JP2010263036A - Superconductive current-limiting element - Google Patents

Superconductive current-limiting element Download PDF

Info

Publication number
JP2010263036A
JP2010263036A JP2009111809A JP2009111809A JP2010263036A JP 2010263036 A JP2010263036 A JP 2010263036A JP 2009111809 A JP2009111809 A JP 2009111809A JP 2009111809 A JP2009111809 A JP 2009111809A JP 2010263036 A JP2010263036 A JP 2010263036A
Authority
JP
Japan
Prior art keywords
thin film
superconducting
electrodes
superconducting thin
limiting element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009111809A
Other languages
Japanese (ja)
Other versions
JP5472682B2 (en
Inventor
Hirofumi Yamazaki
裕文 山崎
Katsuyuki Kaiho
勝之 海保
Akihiko Nakagawa
愛彦 中川
Mitsugi Soma
貢 相馬
Wakichi Kondo
和吉 近藤
Iwao Yamaguchi
巌 山口
Hiroaki Matsui
浩明 松井
Toshiya Kumagai
俊弥 熊谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2009111809A priority Critical patent/JP5472682B2/en
Publication of JP2010263036A publication Critical patent/JP2010263036A/en
Application granted granted Critical
Publication of JP5472682B2 publication Critical patent/JP5472682B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Abstract

<P>PROBLEM TO BE SOLVED: To provide a series current-limiting element having an allowable electric field equivalent to that of a partial element between electrodes, in an internal series connection type thin-film current-limiting element wherein intermediate electrodes are arranged and external resistors are connected in parallel to the respective intermediate electrodes. <P>SOLUTION: In the internal series connection type current-limiting element, electrodes are formed by evaporating pure metal to both ends and an intermediate part of a superconductive thin film with an alloy shunt protective film; metal base material superconducting tapes are connected the electrodes through solder; and superconductive connection is carried out on the electrodes at both the ends, and also on the intermediate electrode. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、電路に流れる短絡電流等の過大な電流を限流する超電導限流素子に関する。   The present invention relates to a superconducting current limiting element that limits an excessive current such as a short-circuit current flowing in an electric circuit.

超電導体は、超電導状態においては電気抵抗ゼロで大きな電流を流すことができるが、ある決まった電流値(臨界電流I)より大きな電流を流すと電気抵抗が発生する。さらに電流を大きくして行くと、発生する熱のため超電導体の温度が上昇し、常電導状態になって、より大きな電気抵抗を生じる。
このような超電導体の特徴を生かしたものとして、通常時は抵抗ゼロで、電力系統の短絡事故時には大きな抵抗を発生させて事故電流の増大を抑制する超電導限流器が知られている。
電力自由化を推進して行く上で大きな課題となっているのが、分散電源連系に伴う短絡事故電流の増大である。その対策として最も有望なのが、通常時は低インピーダンス、系統事故時に高インピーダンスとなって事故電流を抑制する限流器の導入である。電力の自由化を推進する立場から、低コストかつ高信頼性の限流器の実現に対する社会的要請は非常に高い。そして、配電系統に導入することを想定すると、大面積超電導薄膜を用いる超電導薄膜限流器が、
(1)コンパクトであり、(2)過電流に対して瞬時に応答することが可能であり、(3)常時発生する交流損失が小さい等、多くの点で優れ、(4)信頼性・性能・占有容積・大容量化への拡張性の観点からも最も優れていると考えられている。
In the superconducting state, the superconductor can flow a large current with zero electric resistance, but an electric resistance is generated when a current larger than a predetermined current value (critical current I c ) flows. When the current is further increased, the temperature of the superconductor rises due to the generated heat, and becomes a normal conducting state, resulting in a larger electric resistance.
A superconducting fault current limiter is known that takes advantage of such characteristics of a superconductor, normally having zero resistance and generating a large resistance in the event of a short circuit in the power system to suppress an increase in accident current.
A major issue in promoting the liberalization of electric power is the increase in short-circuit fault current associated with the distributed power supply interconnection. The most promising countermeasure is the introduction of a current limiter that suppresses the fault current, which is usually low impedance and high impedance in the event of a system fault. From the standpoint of promoting the liberalization of electric power, there is a very high social demand for the realization of a low-cost and highly reliable current limiter. Assuming that the superconducting thin film current limiter using a large area superconducting thin film is introduced into the power distribution system,
(1) Compact, (2) Instantaneous response to overcurrent, (3) Excellent in many respects, such as low constant AC loss, (4) Reliability and performance・ It is considered to be the best from the viewpoint of expandability to occupied capacity and large capacity.

超電導薄膜限流器は、液体窒素温度(66〜77.3 K)で動作する薄膜限流素子を電力系統に直列接続し、短絡事故時の電流の増大とともに薄膜を超電導状態(S)から常電導状態(N)に急激に転移(クエンチ)させ、その常電導抵抗によって系統電流を抑制するものであり、SN転移抵抗型限流器とも呼ばれている。従来、金属銅よりも熱伝導率の高いサファイア基板(アルミナ単結晶基板)等の絶縁体基板上に、バッファ層を介してYBaCu(以下YBCOと言う。)等の高温超電導酸化物の薄膜を作製した大面積超電導薄膜が用いられている。
短絡事故直後において、最初に常電導転移した部分で局所的に温度が急上昇して薄膜が破損すると言うホットスポット現象がある。薄膜限流器では、その防止のために、金や銀等の金属を高温超電導薄膜の上に蒸着して常電導転移時の分流保護層とするのが一般的である(非特許文献1,2参照)。
The superconducting thin film current limiter has a thin film current limiting element that operates at a liquid nitrogen temperature (66-77.3 K) connected in series to the electric power system. The state is abruptly transferred (quenched) to the conductive state (N), and the system current is suppressed by the normal conductive resistance, which is also called an SN transfer resistance type current limiter. Conventionally, high-temperature superconducting oxidation such as YBa 2 Cu 3 O 7 (hereinafter referred to as YBCO) is provided on an insulating substrate such as a sapphire substrate (alumina single crystal substrate) having higher thermal conductivity than that of metallic copper via a buffer layer. A large-area superconducting thin film produced from a thin film is used.
Immediately after the short-circuit accident, there is a hot spot phenomenon in which the temperature rapidly rises locally at the part where the normal conducting transition is first made and the thin film is broken. In the thin film current limiter, in order to prevent this, it is common to deposit a metal such as gold or silver on the high-temperature superconducting thin film to form a shunt protective layer at the time of normal conduction transition (Non-patent Document 1, 2).

しかし、このような金属分流層を付加すると超電導線路の電気抵抗を大きく低下させ、決まった電圧が印加される限流時の発熱を増大させるため、設計する電界(許容電界)が低下し、結果として長い超電導線路を必要とするため、高価な薄膜を多量に使うと言う問題点があった。
これに対し、純金属よりも1桁近く抵抗率の高い金銀合金を超電導薄膜に蒸着して分流保護層とし、かつ、安価な無誘導巻抵抗を並列接続する限流素子も考案され、>40Vpeak/cmと言う従来素子より4倍以上高い許容電界が得られている(特許文献1、非特許文献3、4参照)。この方式の限流素子の大電流容量化に伴うホットスポット現象の深刻化の対策として、外付け抵抗とともに小容量のコンデンサを並列接続することが提案されている(特許文献2、非特許文献5参照)。
However, when such a metal shunt layer is added, the electric resistance of the superconducting line is greatly reduced, and the heat generation at the time of current limiting when a predetermined voltage is applied is increased. However, since a long superconducting line is required, there is a problem that a large amount of expensive thin films are used.
On the other hand, a current-limiting element was devised, in which a gold-silver alloy having a resistivity nearly one digit higher than that of pure metal is deposited on the superconducting thin film to form a shunt protective layer, and an inexpensive non-inductive winding resistor is connected in parallel. A permissible electric field four times higher than that of the conventional element called peak / cm is obtained (see Patent Document 1, Non-Patent Documents 3 and 4). As a countermeasure against the seriousness of the hot spot phenomenon accompanying the increase in current capacity of the current limiting element of this system, it has been proposed to connect a small-capacitance capacitor in parallel with an external resistor (Patent Document 2, Non-Patent Document 5). reference).

限流器は電力系統の事故電流の抑制のために用いるものであり、超電導薄膜限流器で想定される定格電圧は、配電系統でも6.6kVrms以上である。40Vpeak/cmと言う非常に高い許容電界を有する、前記の高電界型の限流素子(特許文献1、非特許文献3、4参照)を用いても、6.6kVrmsの定格電圧を達成するためには、2.3m以上の薄膜の全長が必要となる。このため、10cm以上の比較的長尺の矩形型サファイア基板上に蒸着したYBCO薄膜が用いられているが、限流直後の常電導伝搬速度が1−4m/sでそれほど速くないため、1−2サイクル(20−40ms)で全体が常電導転移して均熱化するように素子単位長を約5cmとし、例えば12cm長の矩形薄膜を用いる場合、中間電極を設けて内部直列接続型の素子を構成して、電極間の部分薄膜のそれぞれに外付け抵抗を並列接続する方式(図7参照)が用いられている(非特許文献6参照)。 The current limiter is used for suppressing the fault current of the power system, and the rated voltage assumed for the superconducting thin film current limiter is 6.6 kV rms or more in the power distribution system. A rated voltage of 6.6 kV rms is achieved even using the above-mentioned high-field type current limiting element (see Patent Document 1, Non-Patent Documents 3 and 4) having a very high allowable electric field of 40 V peak / cm. In order to do so, the total length of the thin film of 2.3 m or more is required. For this reason, a YBCO thin film deposited on a relatively long rectangular sapphire substrate of 10 cm or more is used, but the normal conduction propagation velocity immediately after current limiting is 1-4 m / s, which is not so fast. The element unit length is set to about 5 cm so that the whole is normally conducted in two cycles (20-40 ms) and the temperature is equalized. For example, when a rectangular thin film having a length of 12 cm is used, an intermediate electrode is provided to provide an internal series connection type element. Is used, and an external resistor is connected in parallel to each of the partial thin films between the electrodes (see FIG. 7) (see Non-Patent Document 6).

さらに大容量化を図るため、2.7cm×20cmの矩形薄膜を2つの中間電極を用いて3分割するとともに、それを2並列する方式(図8参照)による限流素子モジュールが作製されている(非特許文献7参照)。
図8の内部直列接続型の超電導薄膜限流素子19は、1対の矩形の超電導薄膜の並設体20と、これと並列接続された外付け抵抗3aおよび3bを設けた構成を有する。
超電導薄膜並設体20は、矩形の超電導薄膜20aおよび20bで構成する。
超電導薄膜20a、20bは、それぞれサファイア基板上にセリア等のバッファ層を介して高温超電導薄膜を設け、この高温超電導薄膜上に金銀合金分流層を設ける。
In order to further increase the capacity, a current limiting element module is manufactured by dividing a 2.7 cm × 20 cm rectangular thin film into three parts using two intermediate electrodes and paralleling them into two (see FIG. 8). (Refer nonpatent literature 7).
The internal series connection type superconducting thin film current limiting element 19 shown in FIG. 8 has a configuration in which a pair of rectangular superconducting thin film side-by-side bodies 20 and external resistors 3a and 3b connected in parallel therewith are provided.
The superconducting thin film juxtaposed body 20 is composed of rectangular superconducting thin films 20a and 20b.
Each of the superconducting thin films 20a and 20b is provided with a high-temperature superconducting thin film on a sapphire substrate via a buffer layer such as ceria, and a gold-silver alloy shunt layer is provided on the high-temperature superconducting thin film.

それぞれの金銀合金分流層上には、その長さ方向に所定間隔を設けてそれぞれ4個の電極15a1、15b1、15c1、15d1および15a2、15b2、15c2、15d2を設ける。金銀合金分流層の長さ方向の両端に位置する端部電極15a1と15a2、15d1と15d2を短絡するように超電導テープ19a、19bをそれぞれハンダ付けする。
超電導薄膜20a、20bのそれぞれの金銀合金分流層は、4個の電極15a1、15b1、15c1、15d1および15a2、15b2、15c2、15d2により、区画された領域4a1、4b1、4c1および4a2、4b2、4c2を画成する。
金銀合金層は、金と銀の合金からなる蒸着膜として形成する。
Four electrodes 15a1, 15b1, 15c1, 15d1 and 15a2, 15b2, 15c2, 15d2 are provided on the respective gold / silver alloy shunt layers at predetermined intervals in the length direction. The superconducting tapes 19a and 19b are soldered so as to short-circuit the end electrodes 15a1 and 15a2 and 15d1 and 15d2 located at both ends in the length direction of the gold-silver alloy shunt layer.
Each of the gold-silver alloy shunt layers of the superconducting thin films 20a and 20b is divided into four regions 15a1, 15b1, 15c1, 15d1 and 15a2, 15b2, 15c2, 15d2, and regions 4a1, 4b1, 4c1 and 4a2, 4b2, 4c2 Is defined.
The gold-silver alloy layer is formed as a deposited film made of an alloy of gold and silver.

上記電極の数は、クエンチの伝搬速度と印加電圧分散の観点から適宜設定することができる。
超電導テープ19aは銅電極6aへワイヤ等の適当な電気的配線手段により接続し、超電導テープ19bは銅電極6bへワイヤ等の適当な電気的配線手段により接続する。
抵抗3aは、無誘導巻分流抵抗11a1、11b1および11c1を中間電極となる銅電極12a1および12b1により1続きの抵抗となるように接続する。
抵抗3bは、同じく、無誘導巻分流抵抗11a2、11b2および11c2を中間電極となる銅電極12a2および12b2により1続きの抵抗となるように接続する。
The number of the electrodes can be appropriately set from the viewpoint of the propagation speed of quenching and dispersion of applied voltage.
The superconducting tape 19a is connected to the copper electrode 6a by an appropriate electrical wiring means such as a wire, and the superconducting tape 19b is connected to the copper electrode 6b by an appropriate electrical wiring means such as a wire.
The resistor 3a connects the non-inductive winding shunt resistors 11a1, 11b1, and 11c1 so as to be a continuous resistance by the copper electrodes 12a1 and 12b1 that are intermediate electrodes.
Similarly, the resistor 3b connects the non-inductive winding shunt resistors 11a2, 11b2, and 11c2 so as to be a continuous resistance by the copper electrodes 12a2 and 12b2 that are intermediate electrodes.

無誘導巻分流抵抗11a1、11a2の巻線の一方の端部を外部接続用電極6aに接続し、無誘導巻分流抵抗11a1、11a2の巻線の他方の端部をそれぞれ中間電極12a1、12a2へ接続し、中間電極12a1、12a2をそれぞれ対応する中間電極15b1、15b2に接続すると共に、中間電極12a1、12a2を短絡する。
同じようにして、無誘導巻分流抵抗11b1、11b2の巻線の一方の端部を中間電極12a1、12a2へ接続し、無誘導巻分流抵抗11b1、11b2の巻線の他方の端部をそれぞれ中間電極12b1、12b2へ接続し、中間電極12b1、12bをそれぞれ対応する中間電極15c1、15c2に接続すると共に、中間電極12b1、12b2を短絡する。
One end of the winding of the non-inductive winding shunt resistor 11a1, 11a2 is connected to the external connection electrode 6a, and the other end of the winding of the non-inductive winding shunt resistor 11a1, 11a2 is connected to the intermediate electrode 12a1, 12a2, respectively. The intermediate electrodes 12a1 and 12a2 are connected to the corresponding intermediate electrodes 15b1 and 15b2, respectively, and the intermediate electrodes 12a1 and 12a2 are short-circuited.
In the same manner, one end of the winding of the non-inductive winding shunt resistances 11b1 and 11b2 is connected to the intermediate electrodes 12a1 and 12a2, and the other end of the winding of the non-inductive winding shunt resistance 11b1 and 11b2 is intermediate. The electrodes are connected to the electrodes 12b1 and 12b2, the intermediate electrodes 12b1 and 12b are connected to the corresponding intermediate electrodes 15c1 and 15c2, respectively, and the intermediate electrodes 12b1 and 12b2 are short-circuited.

同じようにして、無誘導巻分流抵抗11c1、11c2の巻線の一方の端部を中間電極12b1、12b2へ接続し、無誘導巻分流抵抗11c1、11c2の巻線の他方の端部をそれぞれ外部接続用電極6bへ接続する。
このように接続されることにより、超電導薄膜並設体20に対し抵抗3aおよび3bが並列接続される。
なお、図8には示されていないが、この限流素子には、ホットスポット対策として、図に示す無誘導巻き外付け抵抗とともに小容量のコンデンサが、3分割された各部分薄膜に並列接続されている(特許文献2、非特許文献5参照)。
In the same manner, one end of the winding of the non-inductive shunt resistances 11c1 and 11c2 is connected to the intermediate electrodes 12b1 and 12b2, and the other end of the winding of the non-inductive shunt resistance 11c1 and 11c2 is externally connected. Connect to the connection electrode 6b.
By connecting in this way, the resistors 3 a and 3 b are connected in parallel to the superconducting thin film juxtaposed body 20.
Although not shown in FIG. 8, in this current limiting element, as a countermeasure against hot spots, a small-capacitance capacitor together with the non-inductive winding external resistance shown in FIG. (See Patent Document 2 and Non-Patent Document 5).

特願2006−528493(WO2006/001226参照)Japanese Patent Application No. 2006-528493 (see WO2006 / 001226) 特開2008−283106JP 2008-283106 A

B. Gromoll, G. Ries, W. Schmidt, H.-P. Kraemer, B. Seebacher, B. Utz, R. Nies, H.-W. Neumueller, E. Baltzer, S. Fischer and B. Heismann, “Resistive fault current limiters with YBCO films−100 kVA functional model,” IEEE Trans. Appl. Supercond. 9 (1999) 656-659B. Gromoll, G. Ries, W. Schmidt, H.-P. Kraemer, B. Seebacher, B. Utz, R. Nies, H.-W. Neumueller, E. Baltzer, S. Fischer and B. Heismann, “Resistive fault current limiters with YBCO films−100 kVA functional model,” IEEE Trans. Appl. Supercond. 9 (1999) 656-659 Ok-Bae Hyun, Hye-Rim Kim, J. Sim, Y.-H. Jung, K.-B. Park, J.-S. Kang, B.W. Lee, and I.-S. Oh, “6.6 kV resistive superconducting fault current limiter based on YBCO films,” IEEE Trans. Appl. Supercond. 15 (2005) 2027-2030Ok-Bae Hyun, Hye-Rim Kim, J. Sim, Y.-H. Jung, K.-B. Park, J.-S. Kang, BW Lee, and I.-S. Oh, “6.6 kV resistive superconducting fault current limiter based on YBCO films, ”IEEE Trans. Appl. Supercond. 15 (2005) 2027-2030 H. Yamasaki, M. Furuse, and Y. Nakagawa, “High-power-density fault-current limiting devices using superconducting YBa2Cu3O7 films and high-resistivity alloy shunt layers,” Appl. Phys. Lett. 85 (2004) 4427-4429H. Yamasaki, M. Furuse, and Y. Nakagawa, “High-power-density fault-current limiting devices using superconducting YBa2Cu3O7 films and high-resistivity alloy shunt layers,” Appl. Phys. Lett. 85 (2004) 4427-4429 H. Yamasaki, K. Arai, M. Furuse, K. Kaiho, and Y. Nakagawa, “Low-cost and high-power-density resistive fault-current limiting elements using YBCO thin films and Au-Ag alloy shunt layers,” J. Phys. Conf. Ser. 43 (2006) 937-941H. Yamasaki, K. Arai, M. Furuse, K. Kaiho, and Y. Nakagawa, “Low-cost and high-power-density resistive fault-current limiting elements using YBCO thin films and Au-Ag alloy shunt layers,” J. Phys. Conf. Ser. 43 (2006) 937-941 K. Arai, H. Yamasaki, K. Kaiho, Y. Nakagawa, M. Sohma, W. Kondo, I. Yamaguchi, and T. Kumagai, “Methods to increase current capacity of superconducting thin-film fault current limiter using Au-Ag alloy shunt layers,” IEEE Trans. Appl. Supercond., in press.K. Arai, H. Yamasaki, K. Kaiho, Y. Nakagawa, M. Sohma, W. Kondo, I. Yamaguchi, and T. Kumagai, “Methods to increase current capacity of superconducting thin-film fault current limiter using Au- Ag alloy shunt layers, ”IEEE Trans. Appl. Supercond., In press. K. Arai, H. Yamasaki, K. Kaiho, M. Furuse, Y. Nakagawa, M. Sohma, and I. Yamaguchi, “Normal zone propagation in superconducting thin-film fault current limiting elements with Au-Ag alloy shunt layers,” J. Phys. Conf. Ser. 97 (2008) 12031K. Arai, H. Yamasaki, K. Kaiho, M. Furuse, Y. Nakagawa, M. Sohma, and I. Yamaguchi, “Normal zone propagation in superconducting thin-film fault current limiting elements with Au-Ag alloy shunt layers, ”J. Phys. Conf. Ser. 97 (2008) 12031 H. Yamasaki, K. Arai, K. Kaiho, Y. Nakagawa, M. Sohma, W. Kondo, I. Yamaguchi, and T. Kumagai, “Development of 500 V/200 A fault-current-limiting modules made of large MOD-YBCO thin films with Au-Ag alloy shunt layers,” Program & Abstracts of the 21st International Symposium on Superconductivity (2008) 163H. Yamasaki, K. Arai, K. Kaiho, Y. Nakagawa, M. Sohma, W. Kondo, I. Yamaguchi, and T. Kumagai, “Development of 500 V / 200 A fault-current-limiting modules made of large MOD-YBCO thin films with Au-Ag alloy shunt layers, ”Program & Abstracts of the 21st International Symposium on Superconductivity (2008) 163 J. Duron, L. Antognazza, M. Decroux, F. Grilli, S. Stavrev, B. Dutoit, and O. Fischer, “3-D finite element simulations of strip lines in a YBCO/Au fault current limiter,”IEEE Trans. Appl. Supercond. 15 (2005) 1998-2002J. Duron, L. Antognazza, M. Decroux, F. Grilli, S. Stavrev, B. Dutoit, and O. Fischer, “3-D finite element simulations of strip lines in a YBCO / Au fault current limiter,” IEEE Trans. Appl. Supercond. 15 (2005) 1998-2002

本件発明者らは、2.7cm幅で長さ20cmの高温超電導YBCO薄膜(膜厚150nm、予想される直流臨界電流≧155Apeak)、および、同サイズのYBCO薄膜(膜厚160nm、予想される直流臨界電流≧167Apeak)を、金属基材超電導テープを用いて並列に接続し、図8に示すような限流素子を作製した。
薄膜に、ほぼ金−23wt%銀の組成の合金膜を約60nmの膜厚でスパッタ蒸着した後、両端および中央の2カ所に銀を7−8mm幅で蒸着して電極とし(3分割された各部分薄膜の有効長が5.7cm)、ホットスポット対策のため、合金線の無誘導巻で作製した外付け分流抵抗および、120マイクロファラッドのコンデンサ(図示省略)を3分割された各部分薄膜に並列接続している。なお、中間電極における、外付け抵抗やコンデンサ、2枚の薄膜同士の接続は、ハンダと常電導の銅リードを用いて行った。外付け分流抵抗は、各部分薄膜当り0.35オームで、薄膜の抵抗は約1.9オームであるので、薄膜がクエンチすると、通電電流の大半は外付け抵抗に分流する。
図9は、上記の限流素子を用いた場合の限流試験結果を示す図である。同図に示すように、限流素子に流れる全電流(Itotal)は、限流素子がなければ2.5kArmsになる速度で急増するが、超電導薄膜のクエンチに伴って、604A付近から増加速度が緩やかになるとともに、薄膜の両端の薄膜電圧(Vfilm)が急激に増加した。そして、高温超電導薄膜の両端に590Vpeakの交流電圧が印加された状態で、薄膜が焼損することなく5サイクル(100msec)の通電が可能であった。このとき、素子有効長17cmにおける平均電界は、E=34.7V/cmであった。
The inventors of the present invention have a 2.7 cm wide and 20 cm long high-temperature superconducting YBCO thin film (thickness 150 nm, expected direct current critical current ≧ 155 A peak ), and a YBCO thin film of the same size (thickness 160 nm, expected) DC critical current ≧ 167 A peak ) were connected in parallel using a metal substrate superconducting tape to produce a current limiting element as shown in FIG.
An alloy film having a composition of approximately gold-23 wt% silver was sputter-deposited on the thin film with a film thickness of about 60 nm, and then silver was evaporated at a width of 7-8 mm at both ends and the center to form an electrode (divided into three parts). (Effective length of each partial thin film is 5.7 cm). To prevent hot spots, an external shunt resistor made by non-inductive winding of an alloy wire and a 120 microfarad capacitor (not shown) are divided into three partial thin films. Connected in parallel. The connection between the external resistor and the capacitor and the two thin films in the intermediate electrode was performed using solder and a normal conductive copper lead. The external shunt resistance is 0.35 ohm for each partial thin film, and the resistance of the thin film is about 1.9 ohm. Therefore, when the thin film is quenched, most of the energized current is shunted to the external resistance.
FIG. 9 is a diagram showing a current limiting test result when the above current limiting element is used. As shown in the figure, the total current (I total ) flowing through the current limiting element increases rapidly at a rate of 2.5 kA rms without the current limiting element, but increases from around 604 A with the quenching of the superconducting thin film. As the speed decreased, the thin film voltage (V film ) across the thin film increased rapidly. And in the state which applied the alternating voltage of 590V peak to the both ends of the high temperature superconducting thin film, electricity supply of 5 cycles (100 msec) was possible, without a thin film burning. At this time, the average electric field at an element effective length of 17 cm was E = 34.7 V / cm.

図9において、V1は図8の電極6aと12a2の間の電圧値、同じくV2は図8の電極12a2と12b2の間の電圧値、V3は図8の電極12b2と6bの間の電圧値を意味する。また、Vfilmは図8の電極6aと6bの間の電圧を意味する。全電流Itotalは図8の電極6aと6bの間の電流を意味する。なお、V2の立ち上がり点を矢印で示す。
しかし、図10に示す、さらに高い電圧を印加した実験では、3つの各部分のうち、最後にクエンチが生じた中央部分(V2区間)で薄膜が破損し、5−6cm長の部分素子で得られている仕様値(平均電界43V/cm以上)を達成できなかった。
図10において、V1は図8の電極6aと12a2の間の電圧値、同じくV2は図8の電極12a2と12b2の間の電圧値、V3は図8の電極12b2と6bの間の電圧値を意味する。また、Vfilmは図8の電極6aと6bの間の電圧を意味する。全電流Itotalは図8の電極6aと6bの間の電流を意味する。なお、V2の立ち上がり点を矢印で示す。
同様の限流試験を、同一サイズではあるが、臨界電流やその均質性が異なる超電導薄膜を用いて作製した、複数の図8の限流素子モジュールに対して行ったが、図9よりも低い印加電圧の試験で、最後にクエンチが生じた部分で薄膜の破損が生じ、結果として、図8の構成では、部分素子に対する許容電界の仕様値(E>43V/cm)を達成できないことがわかった。
9, V1 is a voltage value between the electrodes 6a and 12a2 in FIG. 8, V2 is a voltage value between the electrodes 12a2 and 12b2 in FIG. 8, and V3 is a voltage value between the electrodes 12b2 and 6b in FIG. means. V film means the voltage between the electrodes 6a and 6b in FIG. The total current I total means the current between the electrodes 6a and 6b in FIG. The rising point of V2 is indicated by an arrow.
However, in the experiment shown in FIG. 10 in which a higher voltage was applied, the thin film was damaged in the central part (V2 section) where quenching occurred at the end of each of the three parts. The specified value (average electric field of 43 V / cm or more) could not be achieved.
In FIG. 10, V1 is a voltage value between the electrodes 6a and 12a2 in FIG. 8, V2 is a voltage value between the electrodes 12a2 and 12b2 in FIG. 8, and V3 is a voltage value between the electrodes 12b2 and 6b in FIG. means. V film means the voltage between the electrodes 6a and 6b in FIG. The total current I total means the current between the electrodes 6a and 6b in FIG. The rising point of V2 is indicated by an arrow.
A similar current limiting test was performed on a plurality of current limiting element modules shown in FIG. 8 manufactured using superconducting thin films having the same size but different critical current and homogeneity. In the applied voltage test, it was found that the thin film breakage occurred at the last quenching part, and as a result, the allowable electric field specification value (E> 43 V / cm) for the partial element could not be achieved with the configuration of FIG. It was.

図8の構成の限流素子モジュールの限流試験では、最後にクエンチが生じた部分で薄膜の破損が生じた。その1つの原因は、図9、10からわかるように、最後のクエンチが生ずる時の通電電流が、最初のクエンチ時よりも大きいことがあげられる。本件発明者等は、その他の原因として、定常通電時や、電流急増によって最初のクエンチが生ずる時には、薄膜に流れる電流は薄膜の長手方向にほぼ直線的に流れているのに対し、2番目や、最後のクエンチ時には、その前にクエンチした部分薄膜に接続している外付け抵抗から銅リード・中間電極を介して薄膜に流入する電流が、接続抵抗の不均一のため、長手方向に直線的に流れていないことを考えた(図11参照)。
例えば、L字型の薄膜のコーナーのように電流経路が直線的ではなく、直角に折れ曲がっている場合には、限流時の電界の急増によってコーナーの部分の薄膜が破損しやすいことが述べられている(非特許文献8参照)。本件発明者等も、矩形状の薄膜に小さな切り欠きを入れて臨界電流を少し低減させた素子の限流試験を行ったことがあり、切り欠きがない場合には薄膜の破損が生じないはずの電圧を印加した時に、切り欠きのすぐ外側で薄膜が破損した経験を有する。これらの実験事実から、電流経路が直線的ではなく曲がっていることが、ホットスポットの問題を深刻化させる大きな要因となることがわかる。
In the current limiting test of the current limiting element module configured as shown in FIG. 8, the thin film was damaged at the portion where the quenching occurred at the end. One reason for this is that, as can be seen from FIGS. 9 and 10, the energization current when the last quench occurs is larger than that during the first quench. The inventors of the present invention have other reasons such as the current flowing through the thin film almost linearly in the longitudinal direction of the thin film when the first quench occurs due to steady energization or when the current suddenly increases. At the time of the last quench, the current flowing into the thin film through the copper lead / intermediate electrode from the external resistor connected to the previously quenched partial thin film is linear in the longitudinal direction due to uneven connection resistance. (See FIG. 11).
For example, when the current path is not linear but bent at a right angle like the corner of an L-shaped thin film, it is stated that the thin film at the corner is easily damaged by the sudden increase in electric field during current limiting. (See Non-Patent Document 8). The inventors of the present invention have also conducted a current limiting test on a device in which a small notch is made in a rectangular thin film to reduce the critical current slightly, and if there is no notch, the thin film should not be damaged. When a voltage of 5 is applied, the thin film was damaged just outside the notch. From these experimental facts, it can be seen that the current path being bent rather than linear is a major factor that exacerbates the problem of hot spots.

本発明の目的は、薄膜の途中の中間電極に外付け抵抗を接続するような長尺の超電導限流素子において、ホットスポットの発生を防止するようにした超電導限流素子を提供することにある。   An object of the present invention is to provide a superconducting current limiting element that prevents hot spots from occurring in a long superconducting current limiting element in which an external resistor is connected to an intermediate electrode in the middle of a thin film. .

図8の、薄膜の途中の中間電極に外付け抵抗を接続するような長尺の薄膜を有する構成の限流素子モジュールでは、最初や、2番目のクエンチが生じた直後に、クエンチした薄膜に接続している外付け抵抗から銅リード・中間電極を介して薄膜に電流が流入するわけであるが、接続抵抗の不均一のため、その電流が長手方向に直線的に流れていないことが実験結果から推察される。
図11において、金銀合金層付高温超電導薄膜の領域4a1にクエンチ13が発生すると、電流路14が矢印のように偏倚して形成される。
そこで、薄膜の両端電極における並列接続と同様に、中間電極においても、金属基材超電導テープとハンダを用いて超電導並列接続すれば、接続抵抗が均一になり、2番目、3番目のクエンチが生ずる時の電流経路を薄膜の長手方向に直線的にできる(図12参照)との知見を得た。
図12に示す本発明の例では、金銀合金層付高温超電導薄膜の領域4a1にクエンチ13aが発生したとき、電流路14aが矢印のように偏倚せず平行に形成される。
In the current limiting element module having a long thin film connecting an external resistor to the intermediate electrode in the middle of the thin film in FIG. 8, the quenched thin film is formed immediately after the first or second quench. Current flows into the thin film from the connected external resistor via the copper lead and intermediate electrode, but it is an experiment that the current does not flow linearly in the longitudinal direction due to uneven connection resistance. Inferred from the results.
In FIG. 11, when the quench 13 is generated in the region 4a1 of the high-temperature superconducting thin film with the gold-silver alloy layer, the current path 14 is formed in a biased manner as indicated by an arrow.
Therefore, in the same way as the parallel connection at both end electrodes of the thin film, the connection resistance becomes uniform and the second and third quenches occur in the intermediate electrode if the superconducting parallel connection is made using a metal base superconducting tape and solder. It was found that the current path can be made linear in the longitudinal direction of the thin film (see FIG. 12).
In the example of the present invention shown in FIG. 12, when the quench 13a is generated in the region 4a1 of the high-temperature superconducting thin film with the gold-silver alloy layer, the current paths 14a are formed in parallel as shown by the arrows.

本発明は、上記目的を達成するために、発明を実施するための基本的な形態として以下の態様をとる。
(1)2枚の超電導薄膜を並列接続するやり方として、図1の素子構成となるように、両端の電極のみならず中間の電極においても超電導接続を行う。
詳細には、本発明で提案する限流素子は、分流保護膜付超電導薄膜の両端および中間部に純金属を蒸着して電極部を形成し、それらの電極部にハンダを介して金属基材超電導テープを接続することによって、両端の電極のみならず中間の電極においても超電導接続を行うことを特徴とし、電極間の各部分薄膜に外付けの分流抵抗を接続する内部直列接続型の超電導限流素子とする(図1参照)。なお、該超電導限流素子は、限流時の保護として、コンデンサを並列接続することができる。
(2)図1は、2枚の薄膜を並列接続した例であるが、図2のような1枚の薄膜のみを用いる場合でも、各電極と外付けの分流抵抗との接続の際に、電極部にハンダを介して金属基材超電導テープを接続する構成とすることもできる。
(3)特に、超電導テープは、ビスマス系超電導酸化物を銀もしくは銀合金からなるシース材を用いて作製したテープとすることもできる。
(4)これまで、分流保護層として金銀合金層を設けた高温超電導薄膜限流素子の例について述べてきたが、本発明はそれに限ることなく、純金属または金銀合金以外の合金からなる蒸着膜を分流保護層とする高温超電導薄膜を用いることもできる。
In order to achieve the above object, the present invention takes the following aspects as basic forms for carrying out the invention.
(1) As a method of connecting two superconducting thin films in parallel, superconducting connection is performed not only at both ends but also at an intermediate electrode so as to have the element configuration of FIG.
Specifically, the current limiting element proposed in the present invention is a method in which pure metal is vapor-deposited on both ends and an intermediate portion of a superconducting thin film with a shunt protective film to form electrode portions, and a metal base material is formed on these electrode portions via solder. By connecting the superconducting tape, superconducting connection is made not only at the electrodes at both ends but also at the intermediate electrode, and an internal series connection type superconducting limit that connects an external shunt resistor to each partial thin film between the electrodes A flow element is used (see FIG. 1). In the superconducting current limiting element, capacitors can be connected in parallel as protection during current limiting.
(2) FIG. 1 is an example in which two thin films are connected in parallel, but even when only one thin film as shown in FIG. 2 is used, when connecting each electrode to an external shunt resistor, It can also be set as the structure which connects a metal base material superconducting tape to an electrode part via solder.
(3) In particular, the superconducting tape can be a tape made of a bismuth-based superconducting oxide using a sheath material made of silver or a silver alloy.
(4) The example of the high-temperature superconducting thin film current limiting element provided with the gold-silver alloy layer as the shunt protection layer has been described so far, but the present invention is not limited thereto, and the deposited film made of an alloy other than pure metal or gold-silver alloy It is also possible to use a high-temperature superconducting thin film having a shunt protective layer.

2枚の薄膜を並列接続するやり方として、図1の素子構成となるように、両端の電極のみならず中間の電極を含むすべての電極においても超電導接続を行う。
本発明で提案する限流素子は、分流保護膜付超電導薄膜の両端および中間部に純金属を蒸着して電極部を形成し、それらの電極部にハンダを介して金属基材超電導テープを接続することによって、両端の電極のみならず中間の電極においても超電導接続を行うことを特徴とし、電極間の領域に対応する各部分薄膜に外付けの分流抵抗を接続する内部直列接続型の超電導限流素子である(図1参照)。なお、該超電導限流素子は、限流時の保護として、コンデンサを並列接続することができる。
これにより、分流保護膜付超電導薄膜の両端および中間部に純金属を蒸着して電極部を形成し、それらの電極部にハンダを介して金属基材超電導テープを接続することによって、両端の電極のみならず中間の電極においても超電導並列接続を行う内部直列接続型の限流素子を製作することにより、部分素子と同等の許容電界を有する直列限流素子を製作できる。
図1は、2枚の薄膜を並列接続した例であるが、図2のような1枚の薄膜のみを用いる場合でも、各電極と外付けの分流抵抗との接続の際に、電極部にハンダを介して金属基材超電導テープを接続する構成とすることもできる。このようにすると、電流リードとの接続抵抗を低減・均一化することができ、電流経路を直線状とする効果を有し、限流特性を向上することができる。
特に、ビスマス系超電導酸化物を銀もしくは銀合金からなるシース材を用いて作製したテープとすることもできる。このようにすると、容易にハンダを溶着することができるため、本特許で提案する限流素子に用いる金属基材超電導テープとして好ましいものにできる。
As a method of connecting two thin films in parallel, superconducting connection is performed not only at the electrodes at both ends but also at all electrodes including the intermediate electrode so as to have the element configuration of FIG.
The current limiting element proposed in the present invention forms electrode parts by vapor-depositing pure metal on both ends and the middle part of a superconducting thin film with a shunt protection film, and a metal substrate superconducting tape is connected to these electrode parts via solder. In this way, superconducting connections are made not only at the electrodes at both ends but also at intermediate electrodes, and an internal series connection type superconducting limit that connects an external shunt resistor to each thin film corresponding to the region between the electrodes. Current element (see FIG. 1). In the superconducting current limiting element, capacitors can be connected in parallel as protection during current limiting.
Thus, pure metal is vapor-deposited on both ends and middle portion of the superconducting thin film with a shunt protective film to form electrode portions, and the metal base superconducting tape is connected to these electrode portions via solder, thereby providing electrodes on both ends. In addition, by producing an internal series connection type current limiting element that performs superconducting parallel connection not only in an intermediate electrode, a series current limiting element having an allowable electric field equivalent to that of a partial element can be produced.
FIG. 1 shows an example in which two thin films are connected in parallel. However, even when only one thin film as shown in FIG. 2 is used, the electrodes are connected to each electrode and an external shunt resistor. It can also be set as the structure which connects a metal-base superconducting tape via solder | pewter. In this way, the connection resistance with the current lead can be reduced and made uniform, the current path has the effect of being linear, and the current limiting characteristics can be improved.
In particular, a tape made of a bismuth-based superconducting oxide using a sheath material made of silver or a silver alloy can also be used. In this case, since solder can be easily welded, the metal base superconducting tape used in the current limiting element proposed in this patent can be made preferable.

本発明の実施例1である内部直列接続型の超電導薄膜限流素子の構成図である。BRIEF DESCRIPTION OF THE DRAWINGS It is a block diagram of the internal series connection type superconducting thin film current limiting element which is Example 1 of this invention. 本発明の超電導薄膜を1枚とした内部直列接続型の超電導薄膜限流素子の構成図である。It is a block diagram of an internal series connection type superconducting thin film current limiting element having one superconducting thin film of the present invention. 図1のD1−D2断面図である。It is D1-D2 sectional drawing of FIG. 2.7cm幅で20cm長の2枚の超電導薄膜を用いた、本特許で提案する内部直列接続型の超電導薄膜限流素子の限流試験結果である。It is a current limiting test result of the superconducting thin film current limiting element of the internal series connection type proposed in this patent using two superconducting thin films of 2.7 cm width and 20 cm length. 図4におけるクエンチ発生直後の短い時間の要部拡大図である。It is a principal part enlarged view of the short time immediately after generation | occurrence | production of quenching in FIG. 円形の超電導薄膜を用いた、本特許で提案する内部直列接続型の超電導薄膜限流素子である。This is an internal series connection type superconducting thin film current limiting element proposed in this patent, using a circular superconducting thin film. 超電導薄膜を1枚とした超電導薄膜限流素子の構成図である。It is a block diagram of the superconducting thin film current limiting element which used one superconducting thin film. 非特許文献7で提案する内部直列接続型の超電導薄膜限流素子の概念図である。It is a conceptual diagram of the internal series connection type superconducting thin film current limiting element proposed in Non-Patent Document 7. 2.7cm幅で20cm長の2枚の超電導薄膜を用いた、非特許文献7で提案する内部直列接続型の超電導薄膜限流素子の限流試験結果である。It is a current-limiting test result of the internal series connection type superconducting thin film current limiting element proposed in Non-Patent Document 7 using two superconducting thin films of 2.7 cm width and 20 cm length. 図9よりも少し高い電圧を印加した場合の限流試験結果である。10 shows a current limiting test result when a voltage slightly higher than that in FIG. 9 is applied. 図8の場合のクエンチ発生時の説明図である。It is explanatory drawing at the time of quench generation | occurrence | production in the case of FIG. 図1の場合のクエンチ発生時の説明図である。It is explanatory drawing at the time of quench generation | occurrence | production in the case of FIG.

本発明は、上記目的を達成するために、発明を実施するための基本的な形態として以下の態様をとる。
(1)2枚の薄膜を並列接続するやり方として、図1の素子構成となるように、両端の電極のみならず中間の電極を含んですべての電極において超電導接続を行う。
本発明で提案する限流素子は、分流保護膜付超電導薄膜の両端および中間部に純金属を蒸着して電極を形成し、それらの電極にハンダを介して金属基材超電導テープを接続することによって、両端の電極のみならず中間の電極においても超電導接続を行うことを特徴とし、電極間の各部分薄膜に外付けの分流抵抗を接続する内部直列接続型の超電導限流素子である(図1参照)。なお、該超電導限流素子は、限流時の保護として、コンデンサを並列接続することができる。
(2)図1は、2枚の薄膜を並列接続した例であるが、図2のような1枚の薄膜のみを用いる場合でも、各電極と外付けの分流抵抗との接続の際に、電極部にハンダを介して金属基材超電導テープを接続する構成とすることもできる。
(3)特に、超電導テープをビスマス系超電導酸化物を銀もしくは銀合金からなるシース材を用いて作製したテープとすることもできる。
(4)これまで、分流保護層として金銀合金層を設けた高温超電導薄膜限流素子の例について述べてきたが、本発明はそれに限ることなく、純金属または金銀合金以外の合金からなる蒸着膜を分流保護層とする高温超電導薄膜を用いることもできる。
In order to achieve the above object, the present invention takes the following aspects as basic forms for carrying out the invention.
(1) As a method of connecting two thin films in parallel, superconducting connection is performed in all electrodes including not only electrodes at both ends but also intermediate electrodes so as to have the element configuration of FIG.
In the current limiting element proposed in the present invention, pure metal is vapor-deposited on both ends and an intermediate portion of a superconducting thin film with a shunt protective film, and electrodes are formed by connecting a metal substrate superconducting tape to these electrodes via solder. Is an internal series connection type superconducting current limiting element in which an external shunt resistor is connected to each partial thin film between the electrodes as shown in FIG. 1). In the superconducting current limiting element, capacitors can be connected in parallel as protection during current limiting.
(2) FIG. 1 is an example in which two thin films are connected in parallel, but even when only one thin film as shown in FIG. 2 is used, when connecting each electrode to an external shunt resistor, It can also be set as the structure which connects a metal base material superconducting tape to an electrode part via solder.
(3) In particular, the superconducting tape may be a tape produced by using a sheath material made of bismuth-based superconducting oxide made of silver or a silver alloy.
(4) The example of the high-temperature superconducting thin film current limiting element provided with the gold-silver alloy layer as the shunt protection layer has been described so far, but the present invention is not limited thereto, and the deposited film made of an alloy other than pure metal or gold-silver alloy It is also possible to use a high-temperature superconducting thin film having a shunt protective layer.

本発明の実施の形態1を図に基づいて詳細に説明する。
本発明で開示する限流素子の実証のため、図9、10の結果を得た2枚の薄膜と特性が近い2枚の薄膜を用い、両端の電極のみならず中間の電極においても、ハンダを介して金属基材超電導テープを接続することによって2枚の薄膜を超電導並列接続した、図1の構成の素子モジュールを作製した。
具体的な例を示すと以下のようになる、即ち、2.7cm幅で長さ20cmのYBCO薄膜22a(図3参照:膜厚160nm、予想される直流臨界電流≧160Apeak)、および、同サイズのYBCO薄膜22b(図示省略:膜厚160nm、予想される直流臨界電流≧155Apeak)の2枚の薄膜に、ほぼ金−23wt%銀の組成の合金膜21a、21bを約60nmの膜厚でスパッタ蒸着した後、両端および中央の2カ所に銀を7−8mm幅で蒸着して電極とし(3分割された各部分薄膜の有効長が5.7cm)、両端の電極、および、中間電極に、ハンダを介して金属基材超電導テープを接続することによって2枚の薄膜を超電導並列接続した。なお、ホットスポット対策のため、合金線の無誘導巻で作製した外付け分流抵抗(0.35オーム)および、120マイクロファラッドのコンデンサ(図示省略)を電極により3分割された各領域に対応する各部分薄膜に並列接続している。用いた金属基材超電導テープは、ビスマス系超電導酸化物を銀からなるシース材を用いて作製したテープである。
Embodiment 1 of the present invention will be described in detail with reference to the drawings.
In order to demonstrate the current limiting element disclosed in the present invention, two thin films having characteristics similar to those of the two thin films obtained in FIGS. 9 and 10 are used, and solder is used not only at both ends but also at an intermediate electrode. The element module of the structure of FIG. 1 which produced the superconducting parallel connection of the two thin films by connecting the metal substrate superconducting tape through the electrode was manufactured.
A specific example is as follows: a 2.7 cm wide and 20 cm long YBCO thin film 22 a (see FIG. 3: film thickness 160 nm, expected direct current critical current ≧ 160 A peak ), and the same YBCO thin film 22b of a size (not shown: film thickness 160 nm, expected direct current critical current ≧ 155 A peak ) and alloy films 21 a and 21 b having a composition of approximately gold-23 wt% silver are formed to a film thickness of approximately 60 nm. After sputter deposition, silver is deposited at a width of 7-8 mm at both ends and the center to form an electrode (effective length of each of the three divided thin films is 5.7 cm). In addition, two thin films were connected in parallel to each other by connecting a metal substrate superconducting tape via solder. In order to prevent hot spots, an external shunt resistor (0.35 ohm) produced by non-inductive winding of an alloy wire and a 120 microfarad capacitor (not shown) corresponding to each region divided into three by electrodes. Connected to the partial thin film in parallel. The metal base superconducting tape used is a tape made of a bismuth-based superconducting oxide using a sheath material made of silver.

図1は本発明の実施例1である内部直列接続型の超電導薄膜限流素子の構成図である。
図2は図1の上半分により構成した超電導薄膜を1枚とした内部直列接続型の超電導薄膜限流素子の構成図である。
図3(a)は図1のD1−D2の断面図を示す。図3(b)は他の実施例の断面図を示す。
図1の内部直列接続型の超電導薄膜限流素子1は、1対の超電導薄膜2aおよび2bからなる超電導薄膜並設体2と、これと並列接続された外付け抵抗3aおよび3bを設けた構成を有する。
但し、図1の実施例に制限されることなく、本発明の超電導薄膜並設体2は、図2に示すような1枚の超電導薄膜2aで構成したものであってもよい。
同じ構成要素には同じ符号を付して説明を省略する。
超電導薄膜2aは、サファイア基板7a上にセリア等のバッファ層23aを介して高温超電導薄膜22aを設け、この高温超電導薄膜22a上に金銀合金分流層21aを設ける。
金銀合金分流層上には、その長さ方向に所定の間隔で電極を設ける。電極の数はホットスポットとの関係で設けられる。
金銀合金分流層の長さ方向両端には端部電極5a1と5d1を設け、両端の内部には中間電極5b1と5c1を必要数設ける。これら電極上には超電導テープ9a、9b、9cおよび9dをハンダ付けする。
なお、超電導薄膜2bは、超電導薄膜2aと同様に設ける。
超電導テープ9a、9b、9cおよび9dは、それぞれ超電導薄膜2aと超電導薄膜2bの対応する電極間、すなわち、電極5a1と5a2を超電導テープ9aで接続し、電極5b1と5b2を超電導テープ9bで接続し、電極5c1と5c2を超電導テープ9cで接続し、電極5d1と5d2を超電導テープ9dで接続する。
FIG. 1 is a configuration diagram of an internal series connection type superconducting thin film current limiting element, which is Embodiment 1 of the present invention.
FIG. 2 is a block diagram of an internal series connection type superconducting thin film current limiting element having a single superconducting thin film composed of the upper half of FIG.
FIG. 3A shows a cross-sectional view taken along D1-D2 in FIG. FIG. 3B shows a cross-sectional view of another embodiment.
The internal serial connection type superconducting thin film current limiting element 1 shown in FIG. 1 includes a superconducting thin film juxtaposed body 2 composed of a pair of superconducting thin films 2a and 2b, and external resistors 3a and 3b connected in parallel therewith. Have
However, without being limited to the embodiment of FIG. 1, the superconducting thin film juxtaposed body 2 of the present invention may be composed of a single superconducting thin film 2a as shown in FIG.
The same components are denoted by the same reference numerals and description thereof is omitted.
In the superconducting thin film 2a, a high-temperature superconducting thin film 22a is provided on a sapphire substrate 7a via a buffer layer 23a such as ceria, and a gold-silver alloy shunt layer 21a is provided on the high-temperature superconducting thin film 22a.
On the gold-silver alloy shunt layer, electrodes are provided at predetermined intervals in the length direction. The number of electrodes is provided in relation to the hot spot.
End electrodes 5a1 and 5d1 are provided at both ends in the length direction of the gold-silver alloy shunt layer, and a required number of intermediate electrodes 5b1 and 5c1 are provided inside both ends. Superconducting tapes 9a, 9b, 9c and 9d are soldered on these electrodes.
The superconducting thin film 2b is provided in the same manner as the superconducting thin film 2a.
The superconducting tapes 9a, 9b, 9c and 9d are connected between corresponding electrodes of the superconducting thin film 2a and the superconducting thin film 2b, that is, the electrodes 5a1 and 5a2 are connected by the superconducting tape 9a, and the electrodes 5b1 and 5b2 are connected by the superconducting tape 9b. The electrodes 5c1 and 5c2 are connected by the superconducting tape 9c, and the electrodes 5d1 and 5d2 are connected by the superconducting tape 9d.

金銀合金分流層21aと21bは、金と銀の合金からなる蒸着膜として形成する。
超電導テープ9a、9b、9cおよび9dは、金属基材超電導テープとして形成され、ビスマス系超電導酸化物を銀もしくは銀合金からなるシース材を用いて作製される。
高温超電導薄膜22a、22b上の上記金銀合金層は、電極5a1と5b1、5b1と5c1、5c1と5d1によりそれぞれ領域4a1、4b1、4c1が画成され、電極5a2と5b2、5b2と5c2、5c2と5d2によりそれぞれ領域4a2、4b2、4c2が画成される。上記電極の数はホットスポットとの関係で決められる。
超電導テープ9aは銅電極6aへワイヤ等の適当な電気的配線手段により接続し、超電導テープ9dは銅電極6bへワイヤ等の適当な電気的配線手段により接続する。
The gold-silver alloy shunt layers 21a and 21b are formed as vapor deposition films made of an alloy of gold and silver.
Superconducting tapes 9a, 9b, 9c and 9d are formed as metal-based superconducting tapes, and are produced using a bismuth-based superconducting oxide as a sheath material made of silver or a silver alloy.
In the gold-silver alloy layer on the high-temperature superconducting thin films 22a and 22b, regions 4a1, 4b1, and 4c1 are defined by electrodes 5a1 and 5b1, 5b1 and 5c1, 5c1 and 5d1, respectively, and electrodes 5a2 and 5b2, 5b2 and 5c2, 5c2 and Regions 4a2, 4b2, and 4c2 are defined by 5d2. The number of electrodes is determined in relation to the hot spot.
The superconducting tape 9a is connected to the copper electrode 6a by an appropriate electrical wiring means such as a wire, and the superconducting tape 9d is connected to the copper electrode 6b by an appropriate electrical wiring means such as a wire.

銅電極6aおよび6bは外部接続用電極を構成する。
抵抗3aは、無誘導巻分流抵抗11a1、11b1および11c1を銅電極12a1および12b1により1続きの抵抗となるように接続する。
抵抗3bは、同じく、無誘導巻分流抵抗11a2、11b2および11c2を銅電極12a2および12b2により1続きの抵抗となるように接続する。
無誘導巻分流抵抗11a1、11a2の巻線の一方の端部を外部接続用電極6aに接続し、無誘導巻分流抵抗11a1、11a2の巻線の他方の端部をそれぞれ銅電極12a1、12a2へ接続し、銅電極12a1、12aをそれぞれ対応する超電導テープ9bに接続する。
Copper electrodes 6a and 6b constitute external connection electrodes.
The resistor 3a connects the non-inductive winding shunt resistors 11a1, 11b1, and 11c1 so as to be a continuous resistance by the copper electrodes 12a1 and 12b1.
Similarly, the resistor 3b connects the non-inductive winding shunt resistors 11a2, 11b2, and 11c2 so as to be a continuous resistance by the copper electrodes 12a2 and 12b2.
One end of the winding of the non-inductive winding shunt resistor 11a1, 11a2 is connected to the external connection electrode 6a, and the other end of the winding of the non-inductive winding shunt resistor 11a1, 11a2 is connected to the copper electrode 12a1, 12a2, respectively. The copper electrodes 12a1 and 12a are connected to the corresponding superconducting tapes 9b.

同じようにして、無誘導巻分流抵抗11b1、11b2の巻線の一方の端部を銅電極12a1、12a2へ接続し、無誘導巻分流抵抗11b1、11b2の巻線の他方の端部をそれぞれ銅電極12b1、12b2へ接続し、銅電極12b1、12bをそれぞれ対応する超電導テープ9cに接続する。
同じようにして、無誘導巻分流抵抗11c1、11c2の巻線の一方の端部を超電導テープ9cに接続し、無誘導巻分流抵抗11c1、11c2の巻線の他方の端部をそれぞれ外部接続用電極6bへ接続する。
このように接続されることにより、超電導薄膜並設体2に対し抵抗3aおよび3bが並列接続される。
In the same manner, one end of the winding of the non-inductive winding shunt resistors 11b1 and 11b2 is connected to the copper electrodes 12a1 and 12a2, and the other end of the winding of the non-inductive winding shunt resistors 11b1 and 11b2 is connected to the copper. The electrodes 12b1 and 12b2 are connected, and the copper electrodes 12b1 and 12b are connected to the corresponding superconducting tapes 9c, respectively.
In the same manner, one end of the winding of the non-inductive winding shunt resistor 11c1, 11c2 is connected to the superconducting tape 9c, and the other end of the winding of the non-inductive winding shunt resistor 11c1, 11c2 is for external connection. Connect to electrode 6b.
By connecting in this way, the resistors 3 a and 3 b are connected in parallel to the superconducting thin film juxtaposed body 2.

図2は図1の構成の上半分の1枚の超電導薄膜2aで構成した実施例である。
図2において、図1中の符号と同じ符号は、図1の説明を援用して、ここでは説明を省略する。
図3(a)は図1のD1−D2の断面図を示す。図3(b)は他の実施例の断面図を示す。
図3(a)では、超電導薄膜2aは、サファイア基板7a上にセリア等のバッファ層23aを介して高温超電導薄膜22aを設け、この高温超電導薄膜22a上に金銀合金分流層21aを設ける。
金銀合金分流層21a上には、電極(銀又は金)5a1を設ける。電極(銀又は金)5a1上の所定箇所には、超電導テープ9aをハンダ付けする。
なお、超電導薄膜2bは、図示省略するが、超電導薄膜2aと同様の構成を有する。
図3(b)は、他の実施例で、図3(a)の例における電極5a1を、金銀合金分流層21aを介さず、直接高温超電導薄膜22a上に設けた例である。
FIG. 2 shows an embodiment constituted by one superconducting thin film 2a in the upper half of the construction of FIG.
In FIG. 2, the same reference numerals as those in FIG. 1 use the description of FIG.
FIG. 3A shows a cross-sectional view taken along D1-D2 in FIG. FIG. 3B shows a cross-sectional view of another embodiment.
In FIG. 3A, in the superconducting thin film 2a, a high-temperature superconducting thin film 22a is provided on a sapphire substrate 7a via a buffer layer 23a such as ceria, and a gold-silver alloy shunt layer 21a is provided on the high-temperature superconducting thin film 22a.
An electrode (silver or gold) 5a1 is provided on the gold-silver alloy shunt layer 21a. Superconducting tape 9a is soldered to a predetermined location on electrode (silver or gold) 5a1.
The superconducting thin film 2b has the same configuration as the superconducting thin film 2a, although not shown.
FIG. 3B shows another example in which the electrode 5a1 in the example of FIG. 3A is provided directly on the high-temperature superconducting thin film 22a without using the gold-silver alloy shunt layer 21a.

図4は図1の限流素子を用いた場合の限流試験結果を示す図である。同図に示すように、限流素子に流れる全電流(Itotal)は、限流素子がなければ2.26kArmsになる増加速度(全電流の時間変化の傾き)で急増するが、薄膜のクエンチに伴って、途中から電流の増加速度が緩やかになるとともに、薄膜の両端の薄膜電圧(Vfilm)が急激に増加した。そして、高温超電導薄膜の両端にVfilm=778Vpeakの交流電圧が印加された状態で、薄膜が焼損することなく5サイクル(100msec)の通電が可能となった。
このとき、素子有効長17cmにおける平均電界は、E=45.8V/cmであった。
図4において、V1は図1の電極6aと12a2の間の電圧値、同じくV2は図1の電極12a2と12b2の間の電圧値、V3は図1の電極12b2と6bの間の電圧値を意味する。また、Vfilmは図1の電極6aと6bの間の電圧を意味する。全電流Itotalは図1の電極6aと6bの間の電流を意味する。
図5は、図4におけるクエンチ発生直後の短い時間のグラフの要部拡大図である。
図5は、図4の特性を時間幅で130msから152msの間で拡大表示した図である。図5から、V2区間で最後にクエンチを発生させていることがわかる。
図5におけるV1は図1の電極6aと12a2の間の電圧値、同じくV2は図1の電極12a2と12b2の間の電圧値、V3は図1の電極12b2と6bの間の電圧値を意味する。また、Vfilmは図1の電極6aと6bの間の電圧を意味する。全電流Itotalは図1の電極6aと6bの間の電流を意味する。
この結果から、本構成の超電導薄膜限流素子モジュールによれば、45Vpeak/cm以上の高い許容電界を有する、内部直列接続型の超電導薄膜限流素子を製作できることが実証された。このモジュールの定格電圧は500Vrms、定格電流は200Armsであって、その8直列で4kVrms,200Armsとなり、3φ6.6kV/200A限流器の1相分を構成する。
FIG. 4 is a diagram showing a current limiting test result when the current limiting element of FIG. 1 is used. As shown in the figure, the total current flowing through the current limiting element (I total ) increases rapidly at an increasing rate (gradient of time variation of the total current) of 2.26 kA rms without the current limiting element. Along with the quench, the rate of increase in current became moderate from the middle, and the thin film voltage (V film ) at both ends of the thin film increased rapidly. In a state where an AC voltage is applied to V film = 778V peak across the high-temperature superconducting thin film, the thin film became possible to energization of 5 cycles (100 msec) without burning.
At this time, the average electric field at an element effective length of 17 cm was E = 45.8 V / cm.
4, V1 is a voltage value between the electrodes 6a and 12a2 in FIG. 1, V2 is a voltage value between the electrodes 12a2 and 12b2 in FIG. 1, and V3 is a voltage value between the electrodes 12b2 and 6b in FIG. means. V film means a voltage between the electrodes 6a and 6b in FIG. The total current I total means the current between the electrodes 6a and 6b in FIG.
FIG. 5 is an enlarged view of a main part of a short time graph immediately after the occurrence of quenching in FIG.
FIG. 5 is an enlarged view of the characteristics of FIG. 4 in a time width of 130 ms to 152 ms. It can be seen from FIG. 5 that quenching is finally generated in the V2 section.
V1 in FIG. 5 is a voltage value between the electrodes 6a and 12a2 in FIG. 1, V2 is a voltage value between the electrodes 12a2 and 12b2 in FIG. 1, and V3 is a voltage value between the electrodes 12b2 and 6b in FIG. To do. V film means a voltage between the electrodes 6a and 6b in FIG. The total current I total means the current between the electrodes 6a and 6b in FIG.
From this result, it was proved that according to the superconducting thin film current limiting element module of this configuration, an internal series connection type superconducting thin film current limiting element having a high allowable electric field of 45 V peak / cm or more can be manufactured. The rated voltage of this module is 500 Vrms, the rated current is 200 Arms, and the 8 series is 4 kVrms and 200 Arms, constituting one phase of a 3φ6.6 kV / 200 A current limiter.

図6は本発明の実施例2の構成図である。
図6は、5インチ径YBCO薄膜限流素子モジュールを示す。
図6では、5インチ径の円盤状のサファイア基板7c上に、バッファ層を介して渦巻状にほぼ均等幅の金銀合金層付高温超電導薄膜4fを設け、この金銀合金層付高温超電導薄膜4fの長さ方向(渦巻方向)に適当な間隔を設けて中間電極5h、5iおよび5jを設ける。中間電極の数はホットスポットとの関係で決められる。
金銀合金層付高温超電導薄膜4fの両端には端部電極5kと5gを設け、その両端内には中間電極5h、5iおよび5jを設ける。
電極5k、5g、5h、5iおよび5j上には、超電導テープ9g、9h、9i、9j、9kをハンダ付けする。
図6の例は、定格電圧1.27kVrms、定格電流100Armsのモジュールになる。
FIG. 6 is a configuration diagram of Embodiment 2 of the present invention.
FIG. 6 shows a 5 inch diameter YBCO thin film current limiting element module.
In FIG. 6, a high-temperature superconducting thin film 4f with a gold-silver alloy layer having a substantially uniform width is provided in a spiral shape on a 5-inch disk-like sapphire substrate 7c via a buffer layer. The intermediate electrodes 5h, 5i, and 5j are provided with appropriate intervals in the length direction (spiral direction). The number of intermediate electrodes is determined in relation to the hot spot.
End electrodes 5k and 5g are provided at both ends of the high-temperature superconducting thin film 4f with a gold-silver alloy layer, and intermediate electrodes 5h, 5i and 5j are provided at both ends.
Superconducting tapes 9g, 9h, 9i, 9j, and 9k are soldered on the electrodes 5k, 5g, 5h, 5i, and 5j.
The example of FIG. 6 is a module with a rated voltage of 1.27 kVrms and a rated current of 100 Arms.

実施例の場合、例えば、金銀合金層付高温超電導薄膜4fの超電導線路約11cmごとに無誘導巻並列抵抗11a3、11b3、11c3および113dを接続する。
例えば、外部接続用電極5kと5gの間に流れる限流電流を200Armsとするためには、並列抵抗値は1つ1.6Ω強になる。
外付け抵抗は金銀合金層付高温超電導薄膜4fに設けた超電導テープに抵抗分割するように接続される。
In the case of the example, for example, non-inductive winding parallel resistors 11a3, 11b3, 11c3 and 113d are connected every approximately 11 cm of the superconducting line of the high-temperature superconducting thin film 4f with a gold-silver alloy layer.
For example, in order to set the current limiting current flowing between the external connection electrodes 5k and 5g to 200 Arms, one parallel resistance value is slightly over 1.6Ω.
The external resistor is connected to the superconducting tape provided on the high-temperature superconducting thin film 4f with the gold-silver alloy layer so as to divide resistance.

図6の円形大面積膜使用例は、5インチ径サファイア基板上にYBCO薄膜を設けた例である。YBCOの大面積薄膜は、円形のものの方が矩形形状のものに対し、膜質の均一化が容易である。
YBCOの大面積薄膜は、ウェットエッチングでパターニングすることができる。
YBCO超電導薄膜上に金銀合金薄膜を蒸着し、その金銀合金薄膜上に銀または金層からなる電極5g、5h、5i、5j、および5kを蒸着し、各電極用の超電導テープをハンダ付けして設ける。
図6に示す5インチ径YBCO薄膜素子限流モジュールは、例えば、9インチ×9インチのFRP板上に配置する。
ほぼ均等幅の金銀合金層付高温超電導薄膜4fは、その渦巻方向と直角方向の幅は、例えば、約1.6cm幅で、その渦巻に沿った長さは、例えば、約45cm長とする。
図6の薄膜素子限流モジュール1素子の定格電流は、例えば、90×1.6/√2で、約102Armsで、その許容電圧は、0.04×45kVpeak=1.8kVpeakで、約1.27kVrmsが期待できる。
YBCOの大面積薄膜のパターン間の最大電圧は、1.2kVpeak程度となり、そのパターン間の間隔は、8mm間隔とすれば、絶縁耐圧をほぼ満たす(一応、空気中の沿面放電実験で検証が必要である)。
(他の実施例)
本発明の金銀合金分流層付高温超電導薄膜は、略均等幅で抵抗分割できるような長さを有する構造であれば、任意の形状、例えば、三次元の螺旋状、球面にのる形状等も採りうる。
6 is an example in which a YBCO thin film is provided on a 5-inch diameter sapphire substrate. The YBCO large-area thin film is easier to make uniform in film quality than the circular one with a rectangular shape.
A large area thin film of YBCO can be patterned by wet etching.
A gold-silver alloy thin film is deposited on the YBCO superconducting thin film, electrodes 5g, 5h, 5i, 5j, and 5k made of silver or a gold layer are deposited on the gold-silver alloy thin film, and a superconducting tape for each electrode is soldered. Provide.
The 5 inch diameter YBCO thin film element current limiting module shown in FIG. 6 is disposed on a 9 inch × 9 inch FRP plate, for example.
The high-temperature superconducting thin film 4f with a substantially uniform width of the gold-silver alloy layer has a width perpendicular to the spiral direction of, for example, about 1.6 cm, and a length along the spiral of, for example, about 45 cm.
Rated current of the thin film element current limiting module 1 element in FIG. 6, for example, in 90 × 1.6 / √2, about 102A rms, the allowable voltage at 0.04 × 45kV peak = 1.8kV peak, About 1.27 kV rms can be expected.
The maximum voltage between YBCO large-area thin film patterns is about 1.2 kV peak , and if the distance between the patterns is set to 8 mm, the dielectric breakdown voltage is almost satisfied. is necessary).
(Other examples)
The high-temperature superconducting thin film with the gold-silver alloy shunt layer of the present invention has an arbitrary shape, for example, a three-dimensional spiral shape, a spherical shape, etc., as long as it has a length that allows resistance division with a substantially uniform width. Can be taken.

1 超電導薄膜限流素子
2a、2b 超電導薄膜
3a、3b 外付け抵抗
4a1、4b1、4c1、4a2、4b2、4c2 領域
5a1、5b1、5c1、5d1、5a2、5b2、5c2、5d2 電極
6a、6b 外部接続用銅電極
7a、7b サファイア基板(アルミナ単結晶基板)
9a、9b、9c、9d 超電導テープ
11a1、11b1、11c1、11a2、11b2、11c2 無誘導巻分流抵抗
12a1、12b1、12a2、12b2 銅電極
21a 金銀合金分流層
22a 高温超電導薄膜
23a セリア等のバッファ層
24a ハンダ
1 Superconducting thin film current limiting element 2a, 2b Superconducting thin film 3a, 3b External resistor 4a1, 4b1, 4c1, 4a2, 4b2, 4c2 Region 5a1, 5b1, 5c1, 5d1, 5a2, 5b2, 5c2, 5d2 Electrodes 6a, 6b External connection Copper electrodes 7a, 7b Sapphire substrate (alumina single crystal substrate)
9a, 9b, 9c, 9d Superconducting tape 11a1, 11b1, 11c1, 11a2, 11b2, 11c2 Non-inductive shunt resistance 12a1, 12b1, 12a2, 12b2 Copper electrode 21a Gold-silver alloy shunt layer 22a High-temperature superconducting thin film 23a Buffer layer 24a such as ceria Solder

Claims (6)

長さ方向に離間して複数の金又は銀層からなる電極を有する超電導薄膜と、前記電極間に超電導テープを介して接続した抵抗とを有し、
前記超電導薄膜は、サファイア基板上にバッファ層を介して高温超電導薄膜を設け、この高温超電導薄膜上に金銀合金分流層を設け、
分割するための電極として金銀合金分流層上に銀又は金層を設け、
超電導テープを前記電極層上にハンダ付けしたことを特徴とする超電導薄膜限流素子。
A superconducting thin film having electrodes made of a plurality of gold or silver layers spaced apart in the longitudinal direction, and a resistor connected between the electrodes via a superconducting tape,
The superconducting thin film is provided with a high-temperature superconducting thin film on a sapphire substrate via a buffer layer, and a gold-silver alloy shunt layer is provided on the high-temperature superconducting thin film,
A silver or gold layer is provided on the gold-silver alloy shunt layer as an electrode for dividing,
A superconducting thin film current limiting element, wherein a superconducting tape is soldered on the electrode layer.
前記電極層は、金銀合金分流層を介さずに、直接高温超電導薄膜上に設けたことを特徴とする請求項1記載の超電導薄膜限流素子。 2. The superconducting thin film current limiting element according to claim 1, wherein the electrode layer is provided directly on the high temperature superconducting thin film without using a gold-silver alloy shunt layer. 前記超電導薄膜を並設して超電導薄膜並設体を構成し、
前記超電導薄膜の超電導テープを共通にしたことを特徴とする請求項1記載の超電導薄膜限流素子。
A superconducting thin film juxtaposed body is formed by juxtaposing the superconducting thin films,
2. A superconducting thin film current limiting element according to claim 1, wherein the superconducting thin film has a common superconducting tape.
前記超電導テープは、金属基材超電導テープとして形成され、銀もしくは銀合金からなるシース材を用いて作製してなるビスマス系超電導酸化物としたことを特徴とする請求項1乃至3のいずれか1項記載の超電導薄膜限流素子。 The superconducting tape is formed as a metal-based superconducting tape, and is a bismuth-based superconducting oxide produced by using a sheath material made of silver or a silver alloy. The superconducting thin film current limiting element described in the item. 前記超電導薄膜上に形成された金銀合金層を、純金属または合金からなる蒸着膜としたことを特徴とする請求項1乃至3のいずれか1項記載の超電導薄膜限流素子。 The superconducting thin film current limiting element according to any one of claims 1 to 3, wherein the gold-silver alloy layer formed on the superconducting thin film is a vapor deposition film made of a pure metal or an alloy. 前記電極に並列にコンデンサを接続したことを特徴とする請求項1乃至5のいずれか1項記載の超電導薄膜限流素子。 6. The superconducting thin film current limiting element according to claim 1, wherein a capacitor is connected in parallel to the electrode.
JP2009111809A 2009-05-01 2009-05-01 Superconducting current limiting element Expired - Fee Related JP5472682B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009111809A JP5472682B2 (en) 2009-05-01 2009-05-01 Superconducting current limiting element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009111809A JP5472682B2 (en) 2009-05-01 2009-05-01 Superconducting current limiting element

Publications (2)

Publication Number Publication Date
JP2010263036A true JP2010263036A (en) 2010-11-18
JP5472682B2 JP5472682B2 (en) 2014-04-16

Family

ID=43360897

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009111809A Expired - Fee Related JP5472682B2 (en) 2009-05-01 2009-05-01 Superconducting current limiting element

Country Status (1)

Country Link
JP (1) JP5472682B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2716797A1 (en) * 2011-05-31 2014-04-09 Furukawa Electric Co., Ltd. Oxide superconductor thin film, superconducting fault current limiter, and method for manufacturing oxide superconductor thin film

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11204845A (en) * 1998-01-07 1999-07-30 Toshiba Corp Superconducting current limiter element
WO2006001226A1 (en) * 2004-06-24 2006-01-05 National Institute Of Advanced Industrial Science And Technology Superconductive current-limiting element, and its fabrication method
JP2009049257A (en) * 2007-08-22 2009-03-05 National Institute Of Advanced Industrial & Technology Superconducting current-limiting element

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11204845A (en) * 1998-01-07 1999-07-30 Toshiba Corp Superconducting current limiter element
WO2006001226A1 (en) * 2004-06-24 2006-01-05 National Institute Of Advanced Industrial Science And Technology Superconductive current-limiting element, and its fabrication method
JP2009049257A (en) * 2007-08-22 2009-03-05 National Institute Of Advanced Industrial & Technology Superconducting current-limiting element

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2716797A1 (en) * 2011-05-31 2014-04-09 Furukawa Electric Co., Ltd. Oxide superconductor thin film, superconducting fault current limiter, and method for manufacturing oxide superconductor thin film
EP2716797A4 (en) * 2011-05-31 2014-10-29 Furukawa Electric Co Ltd Oxide superconductor thin film, superconducting fault current limiter, and method for manufacturing oxide superconductor thin film
US9105794B2 (en) 2011-05-31 2015-08-11 Furukawa Electric Co., Ltd. Oxide superconductor thin film, superconducting fault current limiter, and method for manufacturing oxide superconductor thin film

Also Published As

Publication number Publication date
JP5472682B2 (en) 2014-04-16

Similar Documents

Publication Publication Date Title
JP4162710B2 (en) Current limiting device
JP3073993B2 (en) Fault current limiter
RU2397589C2 (en) Electrotechnical current limitation device
JP4644779B2 (en) Superconducting current limiting element
JP2005197539A (en) Superconductivity current limiting element
Escamez et al. Numerical investigations of ReBCO conductors with high limitation electric field for HVDC SFCL
JP5791734B2 (en) Connector assembly and superconducting fault current limiter
JP2014508490A5 (en)
JP5472682B2 (en) Superconducting current limiting element
JP3977884B2 (en) Current limiting element, current limiter using oxide superconductor, and manufacturing method thereof
JP5552805B2 (en) Oxide superconducting wire connection method
JP2009049257A (en) Superconducting current-limiting element
JP2001217470A (en) High-temperature superconductive element and its manufacturing method
JP2008118121A (en) Superconducting element
JP5152830B2 (en) Superconducting current limiting element
Kim et al. Determination of maximum permissible temperature rise considering repetitive over-current characteristics of YBCO coated conductors
JP4131769B2 (en) Superconducting current limiting fuse and overcurrent control system using the same
JP4845141B2 (en) Fuel current limiter
Park et al. Quench behavior of YBaCuO films for fault current limiters under magnetic field
JPH06132571A (en) Current limiting element and current limiting device
Dutta et al. Modelling and analysis of resistive superconducting fault current limiter
JP4119403B2 (en) Superconducting current limiting element
JP2007227167A (en) Superconductive wire material, and superconductive device using the same
TW201939838A (en) Superconducting fault current limiter element, superconducting fault current limiter system and method for limiting fault current
JP3343946B2 (en) Current limiter

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110125

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130125

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130212

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130403

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131203

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131219

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140121

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140122

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5472682

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees