the case of this superconducting thin film current limiting element, even if magnetic flux flow occurs, the normal conducting connection resistance value is considerably larger than that, so the shunt ratio is determined by the ratio of normal conducting connection resistance (≈1), and two high temperature A superconducting current having almost the same value flows through the superconducting thin films 101 and 102, and the current that can be energized depends on the high-temperature superconducting thin film having a small critical current. When the high-temperature superconducting thin films 101 and 102 having greatly different critical currents are connected in parallel, it is understood that a rated current corresponding to the sum of the critical currents cannot be flowed by a normal connection method.

この問題を解決する簡単な方法として、接続抵抗比Rc1/Rc2を調整して分流比を臨界電流比と同じにすることが考えられるが、事前にすべての高温超電導薄膜の臨界電流値を知る必要があり、また接続抵抗Rc1/Rc2の調整が煩わしく、また常時損失につながる接続抵抗Rc1/Rc2はできるだけ小さくしたいのに、あまり小さくできない、と言った多くの問題点があった。 A simple way to solve this problem is to adjust the connection resistance ratio R c1 / R c2 to make the shunt ratio the same as the critical current ratio. However, the critical current values of all the high-temperature superconducting thin films are set in advance. There is a need to know, also cumbersome to adjust the connection resistance R c1 / R c2, the connection resistance R c1 / R c2, which leads to a constantly loss also I want to be as small as possible, can not be too small, and there are many of the problems it said It was.

本発明の目的は、上記の問題点に鑑みて、複数枚のそれぞれの超電導薄膜の臨界電流が大きく異なっていても、複数枚のそれぞれの超電導薄膜の臨界電流の和に相当する定格電流を有する超電導薄膜限流素子を製作することにある。   In view of the above problems, the object of the present invention is to have a rated current corresponding to the sum of the critical currents of a plurality of superconducting thin films even if the critical currents of the plurality of superconducting thin films are greatly different. The purpose is to produce a superconducting thin film current limiting element.

本発明は、上記の課題を解決するために、次のような手段を採用した。
第1の手段は、複数の絶縁体基板上にそれぞれ超電導薄膜が形成され、それぞれの超電導薄膜上に蒸着された純金属または合金からなる分流保護膜付超電導薄膜と、前記それぞれの分流保護膜付超電導薄膜の両端に蒸着された純金属からなる電極部と、前記それぞれの分流保護膜付超電導薄膜の同極の電極部間にハンダを介して接続された、それぞれの分流保護膜付超電導薄膜を並列接続する金属基材超電導テープとから構成されることを特徴とする超電導限流素子である。
第2の手段は、第1の手段において、前記それぞれの分流膜付超電導薄膜を、ハンダと金属基材超電導テープを介して並列接続する際の接続抵抗値は、前記それぞれの超電導薄膜の素子有効長をL、冷却周囲長をP、臨界電流をI、その温度変化をdI/dT、電流・電圧特性の冪乗の指数をn、液体窒素の熱伝達係数をhとしたとき、Req=LPh/nI(−dI/dT)によって計算されるクエンチ発生の等価抵抗の下限値の半分以下であることを特徴とする超電導限流素子である。
第3の手段は、第1の手段または第2の手段において、前記金属基材超電導テープは、ビスマス系超電導酸化物を銀または銀合金からなるシース材を用いて作製したテープであることを特徴とする超電導限流素子である。
第4の手段は、第1の手段ないし第3の手段のいずれか1つの手段において、前記超電導限流素子に外付け分流抵抗および/またはコンデンサを並列接続したことを特徴とする超電導限流素子である。
The present invention employs the following means in order to solve the above problems.
The first means is that a superconducting thin film is formed on each of a plurality of insulator substrates, and a superconducting thin film with a shunt protective film made of pure metal or an alloy deposited on each superconducting thin film, and with each of the above-mentioned shunt protective films. Each superconducting thin film with a shunt protective film is connected between the electrode part made of pure metal deposited on both ends of the superconducting thin film and the same polarity electrode part of each of the superconducting thin films with the shunt protective film. A superconducting current-limiting element comprising a metal-based superconducting tape connected in parallel.
The second means is that, in the first means, when each of the superconducting thin films with a shunt film is connected in parallel via solder and a metal base superconducting tape, the connection resistance value is the element effective of each of the superconducting thin films. When the length is L, the cooling ambient length is P, the critical current is I c , the temperature change is dI c / dT, the power exponent of current / voltage characteristics is n, and the heat transfer coefficient of liquid nitrogen is h, R A superconducting current limiting element characterized by being equal to or less than half the lower limit of the equivalent resistance of quench generation calculated by eq = LPh / nI c (−dI c / dT).
According to a third means, in the first means or the second means, the metal-based superconducting tape is a tape made of a bismuth-based superconducting oxide using a sheath material made of silver or a silver alloy. It is a superconducting current limiting element.
According to a fourth means, in any one of the first means to the third means, an external shunt resistor and / or a capacitor is connected in parallel to the superconducting current limiting element. It is.

本発明によれば、複数枚の分流保護膜付超電導薄膜の両端に形成された同極の電極部間を金属基材超電導テープで接続することによって、複数枚の分流保護付超電導薄膜の電極部間の接続抵抗を小さく保つことができ、複数枚のそれぞれの分流保護付超電導薄膜の臨界電流が大きく異なっていても、分流保護付超電導薄膜の臨界電流の和に相当する定格電流を有する超電導薄膜限流素子を製作することが可能となる。   According to the present invention, the electrode parts of a plurality of superconducting thin films with shunt protection are connected by connecting the same-polarity electrode parts formed at both ends of the plurality of superconducting thin films with shunt protection films with a metal substrate superconducting tape. The superconducting thin film has a rated current equivalent to the sum of the critical currents of the superconducting thin films with shunt protection, even though the critical currents of the superconducting thin films with shunt protection differ greatly from each other. A current limiting element can be manufactured.

本発明者らは、図3に示した超電導限流素子について検討した結果、以下の知見を得た。
まず、図5に示した等価回路において、2枚の高温超電導薄膜101、102を並列接続した際、接続抵抗Rc1、Rc2はRc1≒Rc2であって、かつ接続抵抗Rc1、Rc2の抵抗値を充分小さくする。ここで「充分」とは、クエンチが発生しない程度の磁束フロー抵抗Rよりも小さいことを意味する。臨界電流の小さな高温超電導薄膜102に臨界電流以上の電流が流れても、発生する磁束フロー抵抗Rf2によって、分流比Ifilm2/Ifilm1=Rc1/(Rc2+Rf2)を低減させ、高温超電導薄膜102へ流入する電流の分流割合を減らし、残余の電流を幅広の高温超電導薄膜101に分流させることにより、高温超電導薄膜102のクエンチを防止できる可能性があることが予想される。以下に、クエンチが生ずるおそれのある磁束フロー抵抗値を見積り、接続抵抗Rc1、Rc2をどの程度小さくすれば「充分」であるかについて考察する。
As a result of examining the superconducting current limiting element shown in FIG. 3, the present inventors have obtained the following knowledge.
First, in the equivalent circuit shown in FIG. 5, when two high-temperature superconducting thin films 101 and 102 are connected in parallel, the connection resistances R c1 and R c2 are R c1 ≈R c2 and the connection resistances R c1 and R c2 The resistance value of c2 is made sufficiently small. Here, “sufficient” means that the magnetic flux flow resistance R f is small enough not to cause quenching. Even if a current higher than the critical current flows through the high-temperature superconducting thin film 102 having a small critical current, the shunt ratio I film2 / I film1 = R c1 / (R c2 + R f2 ) is reduced by the generated magnetic flux flow resistance R f2 , It is expected that quenching of the high-temperature superconducting thin film 102 may be prevented by reducing the diversion ratio of the current flowing into the superconducting thin film 102 and diverting the remaining current to the wide high-temperature superconducting thin film 101. In the following, the magnetic flux flow resistance value at which quenching may occur is estimated, and how much the connection resistances R c1 and R c2 should be reduced is considered.

図6の長さLの高温超電導薄膜の電流・電圧特性に示すように、臨界電流Iにおいては、微小電圧V=LE(E=10−4V/m)が発生しているが、それによる発熱は、液体窒素による冷却効果と比較してはるかに小さいので、この電流を長時間通電してもクエンチすることは無い。しかし、臨界電流よりもある程度大きな電流を通電すると、発生するジュール熱によって高温超電導薄膜の温度が上昇し、それが臨界電流の低下を引起すことから、発生するジュール熱が急激に大きくなってクエンチに至る。 As shown in the current / voltage characteristics of the high-temperature superconducting thin film of length L in FIG. 6, a minute voltage V 0 = LE 0 (E 0 = 10 −4 V / m) is generated at the critical current I c . However, the heat generated thereby is much smaller than the cooling effect by liquid nitrogen, so that even if this current is applied for a long time, it does not quench. However, when a current that is somewhat larger than the critical current is applied, the temperature of the high-temperature superconducting thin film rises due to the generated Joule heat, which causes a decrease in the critical current, and the generated Joule heat rapidly increases and quenches. To.

本発明者らは、クエンチが生ずるときの通電電流Iに関する解析を行った。その詳細は、非特許文献5に記載されている。それによると、高温超電導薄膜の冷却周囲長をP、液体窒素温度におけるIの温度変化をdI/dT、液体窒素の熱伝達係数hとすると、Iは以下の(1)式で表される。
=I[Ph/nE(−dI/dT)]1/(n+1) (1)
また、(1)式と、クエンチするときの電圧V=LE(I/Iとから、クエンチが生ずるときの等価抵抗Req=V/Iを計算すると、nが充分大きいことから、以下の(2)式が得られる。
eq=(LE/I)[Ph/nE(−dI/dT)](n−1)/(n+1)
≒LPh/nI(−dI/dT) (2)
The inventors of the present invention analyzed the current Iq when quenching occurs. The details are described in Non-Patent Document 5. According to this, assuming that the cooling perimeter of the high-temperature superconducting thin film is P, the temperature change of I c at liquid nitrogen temperature is dI c / dT, and the heat transfer coefficient h of liquid nitrogen, I q is expressed by the following equation (1). Is done.
I q = I c [Ph / nE 0 (−dI c / dT)] 1 / (n + 1) (1)
Further, when the equivalent resistance R eq = V q / I q when quenching occurs is calculated from the equation (1) and the voltage V q = LE 0 (I q / I c ) n when quenching, n is Since it is sufficiently large, the following equation (2) is obtained.
R eq = (LE 0 / I c ) [Ph / nE 0 (−dI c / dT)] (n−1) / (n + 1)
≒ LPh / nI c (-dI c / dT) (2)

ここで、1cm幅の高温超電導薄膜102に対するパラメーターは、L=0.05m、P=0.01m、n=28、I=90A、−dI/dT=9A/Kである。また、非特許文献5には、商用周波数の交流のような速い現象に対しては、高温超電導薄膜の温度上昇は小さく、液体窒素の伝導冷却を考慮してh=1〜2×10W/mKであることが記載されている。よって、(2)式から、クエンチが生ずる等価的な抵抗Req=220〜440μΩと計算された。 Here, the parameters for the high-temperature superconducting thin film 102 having a width of 1 cm are L = 0.05 m, P = 0.01 m, n = 28, I c = 90 A, and −dI c / dT = 9 A / K. Non-Patent Document 5 discloses that for fast phenomena such as alternating current at commercial frequencies, the temperature rise of the high-temperature superconducting thin film is small, and h = 1 to 2 × 10 4 W in consideration of conduction cooling of liquid nitrogen. / M 2 K. Therefore, from the equation (2), it was calculated that the equivalent resistance R eq = 220 to 440 μΩ where quenching occurs.

図4の通電試験においては、Rc2≒1.2mΩであって、これはReqよりもはるかに大きく、過渡的に発生する磁束フロー抵抗Rf2によって、分流比Ifilm2/Ifilm1=Rc1/(Rc2+Rf2)を低減させることができず、クエンチしてしまったと考えられる。逆に、Rc2≪Reqであれば、磁束フロー抵抗Rf2≪Req によってクエンチすることなく分流比を低減させることができ、結果として、2枚の高温超電導薄膜101、102に合計の臨界電流よりも充分大きな電流を流すことができると予想される。 In the energization test of FIG. 4, R c2 ≈1.2 mΩ, which is much larger than R eq , and due to the transiently generated magnetic flux flow resistance R f2 , the shunt ratio I film2 / I film1 = R c1 It is considered that / (R c2 + R f2 ) could not be reduced and the reaction was quenched. Conversely, if R c2 << R eq , the shunt ratio can be reduced without quenching by magnetic flux flow resistance R f2 << R eq , and as a result, the total criticality of the two high-temperature superconducting thin films 101 and 102 is reduced. It is expected that a current sufficiently larger than the current can flow.

図1は本発明の一実施形態に係る超電導限流素子の構成を示す図である。
同図において、1、2はそれぞれ高温超電導薄膜、3、4はそれぞれサファイア基板、5〜8は金電極、9、10はそれぞれ金属基材超電導テープ、11、12はそれぞれ電流リード、13、14はそれぞれ銅電極である。
FIG. 1 is a diagram showing a configuration of a superconducting current limiting element according to an embodiment of the present invention.
In the figure, 1 and 2 are high-temperature superconducting thin films, 3 and 4 are sapphire substrates, 5 to 8 are gold electrodes, 9 and 10 are metal-based superconducting tapes, 11 and 12 are current leads, and 13 and 14 are respectively. Are copper electrodes.

同図に示すように、この超電導限流素子は、サファイア基板3上にバッフア層を介して成膜した、2cm幅で長さ6cmの高温超電導YBCO 薄膜1(膜厚300nm、臨界電流密度3.2MA/cmで、素子定格電流=直流臨界電流=192Apeak)と、サファイア基板4上にバッフア層を介して成膜した、1cm幅で長さ6cmの高温超電導YBCO薄膜2(膜厚300nm、臨界電流密度3.2MA/cmで、素子定格電流=直流臨界電流=96Apeak)とを用い、これらの高温超電導薄膜1、2の上面には、それぞれ金に約23wt%の銀を混ぜた組成の合金膜を約60nmの膜厚でスパッタ蒸着した後、両端の5mmずつに金を蒸着して、金電極5、6および金電極7、8を形成し、それぞれの金電極5、7間および金電極6、8間をそれぞれハンダを介して金属基材超電導テープ9、10を接続し、高温超電導薄膜1と高温超電導薄膜2とを並列接続したものである。さらに、金属基材超電導テープ9と銅電極13間および金属基材超電導テープ10と銅電極14間をそれぞれ常電導の電流リード11、12によって接続し、また、図示されていないが、ホットスポット対策のため、合金線からなる無誘導巻で作製した外付け分流抵抗(0.33Ω)と100μFのコンデンサを銅電極13、14間に並列接続する。 As shown in the figure, this superconducting current limiting element is a high-temperature superconducting YBCO thin film 1 (thickness 300 nm, critical current density 3 .3 cm) formed on a sapphire substrate 3 via a buffer layer and having a width of 2 cm and a length of 6 cm. 2 MA / cm 2 , element rated current = DC critical current = 192 A peak ), high-temperature superconducting YBCO thin film 2 (film thickness: 300 nm, 1 cm wide and 6 cm long) formed on the sapphire substrate 4 through a buffer layer. The critical current density was 3.2 MA / cm 2 , and the device rated current = DC critical current = 96 A peak ). On the top surfaces of these high-temperature superconducting thin films 1 and 2, about 23 wt% silver was mixed with gold. After an alloy film having a composition of about 60 nm is deposited by sputtering, gold is deposited on both ends of 5 mm to form gold electrodes 5 and 6 and gold electrodes 7 and 8, and between the gold electrodes 5 and 7. Oh Further, the metal base superconducting tapes 9 and 10 are connected between the gold electrodes 6 and 8 via solder, respectively, and the high-temperature superconducting thin film 1 and the high-temperature superconducting thin film 2 are connected in parallel. Further, the metal substrate superconducting tape 9 and the copper electrode 13 and the metal substrate superconducting tape 10 and the copper electrode 14 are connected by current conducting leads 11 and 12, respectively. Therefore, an external shunt resistor (0.33Ω) made of non-inductive winding made of an alloy wire and a 100 μF capacitor are connected in parallel between the copper electrodes 13 and 14.

本発明の超電導限流素子では、金属基材超電導テープ9、10は、ビスマス系超電導酸化物を銀または銀合金からなるシース材を用いて作製したテープであり、電流リード11と金属基材超電導テープ9との接続部分から金電極5−高温超電導薄膜1−金電極6を介して電流リード12と金属基材超電導テープ10との接続部分までの接続抵抗Rc1、および電流リード11と金属基材超電導テープ9との接続部分から金電極7−高温超電導薄膜2−金電極8を介して電流リード12と金属基材超電導テープ10との接続部分までの接続抵抗Rc2は、Rc1≒Rc2≒20μΩであって、先に計算されたクエンチ等価抵抗Reqの下限値の10分の1以下である。 In the superconducting current limiting element of the present invention, the metal base superconducting tapes 9 and 10 are tapes made by using a sheath material made of bismuth-based superconducting oxide made of silver or a silver alloy, and the current leads 11 and the metal base superconducting tapes. The connection resistance R c1 from the connection portion with the tape 9 to the connection portion between the current lead 12 and the metal substrate superconducting tape 10 via the gold electrode 5 -high-temperature superconducting thin film 1 -gold electrode 6, and the current lead 11 and metal base The connection resistance R c2 from the connecting portion with the material superconducting tape 9 to the connecting portion between the current lead 12 and the metal substrate superconducting tape 10 through the gold electrode 7 -high temperature superconducting thin film 2 -gold electrode 8 is R c1 ≈R c2≈20 μΩ, which is equal to or less than one-tenth of the lower limit value of the previously calculated quench equivalent resistance R eq .

図2は、図1に示した超電導限流素子の通電試験を行った結果を示す図である。
同図は、2枚の高温超電導薄膜1、2に通電した全薄膜電流Ifilmと金属基材超電導テープ9、10間の薄膜電圧Vfilmを示している。全薄膜電流Ifilmは最大で約365Apeakの通電電流に対して、5サイクルの間クエンチ(電圧の発生)は起こらず、クエンチ電流がそれ以上であることが分かった。2枚の高温超電導薄膜1、2の臨界電流の和は192+96=288Apeakであり、クエンチ電流との比が365/288=1.27以上であることから、本発明の超電導限流素子によれば、2枚の高温超電導薄膜1、2の定格電流の和192+96=288Apeakを定常的に通電できることが示された。
FIG. 2 is a diagram showing a result of conducting an energization test of the superconducting current limiting element shown in FIG.
The figure shows the total thin film current I film energized through the two high-temperature superconducting thin films 1 and 2 and the thin film voltage V film between the metal-based superconducting tapes 9 and 10. It was found that the total thin film current I film does not cause quenching (voltage generation) for 5 cycles with respect to the energization current of about 365 A peak at the maximum, and the quenching current is more than that. The sum of the critical currents of the two high-temperature superconducting thin films 1 and 2 is 192 + 96 = 288 A peak , and the ratio to the quench current is 365/288 = 1.27 or more. Therefore, according to the superconducting current limiting element of the present invention, For example, it was shown that the sum of the rated currents of the two high-temperature superconducting thin films 1 and 2 192 + 96 = 288 A peak can be energized constantly.

なお、金属基材超電導テープ9、10は、ビスマス系超電導酸化物を銀もしくは銀合金からなるシース材を用いて作製したテープであり、既に市販品があるだけでなく、容易にハンダを溶着することができるため、本発明の超電導限流素子への使用に好適である。   The metal-base superconducting tapes 9 and 10 are tapes made of a bismuth-based superconducting oxide using a sheath material made of silver or a silver alloy. Not only are commercially available products, but solder is easily welded. Therefore, it is suitable for use in the superconducting current limiting element of the present invention.

本発明の一実施形態に係る超電導限流素子の構成を示す図である。It is a figure which shows the structure of the superconducting current limiting element which concerns on one Embodiment of this invention. 図1に示した超電導限流素子の通電試験を行った結果を示す図である。It is a figure which shows the result of having conducted the electricity supply test of the superconducting current limiting element shown in FIG. 特許文献2に記載されている超電導限流素子の構成を示す図である。It is a figure which shows the structure of the superconducting current limiting element described in patent document 2. 図3に示した超電導限流素子の通電試験を行った結果を示す図である。It is a figure which shows the result of having conducted the electricity supply test of the superconducting current limiting element shown in FIG. 図3に示した超電導限流素子の等価回路を示す図である。It is a figure which shows the equivalent circuit of the superconducting current limiting element shown in FIG. 高温超電導薄膜の電流・電圧特性を示す図である。It is a figure which shows the electric current and voltage characteristic of a high temperature superconducting thin film.

符号の説明Explanation of symbols

1、2 高温超電導薄膜
3、4 サファイア基板
5〜8 金電極
9、10 金属基材超電導テープ
11、12 電流リード
13、14 銅電極
1, 2 High-temperature superconducting thin film 3, 4 Sapphire substrate 5-8 Gold electrode 9, 10 Metal base superconducting tape 11, 12 Current lead 13, 14 Copper electrode

Claims (4)

複数の絶縁体基板上にそれぞれ超電導薄膜が形成され、それぞれの超電導薄膜上に蒸着された純金属または合金からなる分流保護膜付超電導薄膜と、前記それぞれの分流保護膜付超電導薄膜の両端に蒸着された純金属からなる電極部と、前記それぞれの分流保護膜付超電導薄膜の同極の電極部間にハンダを介して接続された、それぞれの分流保護膜付超電導薄膜を並列接続する金属基材超電導テープとから構成されることを特徴とする超電導限流素子。   A superconducting thin film is formed on each of the plurality of insulator substrates, and a superconducting thin film with a shunt protective film made of pure metal or an alloy deposited on each superconducting thin film, and deposited on both ends of the respective superconducting thin film with a shunt protective film. A metal base material connected in parallel between each of the superconducting thin films with a shunt protective film, connected via a solder between the electrode part made of pure metal and the electrode part of the same polarity of each of the superconducting thin films with the shunt protective film A superconducting current limiting element comprising a superconducting tape. 前記それぞれの分流保護膜付超電導薄膜を、ハンダと金属基材超電導テープを介して並列接続する際の接続抵抗値は、前記それぞれの超電導薄膜の素子有効長をL、冷却周囲長をP、臨界電流をI、その温度変化をdI/dT、電流・電圧特性の冪乗の指数をn、液体窒素の熱伝達係数をhとしたとき、Req=LPh/nI(−dI/dT)によって計算されるクエンチ発生の等価抵抗の下限値の半分以下であることを特徴とする請求項1に記載の超電導限流素子。 The connection resistance values when the respective superconducting thin films with shunt protective films are connected in parallel via solder and a metal base superconducting tape are L, the effective element length of each superconducting thin film, P, the cooling perimeter, When the current is I c , the temperature change is dI c / dT, the exponent of the power of the current / voltage characteristic is n, and the heat transfer coefficient of liquid nitrogen is h, R eq = LPh / nI c (−dI c / 2. The superconducting current limiting element according to claim 1, wherein the superconducting current limiting element is equal to or less than a half of a lower limit value of an equivalent resistance of quench generation calculated by dT). 前記金属基材超電導テープは、ビスマス系超電導酸化物を銀または銀合金からなるシース材を用いて作製したテープであることを特徴とする請求項1または請求項2に記載の超電導限流素子。   The superconducting current limiting element according to claim 1 or 2, wherein the metal-based superconducting tape is a tape made of a bismuth-based superconducting oxide using a sheath material made of silver or a silver alloy. 前記超電導限流素子に外付け分流抵抗および/またはコンデンサを並列接続したことを特徴とする請求項1ないし請求項3のいずれか1つの請求項に記載の超電導限流素子。   The superconducting current limiting element according to any one of claims 1 to 3, wherein an external shunt resistor and / or a capacitor are connected in parallel to the superconducting current limiting element.
JP2007215528A 2007-08-22 2007-08-22 Superconducting current-limiting element Pending JP2009049257A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007215528A JP2009049257A (en) 2007-08-22 2007-08-22 Superconducting current-limiting element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007215528A JP2009049257A (en) 2007-08-22 2007-08-22 Superconducting current-limiting element

Publications (1)

Publication Number Publication Date
JP2009049257A true JP2009049257A (en) 2009-03-05

Family

ID=40501198

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007215528A Pending JP2009049257A (en) 2007-08-22 2007-08-22 Superconducting current-limiting element

Country Status (1)

Country Link
JP (1) JP2009049257A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009212522A (en) * 2008-03-05 2009-09-17 Bruker Hts Gmbh Current regulating superconducting device
JP2010263036A (en) * 2009-05-01 2010-11-18 National Institute Of Advanced Industrial Science & Technology Superconductive current-limiting element
JP2017530668A (en) * 2014-08-08 2017-10-12 古河電気工業株式会社 Current limiting device and method of manufacturing current limiting device
CN107478938A (en) * 2017-09-28 2017-12-15 南方电网科学研究院有限责任公司 The test system and method for resistor-type direct current limiter, resistor-type direct current limiter

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06132571A (en) * 1992-10-21 1994-05-13 Sumitomo Electric Ind Ltd Current limiting element and current limiting device
JPH09233692A (en) * 1996-02-20 1997-09-05 Tokyo Electric Power Co Inc:The Superconuctive current limiter
JP2005032698A (en) * 2003-06-19 2005-02-03 Sumitomo Electric Ind Ltd Superconducting cable, and superconducting cable line using the same
WO2006001226A1 (en) * 2004-06-24 2006-01-05 National Institute Of Advanced Industrial Science And Technology Superconductive current-limiting element, and its fabrication method
JP2006269184A (en) * 2005-03-23 2006-10-05 Toshiba Corp Lead for superconducting current

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06132571A (en) * 1992-10-21 1994-05-13 Sumitomo Electric Ind Ltd Current limiting element and current limiting device
JPH09233692A (en) * 1996-02-20 1997-09-05 Tokyo Electric Power Co Inc:The Superconuctive current limiter
JP2005032698A (en) * 2003-06-19 2005-02-03 Sumitomo Electric Ind Ltd Superconducting cable, and superconducting cable line using the same
WO2006001226A1 (en) * 2004-06-24 2006-01-05 National Institute Of Advanced Industrial Science And Technology Superconductive current-limiting element, and its fabrication method
JP2006269184A (en) * 2005-03-23 2006-10-05 Toshiba Corp Lead for superconducting current

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009212522A (en) * 2008-03-05 2009-09-17 Bruker Hts Gmbh Current regulating superconducting device
JP2010263036A (en) * 2009-05-01 2010-11-18 National Institute Of Advanced Industrial Science & Technology Superconductive current-limiting element
JP2017530668A (en) * 2014-08-08 2017-10-12 古河電気工業株式会社 Current limiting device and method of manufacturing current limiting device
CN107478938A (en) * 2017-09-28 2017-12-15 南方电网科学研究院有限责任公司 The test system and method for resistor-type direct current limiter, resistor-type direct current limiter
CN107478938B (en) * 2017-09-28 2023-04-28 南方电网科学研究院有限责任公司 Resistive DC current limiter, and system and method for testing resistive DC current limiter

Similar Documents

Publication Publication Date Title
JP4162710B2 (en) Current limiting device
DK2122698T3 (en) Hts cable
JP4644779B2 (en) Superconducting current limiting element
Hyun et al. 6.6 kV resistive superconducting fault current limiter based on YBCO films
WO2008100702A2 (en) Hts wire
Schmidt et al. Design and test of current limiting modules using YBCO-coated conductors
Schmidt et al. Investigation of YBCO coated conductors for fault current limiter applications
Escamez et al. Numerical investigations of ReBCO conductors with high limitation electric field for HVDC SFCL
JP2009049257A (en) Superconducting current-limiting element
JP3977884B2 (en) Current limiting element, current limiter using oxide superconductor, and manufacturing method thereof
JP2000032654A (en) Current limiting element using oxide superconductor, and current limiter thereof
Weiss et al. Hybrid superconducting fault current limiting CORC® wires with millisecond response time
JP5152830B2 (en) Superconducting current limiting element
Tixador et al. Operation of an SCFCL at 65 K
Park et al. Experimental and numerical analysis of high resistive coated conductor for conceptual design of fault current limiter
Ohsaki et al. Characteristics of resistive fault current limiting elements using YBCO superconducting thin film with meander-shaped metal layer
Park et al. Quench behavior of YBaCuO films for fault current limiters under magnetic field
Lindmayer et al. Quenching of high-T/sub c/-superconductors and current limitation numerical simulations and experiments
Baldan et al. Electrical and thermal characterization of YBCO coated conductors for resistive fault current limiter applications
JP4131769B2 (en) Superconducting current limiting fuse and overcurrent control system using the same
Ito et al. kA class resistive fault current limiting device development using QMG HTC bulk superconductor
JP5472682B2 (en) Superconducting current limiting element
Ahn et al. Current limiting characteristics of coated conductors with various stabilizers
Arai et al. Temperature characteristics of superconducting thin-film fault current limiting elements using high-resistivity alloy shunt layers
Du et al. Fabrication and Performance Test of Fault Current Limiting Element Made of Non-Laminated Coated Conductor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100317

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120907

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120911

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130122