JP4119403B2 - Superconducting current limiting element - Google Patents

Superconducting current limiting element Download PDF

Info

Publication number
JP4119403B2
JP4119403B2 JP2004191344A JP2004191344A JP4119403B2 JP 4119403 B2 JP4119403 B2 JP 4119403B2 JP 2004191344 A JP2004191344 A JP 2004191344A JP 2004191344 A JP2004191344 A JP 2004191344A JP 4119403 B2 JP4119403 B2 JP 4119403B2
Authority
JP
Japan
Prior art keywords
superconductor
current limiting
resistance
protective
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2004191344A
Other languages
Japanese (ja)
Other versions
JP2006013316A (en
Inventor
由紀 工藤
宏 久保田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2004191344A priority Critical patent/JP4119403B2/en
Publication of JP2006013316A publication Critical patent/JP2006013316A/en
Application granted granted Critical
Publication of JP4119403B2 publication Critical patent/JP4119403B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、地絡や短絡事故により電路に流れる過大な電流を抑制する超電導限流素子およびその製造方法に関する。   The present invention relates to a superconducting current limiting element that suppresses an excessive current flowing in an electric circuit due to a ground fault or a short circuit accident, and a method for manufacturing the same.

落雷などにより送電線や配電線が地絡したり相間短絡したりする事故が発生すると、数十kAに及ぶ過電流が電路に流れ、電力機器に大きな損傷を与えてしまう。そこで、このような過電流から電力機器を保護するために、過電流を抑制する限流素子の研究が従来から行われている。限流素子には、(1)GTO(gate turn-off thyristor)など半導体を用いるもの、(2)アーク放電現象を利用するもの、(3)超電導体の超電導状態から常伝導状態に転移する現象を利用するものなど様々な方式がある。(3)では、電路に直列に接続された超電導体を用いる。超電導体は、通常時には超電導状態であるが、事故時に超電導体の臨界電流(Ic)を超えて大電流が流れた際に超電導状態から常伝導状態に転移して高抵抗となり過電流を高速に抑制する。(3)の超電導限流素子は、通常時の通電ロスが小さく、また、外部からのトリガ信号が不要となりシンプルなシステムを構成することができるため、実用化が期待されている。 When an accident occurs in which a power transmission line or a distribution line is grounded or short-circuited due to a lightning strike or the like, an overcurrent of several tens of kA flows in the electric circuit, causing serious damage to power equipment. Thus, in order to protect power equipment from such overcurrent, research on current limiting elements that suppress overcurrent has been conventionally performed. Current limiting elements include: (1) those using semiconductors such as GTO (gate turn-off thyristor), (2) those using arc discharge phenomenon, and (3) phenomena of transition from the superconducting state of the superconductor to the normal state. There are various methods such as those using. In (3), a superconductor connected in series with the electric circuit is used. The superconductor is normally in a superconducting state, but when a large current flows exceeding the critical current (I c ) of the superconductor at the time of an accident, it transitions from the superconducting state to the normal conducting state and becomes high resistance, resulting in high overcurrent. To suppress. The superconducting current limiting element of (3) is expected to be put to practical use because it has a small energization loss during normal time and does not require an external trigger signal, and can constitute a simple system.

また、近年発見された酸化物超電導体は冷却に低価格の液体窒素を用いることができるため、酸化物超電導体を用いた限流素子の開発が進められている。酸化物超電導体の中でもYBa2Cu3x(YBCO)は、配向した基板、すなわちサファイア、SrTiO3(STO)、LaAlO3(LAO)といった単結晶基板上に薄膜成長することにより、結晶配向した臨界電流密度の高い高品質な薄膜が得られるため、小型化に有利である。しかしながら、薄膜形態にすると常伝導状態に転移した際にバルク形態より高抵抗となり、その際のジュール発熱による熱衝撃も大きい。この熱衝撃による超電導薄膜の損傷を防止するため、超電導薄膜上に低抵抗なAgやAuといった金属薄膜を保護抵抗として積層した超電導限流素子や、超電導薄膜とは別に設けた低抵抗な保護抵抗を並列接続した超電導限流素子が開発されている(たとえば特許文献1、2参照)。
特開平2−281765号公報 特許第2954124号明細書
Moreover, since the oxide superconductor discovered in recent years can use low-cost liquid nitrogen for cooling, development of the current limiting element using an oxide superconductor is advanced. Among oxide superconductors, YBa 2 Cu 3 O x (YBCO) was crystallized by growing a thin film on an oriented substrate, that is, a single crystal substrate such as sapphire, SrTiO 3 (STO), LaAlO 3 (LAO). Since a high-quality thin film having a high critical current density can be obtained, it is advantageous for downsizing. However, when the thin film form is used, the resistance becomes higher than that of the bulk form when transitioning to the normal state, and the thermal shock due to Joule heat generation at that time is also large. In order to prevent damage to the superconducting thin film due to thermal shock, a superconducting current limiting element in which a metal thin film such as Ag or Au having a low resistance is laminated on the superconducting thin film as a protective resistance, or a low-resistance protective resistor provided separately from the superconducting thin film Superconducting current limiting elements in which are connected in parallel have been developed (see, for example, Patent Documents 1 and 2).
JP-A-2-281765 Japanese Patent No. 2954124

上述のように、超電導薄膜は単結晶基板上に成長させることにより高品質にすることができる。しかし、一般に、単結晶基板や成膜装置の大きさには制限があるため、超電導薄膜の大きさも幅1〜10cm、長さ10〜20cm程度に制限される。例えば、幅1cm、長さ10cmのサファイア基板上YBCO薄膜を用いた限流素子の場合、YBCO薄膜が損傷しない最大電圧は400V、電流容量は50A程度である。ここで、超電導限流素子の配電系統への適用を考えると、電圧は6.6kV、電流容量は400〜2000Aとなるため、実用化にあたっては多数の超電導限流素子を直並列接続させた限流モジュールを作製し、この限流モジュールと冷却装置を組み合わせた超電導限流器を実現する必要がある。   As described above, the superconducting thin film can be made high quality by growing it on a single crystal substrate. However, since the size of the single crystal substrate and the film forming apparatus is generally limited, the size of the superconducting thin film is also limited to about 1 to 10 cm in width and about 10 to 20 cm in length. For example, in the case of a current limiting element using a YBCO thin film on a sapphire substrate having a width of 1 cm and a length of 10 cm, the maximum voltage at which the YBCO thin film is not damaged is 400 V and the current capacity is about 50 A. Here, considering application of the superconducting current limiting element to the distribution system, the voltage is 6.6 kV and the current capacity is 400 to 2000 A. Therefore, in practical use, the limit is obtained by connecting a number of superconducting current limiting elements in series and parallel. It is necessary to produce a superconducting fault current limiter that combines a current limiting module and a cooling device.

超電導限流器は新規の電力機器であり、できるだけ小型であるほうが導入に有利であると考えられる。ここで、超電導限流器の大きさは主に素子数に依存するため、小型化のためには素子数は少ないほうがよい。一方、事故時に瞬時電圧低下を防止することを考慮すると、過電流を抑制するために必要な限流抵抗は10Ω以上が望ましいと考えられる。したがって、少ない素子数で十分な限流抵抗を得るためには一枚の素子の限流抵抗は大きいほうがよい。限流抵抗は、超電導体に並列接続された保護抵抗の値が支配的になるため、保護抵抗の値はできるだけ大きいほうがよいことになる。一方、限流初期に超電導薄膜に加わる熱衝撃を低減するためには、保護抵抗への転流量を大きくすることが効果的であり、そのためには保護抵抗の値はできるだけ小さいほうがよい。これらの点を考慮して、限流初期すなわち冷却温度においては抵抗が小さく、その後に電流が流れることによるジュール発熱で抵抗が大きくなる材料として金属薄膜を保護抵抗に用いた超電導限流素子が提案されている。ところが、こうした超電導限流素子において、超電導薄膜や保護抵抗が損傷するという問題がたびたび発生していた。しかし、現状では、超電導薄膜と保護抵抗の両者が損傷しないようにする保護抵抗の設計方針は不明確であり、超電導限流素子の信頼性は低かった。   The superconducting fault current limiter is a new power device, and it is considered that it is advantageous to introduce it as small as possible. Here, since the size of the superconducting fault current limiter mainly depends on the number of elements, it is better that the number of elements is smaller for miniaturization. On the other hand, considering the prevention of instantaneous voltage drop at the time of an accident, it is considered that the current limiting resistance necessary for suppressing the overcurrent is preferably 10Ω or more. Therefore, in order to obtain a sufficient current limiting resistance with a small number of elements, it is preferable that the current limiting resistance of one element is large. Since the value of the protective resistance connected in parallel to the superconductor is dominant in the current limiting resistance, the value of the protective resistance should be as large as possible. On the other hand, in order to reduce the thermal shock applied to the superconducting thin film at the initial stage of current limiting, it is effective to increase the commutation flow to the protective resistance. For that purpose, the value of the protective resistance should be as small as possible. Considering these points, a superconducting current limiting element using a metal thin film as a protective resistance is proposed as a material that has low resistance at the initial stage of current limiting, that is, at the cooling temperature, and then increases resistance due to Joule heating due to current flow. Has been. However, in such a superconducting current limiting element, there has frequently been a problem that the superconducting thin film and the protective resistance are damaged. However, at present, the design policy of the protective resistor for preventing both the superconducting thin film and the protective resistor from being damaged is unclear, and the reliability of the superconducting current limiting element is low.

本発明の目的は、超電導体と超電導体の保護抵抗とを並列接続した構成を有し、超電導体と保護抵抗の損傷を防止できる超電導限流素子、およびこのような超電導限流素子を簡便に製造できる方法を提供することにある。   An object of the present invention is to provide a superconducting current limiting element that has a configuration in which a superconductor and a protective resistance of the superconductor are connected in parallel, and can prevent damage to the superconductor and the protective resistance, and such a superconducting current limiting element can be simply used. It is to provide a method that can be manufactured.

本発明の一態様に係る超電導限流素子は、基材上に設けられた超電導体と、前記超電導体の保護抵抗とを並列接続した超電導限流素子であって、冷却温度における前記保護抵抗の値Rnが下記の式

Figure 0004119403
A superconducting current limiting element according to one aspect of the present invention is a superconducting current limiting element in which a superconductor provided on a base material and a protective resistance of the superconductor are connected in parallel, and the superconducting current limiting element has a protection resistance at a cooling temperature. The value R n is
Figure 0004119403

(ここで、ρyは臨界温度直上における超電導体の抵抗率、dは超電導体の厚さ、Wは超電導体の幅、lは超電導体が常伝導転移した領域の長さ、Iqは限流開始電流値、Psは超電導体が設けられた基材が破壊しない最大熱負荷である。)
を満足することを特徴とする。
(Where ρ y is the resistivity of the superconductor immediately above the critical temperature, d is the thickness of the superconductor, W is the width of the superconductor, l is the length of the region where the superconductor is transitioned to normal conduction, and I q is the limit. (The flow start current value, P s, is the maximum heat load at which the base material provided with the superconductor does not break.)
It is characterized by satisfying.

本発明の他の態様に係る超電導限流素子の製造方法は、基材上に設けられた超電導体と、前記超電導体の保護抵抗とを並列接続した超電導限流素子を製造するにあたり、冷却温度における前記保護抵抗の値Rnが上記の式を満足するように設計することを特徴とする。 A manufacturing method of a superconducting current limiting element according to another aspect of the present invention is a cooling temperature for manufacturing a superconducting current limiting element in which a superconductor provided on a substrate and a protective resistance of the superconductor are connected in parallel. The protective resistance value R n in the circuit is designed so as to satisfy the above formula.

本発明によれば、冷却温度における保護抵抗の抵抗値を適正範囲に設定することにより、限流動作中における超電導体と保護抵抗の両者の損傷を防止でき、信頼性の高い超電導限流素子を提供することができる。   According to the present invention, by setting the resistance value of the protective resistor at the cooling temperature within an appropriate range, damage to both the superconductor and the protective resistor during the current limiting operation can be prevented, and a highly reliable superconducting current limiting element can be obtained. Can be provided.

ここでは、図1に示すように、基材上に設けられた超電導薄膜1と保護抵抗2とを並列接続した超電導限流素子3を取り上げ、保護抵抗2の設計方針について詳細に述べる。なお、この超電導限流素子3の限流特性は、図1に示すように超電導限流素子3を電源4に直列に接続し(回路インピーダンス5が含まれているものとする)、スイッチ6を投入することにより事故を模擬した大電流を流して観測することができる。   Here, as shown in FIG. 1, a superconducting current limiting element 3 in which a superconducting thin film 1 provided on a substrate and a protective resistor 2 are connected in parallel is taken up, and the design policy of the protective resistor 2 will be described in detail. Note that the current limiting characteristics of the superconducting current limiting element 3 are as follows. The superconducting current limiting element 3 is connected in series to the power source 4 (assuming that the circuit impedance 5 is included) as shown in FIG. It can be observed by flowing a large current that simulates an accident.

上述したように、限流初期と限流中とでは保護抵抗の適正値が異なっている。そこでまず、限流初期、すなわち冷却温度における保護抵抗の適正値について考える。限流初期に超電導薄膜が局所的に損傷を受ける原因としては、常伝導状態に転移した際の熱負荷により、(1)超電導薄膜が剥がれる、(2)超電導薄膜が融点以上に温度上昇する、(3)基材表面に亀裂が発生する、という3つが考えられる。しかし、損傷を受けた超電導薄膜を光学顕微鏡で観察すると剥がれは観察されないことや、超電導薄膜の損傷は0.1ミリ秒という短時間に生じておりこの時間内に融点以上に温度上昇する可能性は小さいことを考慮すると、(1)や(2)の可能性は小さく、主な原因は(3)であると考えられる。そこで、常伝導状態に転移した熱衝撃が、基材を破壊する最大発熱量(ここでは熱衝撃耐量と表現する)を超える場合に超電導薄膜が損傷すると仮定して保護抵抗の適正値を考察する。   As described above, the appropriate value of the protective resistance differs between the initial current limit and the current limit. First, consider the appropriate value of the protective resistance at the initial stage of current limiting, that is, at the cooling temperature. The reason why the superconducting thin film is locally damaged in the initial stage of current limiting is that (1) the superconducting thin film is peeled off due to the thermal load when transitioning to the normal state, (2) the temperature of the superconducting thin film exceeds the melting point, (3) There are three possible cases where cracks occur on the surface of the substrate. However, when the damaged superconducting thin film is observed with an optical microscope, no peeling is observed, and the superconducting thin film is damaged in a short time of 0.1 milliseconds, and the temperature may rise above the melting point within this time. In view of the small size, the possibility of (1) and (2) is small, and the main cause is considered to be (3). Therefore, the appropriate value of the protective resistance is considered on the assumption that the superconducting thin film is damaged when the thermal shock that has shifted to the normal state exceeds the maximum heating value that destroys the substrate (herein referred to as the thermal shock resistance). .

図1に示すように、基材上に設けられた超電導薄膜1と保護抵抗2が両端で並列接続された超電導限流素子3を考える。一般に、超電導薄膜のIcは完全に均一ではないため、大電流が流れると局所的に電圧が発生して常伝導転移すると考えられる。そこで、限流初期に長さlの領域が常伝導転移していると仮定すると、超電導薄膜に加わる熱負荷Pyは以下のように表される。

Figure 0004119403
As shown in FIG. 1, consider a superconducting current limiting element 3 in which a superconducting thin film 1 and a protective resistor 2 provided on a base material are connected in parallel at both ends. In general, the I c of the superconducting thin film is not perfectly uniform, considered locally voltage when a large current flows is normally conducting transition occurs. Therefore, assuming that the region of length l is in the normal conduction transition at the initial stage of current limiting, the thermal load P y applied to the superconducting thin film is expressed as follows.
Figure 0004119403

ここで、Rnは保護抵抗の抵抗値、Iqは限流開始電流値、Ryは超電導薄膜で発生した抵抗値、Wは超電導薄膜の幅である。この熱負荷が、超電導薄膜が設けられた基材の熱衝撃耐量Psを超えると基材に亀裂が生じるため、超電導薄膜が損傷しない条件は、
y<Ps (2)
となり、保護抵抗Rnが下記の式を満たせばよい。

Figure 0004119403
Here, R n is the resistance value of the protective resistor, I q is the current limiting start current value, R y is the resistance value generated in the superconducting thin film, and W is the width of the superconducting thin film. When this thermal load exceeds the thermal shock resistance P s of the base material provided with the superconducting thin film, the base material is cracked.
P y <P s (2)
Therefore, it is sufficient that the protective resistance R n satisfies the following expression.
Figure 0004119403

なお、ρyはTc直上の超電導薄膜の抵抗率であり、厚さをdとすると以下のように表される。

Figure 0004119403
Note that ρ y is the resistivity of the superconducting thin film immediately above T c , and is expressed as follows when the thickness is d.
Figure 0004119403

(3)式のPsは基材の種類や熱衝撃の印加条件に依存する。そこで、基材に薄膜ヒーターを設けて限流素子の試験条件と同様に50Hz半波の電流を流して基材であるサファイア、LAO、STOの熱衝撃耐量Psを評価したところ、1〜4kW/cm2であった。また、超電導薄膜の膜質に依存するが、実験より単位長さの超電導薄膜のlは100μm〜1mm程度、Tc直上のρyは50〜150μmΩ程度であった。なお、超電導薄膜のlは次のような方法で推定した。まず、幅1cm、長さ10cmの超電導薄膜に長手方向1cm間隔で電圧測定端子を設けて、電流を増加させながら各端子間に発生する電圧を観測した。このときV0=1μV/cmの電圧が発生した電流値をIcと定義すると、Ic以上に電流を増加させた場合にはV=V0(I/Icnで表される電圧が各端子間で発生した。ここでnは基材によって異なりサファイアの場合には15〜20であった。さらに電流を増加させると1つの端子間の電圧が階段状に急激に大きくなり、超電導薄膜が局所的に常伝導に転移したことが分かった。このとき端子間に発生した電圧と電流から求めた抵抗を電圧端子間距離1cmの領域が均一に常伝導転移した場合の抵抗と比較して常伝導に転移した領域の長さlを見積った。 P s in the formula (3) depends on the type of base material and the application condition of thermal shock. Therefore, when a thin film heater was provided on the base material and a 50 Hz half-wave current was applied in the same manner as the current limiting element test conditions, the thermal shock resistance P s of the sapphire, LAO, and STO base materials was evaluated. / Cm 2 . Also, depending on the quality of the superconducting thin film, l the superconducting thin film of unit length from the experiment about 100Myuemu~1mm, the [rho y just above T c was about 50~150Myuemuomega. Note that l of the superconducting thin film was estimated by the following method. First, a voltage measuring terminal was provided on a superconducting thin film having a width of 1 cm and a length of 10 cm at intervals of 1 cm in the longitudinal direction, and the voltage generated between the terminals was observed while increasing the current. If the current value at which the voltage of V 0 = 1 μV / cm is generated is defined as I c , the voltage represented by V = V 0 (I / I c ) n when the current is increased to I c or more. Occurred between each terminal. Here, n differs depending on the base material and was 15 to 20 in the case of sapphire. When the current was further increased, it was found that the voltage between one terminal suddenly increased stepwise, and the superconducting thin film was locally transferred to normal conduction. At this time, the resistance obtained from the voltage and current generated between the terminals was compared with the resistance when the region having a distance of 1 cm between the voltage terminals was uniformly transferred to normal conduction, and the length l of the region transferred to normal conduction was estimated.

また、限流開始電流Iq
q=αIc=αJcWd (5)
と表すことができる。高品質の超電導薄膜の場合、Jcは106〜107A/cm2、dは0.1〜1μm、Wは1〜10cm程度である。αは基材の熱的性質に依存するが、実験より基材がサファイア、LAO、STOの場合には1.5〜2程度の値が得られている。なお、αは次のような方法により評価した。まず、超電導薄膜に取り外し可能な保護抵抗を並列に接続した超電導限流素子を作製し、図1に示すような回路を用いてスイッチ6を投入することにより50Hz半波の電流を流して限流特性を調べた。このとき、超電導限流素子の電圧が階段状に急激に増加した電流を限流開始電流Iqと定義しαを求めた。
Further, the current limiting start current I q is I q = αI c = αJ c Wd (5)
It can be expressed as. In the case of a high quality superconducting thin film, J c is 10 6 to 10 7 A / cm 2 , d is 0.1 to 1 μm, and W is about 1 to 10 cm. α depends on the thermal properties of the substrate, but when the substrate is sapphire, LAO, or STO, a value of about 1.5 to 2 is obtained from experiments. Α was evaluated by the following method. First, a superconducting current limiting element in which a protective resistance that can be removed is connected in parallel to the superconducting thin film is manufactured, and a current of 50 Hz half-wave is caused to flow by turning on the switch 6 using a circuit as shown in FIG. The characteristics were investigated. At this time, the voltage of the superconducting current limiting element is determined to sharply increased current stepwise is defined as current limiting starting current I q alpha.

これら基板の耐熱衝撃耐量、超電導薄膜の特性を(3)式に代入することより、限流初期、すなわち冷却温度のRnの適正値を求めることができる。 By substituting the thermal shock resistance of these substrates and the characteristics of the superconducting thin film into the equation (3), the initial value of the current limiting, that is, the appropriate value of the cooling temperature R n can be obtained.

次に、限流中の保護抵抗の適正値について考察する。超電導薄膜が破壊しない最大電圧(ここでは印加可能電圧と表す)には上限があり、超電導薄膜の能力を最大限に生かすためには、保護抵抗も超電導薄膜と同等の電圧に耐える必要がある。保護抵抗の電極には半田など低融点の金属を用いているため、超電導薄膜の印加可能電圧と同等の電圧が印加された際、限流中の保護抵抗の温度上昇は室温以下であることが好ましい。この条件を満たす保護抵抗の適正値は保護抵抗の構造により異なる。このため、後述のように本発明の保護抵抗の構造である(1)バルク、(2)絶縁基板上の薄膜、(3)薄膜とバルクの積層の3種類に分けて求める。本明細書において、バルク形態の保護抵抗とは、厚さが100μm以上で自己支持性の部材からなる保護抵抗のことをいう。また、絶縁基板上の薄膜形態の保護抵抗とは、絶縁基板上に厚さ100μm未満の薄膜として形成された部材からなる保護抵抗のことをいう。   Next, the appropriate value of the protective resistance during current limiting will be considered. There is an upper limit to the maximum voltage at which the superconducting thin film does not break (referred to as an applicable voltage here), and the protective resistance must withstand a voltage equivalent to that of the superconducting thin film in order to make the best use of the superconducting thin film. Since a low melting point metal such as solder is used for the protective resistance electrode, when the voltage equivalent to the applicable voltage of the superconducting thin film is applied, the temperature rise of the protective resistance during current limiting may be below room temperature. preferable. The appropriate value of the protective resistor that satisfies this condition varies depending on the structure of the protective resistor. For this reason, as will be described later, the protective resistance structure of the present invention is divided into three types: (1) bulk, (2) thin film on an insulating substrate, and (3) thin film and bulk lamination. In this specification, the bulk-type protective resistance means a protective resistance made of a self-supporting member having a thickness of 100 μm or more. The protective resistance in the form of a thin film on an insulating substrate refers to a protective resistance made of a member formed as a thin film having a thickness of less than 100 μm on the insulating substrate.

まず、バルク形態の保護抵抗の値Rbについて考える。図2(a)の平面図および図2(b)の断面図に示す超電導限流素子は、絶縁基材12の表面に成膜した超電導薄膜11と、絶縁基材12の裏面に配置したバルク形態の保護抵抗21の両端を低融点半田7で並列接続した構造を有する。この超電導限流素子に超電導薄膜11の損傷しない最大電圧に相当するVyの電圧が時間Δtの間、保護抵抗21に印加された場合、保護抵抗21の発熱量Qnは以下のように表される。

Figure 0004119403
First, consider the value R b of the bulk protection resistor. The superconducting current limiting element shown in the plan view of FIG. 2A and the cross-sectional view of FIG. 2B is a superconducting thin film 11 formed on the surface of the insulating substrate 12 and a bulk disposed on the back surface of the insulating substrate 12. The protective resistor 21 has a structure in which both ends of the protective resistor 21 are connected in parallel with the low melting point solder 7. When a voltage of V y corresponding to the maximum voltage that does not damage the superconducting thin film 11 is applied to the protective resistor 21 for a time Δt, the heat generation amount Q n of the protective resistor 21 is expressed as follows. Is done.
Figure 0004119403

ここで、Rbは保護抵抗の値である。したがって、温度上昇ΔTbは発熱量を熱容量で割ればよく、以下のように表される。

Figure 0004119403
Here, R b is the value of the protective resistance. Therefore, the temperature increase ΔT b is obtained by dividing the heat generation amount by the heat capacity, and is expressed as follows.
Figure 0004119403

ここで、Cbは保護抵抗の比熱、σbは密度、Wbは幅、dbは厚さ、lbは長さである。そして、ΔTbが冷却温度と室温との温度差であるΔTmaxより小さいという条件から、以下の式を満足すればよい。なお、比熱は温度変化するが、ここでは室温の値を用いる。

Figure 0004119403
Here, C b is the protection resistor specific heat, sigma b is the density, W b is the width, d b is the thickness, l b is the length. Then, from the condition that ΔT b is smaller than ΔT max that is the temperature difference between the cooling temperature and room temperature, the following equation should be satisfied. Although the specific heat varies with temperature, the value at room temperature is used here.
Figure 0004119403

次に、薄膜形態の保護抵抗の値Rfについて考える。図3(a)の平面図および図3(b)の断面図に示す超電導限流素子は、絶縁基材12の表面に成膜した超電導薄膜11と、それとは別の絶縁基材23の表面に成膜した金属薄膜22とを積層し、これらを両端で並列接続した構造を有する。Vyの電圧がΔtの間、保護抵抗である金属薄膜22に印加された場合、発熱量Qfは以下のように表される。

Figure 0004119403
Next, consider the value R f of the protective resistance of the thin film form. The superconducting current limiting element shown in the plan view of FIG. 3A and the cross-sectional view of FIG. 3B includes a superconducting thin film 11 formed on the surface of the insulating base 12 and a surface of an insulating base 23 different from the superconducting thin film 11. The metal thin film 22 formed on the substrate is laminated, and these are connected in parallel at both ends. When the voltage V y is applied between the Delta] t, the metal thin film 22 is a protective resistance, calorific value Q f is represented as follows.
Figure 0004119403

この金属薄膜22の厚さが薄く、熱容量が無視できるほど小さい場合、発熱量が保護抵抗の絶縁基材23中に熱拡散長Dまで均一に伝わったとすると温度上昇ΔTfは以下のように表される。

Figure 0004119403
When the thickness of the metal thin film 22 is thin and the heat capacity is negligibly small, assuming that the heat generation amount is uniformly transmitted to the thermal diffusion length D in the insulating base material 23 of the protective resistance, the temperature rise ΔT f is expressed as follows: Is done.
Figure 0004119403

ここで、Wkとlkは金属薄膜22の幅と長さ、κs、Csおよびσsは絶縁基材23の熱伝導率、比熱および密度であり、熱拡散長はD=(4κΔt/Csσs1/2である。 Here, W k and l k are the width and length of the metal thin film 22, κ s , C s and σ s are the thermal conductivity, specific heat and density of the insulating base material 23, and the thermal diffusion length is D = (4κΔt / C s σ s) is 1/2.

ΔTfが冷却温度と室温との温度差であるΔTmaxより小さいという条件から、下記の式を満足すればよい。なお、熱伝導率、比熱は温度変化するが、ここでは室温の値を用いる。

Figure 0004119403
From the condition that ΔT f is smaller than ΔT max which is the temperature difference between the cooling temperature and room temperature, the following equation should be satisfied. Note that although the thermal conductivity and specific heat change in temperature, the value at room temperature is used here.
Figure 0004119403

次に、薄膜形態とバルク形態の部材が積層され電気的に接続されている保護抵抗の適正値Rtについて考える。図4(a)の平面図および図4(b)の断面図に示す超電導限流素子は、絶縁基材12の表面に成膜した超電導薄膜11と、それとは別にバルク形態の部材21に薄膜形態の部材22を積層した保護抵抗とを両端で並列接続した構造を持っている。温度上昇ΔTtは(7)式と(10)式の合計で表され、冷却温度と室温との温度差であるΔTmaxより小さいという条件より、下記の式を満足するようにRbとRfを決定すればよい。

Figure 0004119403
Next, consider the proper value R t of the protective resistance thin film morphology and bulk forms of members are stacked and electrically connected. The superconducting current limiting element shown in the plan view of FIG. 4A and the cross-sectional view of FIG. 4B is a thin film formed on the superconducting thin film 11 formed on the surface of the insulating base 12 and the bulk member 21 separately. It has a structure in which a protective resistor formed by laminating members 22 in a form is connected in parallel at both ends. The temperature rise ΔT t is expressed by the sum of the formulas (7) and (10), and R b and R satisfy the following formula on the condition that the temperature difference is smaller than ΔT max which is the temperature difference between the cooling temperature and the room temperature. f may be determined.
Figure 0004119403

上述したように限流中に保護抵抗が損傷しないためには、室温における保護抵抗の値が(8)式、(11)式または(12)式を満足することが必要となる。一方、保護抵抗の値が大きすぎて電流を絞りすぎると、常伝導転移しない領域が発生し、分担電圧に偏りができて保護抵抗が損傷するという問題が発生する。そのため、電流を絞りすぎないためには、室温での保護抵抗Rmは下記の式を満たす必要がある。ここでIcは臨界電流である。

Figure 0004119403
As described above, in order for the protective resistance not to be damaged during the current limiting, the value of the protective resistance at room temperature needs to satisfy the formula (8), the formula (11), or the formula (12). On the other hand, if the value of the protective resistance is too large and the current is reduced too much, a region where the normal conduction transition does not occur occurs, and the problem arises that the shared resistance is biased and the protective resistance is damaged. Therefore, in order not to restrict the current too much, the protective resistance R m at room temperature needs to satisfy the following equation. Here, I c is a critical current.
Figure 0004119403

以上のように保護抵抗の値は限流初期の冷却温度において(3)式を満足すると超電導薄膜が損傷しない限流素子を得ることができる。また、限流中に超電導薄膜の印加可能電圧に相当する電圧を印加した場合、室温における保護抵抗の値は構造により(8)式、(11)式または(12)式を満足し、さらに(13)式を満足すると、保護抵抗が損傷せず信頼性の高い限流素子を得ることができる。   As described above, when the value of the protective resistance satisfies the expression (3) at the cooling temperature at the initial stage of current limiting, a current limiting element that does not damage the superconducting thin film can be obtained. When a voltage corresponding to the applicable voltage of the superconducting thin film is applied during current limiting, the value of the protective resistance at room temperature satisfies the formula (8), (11) or (12) depending on the structure, If the equation (13) is satisfied, a current limiting element with high reliability can be obtained without damaging the protective resistance.

ところで、保護抵抗の抵抗値は限流初期の小さな値から限流中の大きな値へと温度に応じて変化するが、その変化の仕方には図5に示すA、B、Cに代表される3種類がある。保護抵抗自体の温度上昇が小さいほうが復帰時間、すなわち限流動作後に冷却温度まで冷却され再び動作可能となる状態までの時間は早くなるという利点がある。そのためには、保護抵抗の抵抗値は早く大きくなったほうがよく、曲線Aのように変化することが好ましい。曲線Aに示すように温度に対する抵抗の増加率が温度とともに小さくなるような保護抵抗としては、単体の保護抵抗を用いる他に、図6に示すように温度に対する抵抗の増加率の異なる部材24と部材25とを超電導薄膜1に電気的に並列接続して超電導限流素子3を構成することが考えられる。なお、既述の図4に示した超電導限流素子は、図6と等価な構成を有する。ここで、図6に示した部材24の抵抗をR24、部材25の抵抗をR25として、下記の式のように表す。

Figure 0004119403
By the way, the resistance value of the protective resistor changes from a small value at the initial stage of current limiting to a large value during the current limiting depending on the temperature. The change is represented by A, B, and C shown in FIG. There are three types. The smaller the temperature rise of the protective resistor itself, there is an advantage that the recovery time, that is, the time until the state is cooled to the cooling temperature after the current limiting operation and becomes operational again becomes faster. For this purpose, the resistance value of the protective resistor should be increased quickly and preferably changed as shown by curve A. As the protective resistance whose resistance increasing rate with respect to temperature decreases with temperature as shown in curve A, in addition to using a single protective resistor, as shown in FIG. It is conceivable to form the superconducting current limiting element 3 by electrically connecting the member 25 to the superconducting thin film 1 in parallel. Note that the superconducting current limiting element shown in FIG. 4 described above has a configuration equivalent to that shown in FIG. Here, the resistance of the member 24 shown in FIG. 6 is represented by R 24 , and the resistance of the member 25 is represented by R 25 as shown in the following formula.
Figure 0004119403

βが1より大きい場合、部材25のみの場合と比較して、抵抗の増加率が温度とともに小さくなる。R24とR25の関係には、(1)冷却温度から室温までR24>R25、(2)冷却温度から室温までR24<R25、(3)冷却温度から室温までの間でR24とR25の大小関係が変化する、の3種類考えられる。いずれの場合にも、温度に対する抵抗の増加率を、温度とともに小さくすることができる。このため、部材の抵抗率や作製のしやすさに応じてR24とR25の関係を選べばよい。いずれの場合もR24とR25の合成抵抗が、限流初期の冷却温度に(3)式を満足するようにする。また、限流中には保護抵抗の構造に応じて、(8)式、(11)式または(12)式を満足し、さらに(13)式を満足するようにする。ここでは2つの部材の組合せを一例にあげたが、部材の数は2つに限定されず、3つ以上でもよい。 When β is greater than 1, the rate of increase in resistance decreases with temperature compared to the case of only member 25. The relationship between R 24 and R 25 includes (1) R 24 > R 25 from the cooling temperature to room temperature, (2) R 24 <R 25 from the cooling temperature to room temperature, and (3) R between the cooling temperature and room temperature. There are three possible types: the size relationship between 24 and R 25 changes. In either case, the rate of increase in resistance with respect to temperature can be reduced with temperature. For this reason, the relationship between R 24 and R 25 may be selected according to the resistivity of the member and the ease of manufacture. In either case, the combined resistance of R 24 and R 25 satisfies the expression (3) at the cooling temperature at the initial stage of current limiting. Further, during the current limiting, the expression (8), the expression (11) or the expression (12) is satisfied according to the structure of the protective resistance, and the expression (13) is further satisfied. Here, a combination of two members is taken as an example, but the number of members is not limited to two, and may be three or more.

また、電圧印加時の分担電圧を均一にするためには、電気的に接続している部分が多いほうがよい。このため、図7に示すように絶縁基板23の表面に薄膜の部材26、22を積層して成膜したり、図8に示すようにバルクの部材21とバルクの部材27を積層したり、図4に示すようにバルクの部材21と薄膜22の部材を積層するとさらによい。保護抵抗の形は直方体に限定されるものではなく、円柱状やらせん状などの形態でもよい。ただし、分担電圧を均一にするためには、抵抗が長さ方向に均一であるほうがよく、抵抗率や断面積が均一なほうがよい。さらに、限流初期に超電導薄膜から保護抵抗へ速やかに電流を転流させたほうが、超電導薄膜の温度上昇を小さくすることができ、限流動作後に超電導状態へ復帰する時間を早くすることができる。そのため、抵抗値の小さい部材が超電導体の近傍にあるほうがよい。そのためには、例えば、図4に示す超電導限流素子の保護抵抗において、単位長さ当りの抵抗の小さい部材を22、単位長さ当りの抵抗の大きい部材を21とすると、部材22を部材21より超電導薄膜11の近くに配置することが好ましい。具体的には、部材22として抵抗率の小さいAg、Au、Pt、Cu、Ni、Crなどの単体金属、部材21として抵抗率の大きいAuAgやNiCrなどの合金や、炭化珪素、アルミナなどと金属添加物を混合したセラミックス、Mn酸化物などの電気伝導酸化物を用いるとよい。   Moreover, in order to make the shared voltage at the time of voltage application uniform, it is better that there are many electrically connected portions. For this reason, as shown in FIG. 7, the thin film members 26 and 22 are laminated on the surface of the insulating substrate 23, or the bulk member 21 and the bulk member 27 are laminated as shown in FIG. As shown in FIG. 4, it is more preferable to stack a bulk member 21 and a thin film 22 member. The shape of the protective resistor is not limited to a rectangular parallelepiped, and may be a cylindrical shape or a spiral shape. However, in order to make the shared voltage uniform, the resistance should be uniform in the length direction, and the resistivity and cross-sectional area should be uniform. Furthermore, if the current is quickly commutated from the superconducting thin film to the protective resistance at the initial stage of current limiting, the temperature rise of the superconducting thin film can be reduced, and the time for returning to the superconducting state after the current limiting operation can be shortened. . For this reason, it is preferable that a member having a small resistance value be in the vicinity of the superconductor. For this purpose, for example, in the protection resistance of the superconducting current limiting element shown in FIG. 4, when the member having a small resistance per unit length is 22 and the member having a large resistance per unit length is 21, the member 22 is the member 21. It is preferable to arrange it closer to the superconducting thin film 11. Specifically, the member 22 is a single metal such as Ag, Au, Pt, Cu, Ni, or Cr having a low resistivity, the member 21 is an alloy such as AuAg or NiCr, or a metal such as silicon carbide or alumina. Electrically conductive oxides such as ceramics and Mn oxide mixed with additives may be used.

以下、本発明の実施例について図面を参照して説明する。   Embodiments of the present invention will be described below with reference to the drawings.

[実施例1]
図1に示す試験回路により実施例1に係る超電導限流素子を試験した。実施例1に係る超電導限流素子は図2(a)の平面図および図2(b)の断面図(図2(a)のB−B’線に沿った断面)に示す構造を有する。図2においては、サファイア基板12の表面に成膜したYBCO薄膜11と、炭化珪素に金属を添加したセラミックスからなるバルク形態の保護抵抗21を、低融点半田7を用いて両端で並列接続している。超電導限流素子3を液体窒素中で冷却し、配電系を模擬して電源4により50Hzの電圧をΔt=0.3sだけ印加して限流特性を評価した。表1に各パラメータの値を示す。

Figure 0004119403
[Example 1]
The superconducting current limiting element according to Example 1 was tested using the test circuit shown in FIG. The superconducting current limiting element according to Example 1 has a structure shown in a plan view of FIG. 2A and a cross-sectional view of FIG. 2B (a cross section taken along line BB ′ in FIG. 2A). In FIG. 2, a YBCO thin film 11 formed on the surface of a sapphire substrate 12 and a bulk protection resistor 21 made of a ceramic obtained by adding a metal to silicon carbide are connected in parallel at both ends using a low melting point solder 7. Yes. The superconducting current limiting element 3 was cooled in liquid nitrogen, a current distribution system was simulated, and a voltage of 50 Hz was applied from the power source 4 for Δt = 0.3 s to evaluate the current limiting characteristics. Table 1 shows the value of each parameter.
Figure 0004119403

表1の値を(3)式に代入すると、保護抵抗21の適正値は、液体窒素温度で0.76Ω以下になる。そこで、炭化珪素に添加する金属の量を変えることにより、冷却温度である液体窒素温度で0.7Ωとなるように調整した。この超電導限流素子を20枚作製し、100Vまで電圧を増加させ限流試験を10回繰返し行ったところ、すべての素子が損傷することなく限流動作した。   When the values in Table 1 are substituted into equation (3), the appropriate value of the protective resistor 21 is 0.76Ω or less at the liquid nitrogen temperature. Therefore, by adjusting the amount of metal added to silicon carbide, the liquid nitrogen temperature that is the cooling temperature was adjusted to 0.7Ω. Twenty superconducting current limiting elements were fabricated, the voltage was increased to 100 V, and the current limiting test was repeated 10 times. As a result, all elements were current limited without damage.

[実施例2]
実施例2では実施例1と同様の構造の超電導限流素子において、さらに室温での保護抵抗の値を調整した。表1のパラメータを(8)式、(13)式に代入すると室温での保護抵抗21の適正範囲は1.5Ω以上3.7Ω以下になる。また、実施例1で述べたように冷却温度での保護抵抗21の値は0.76Ω以下であることが必要である。そこで、炭化珪素に添加する金属の量を変えることにより、図9に示すように、保護抵抗21の値を、冷却温度である液体窒素温度で0.7Ω、室温で1.6Ωとなるように調整した。この超電導限流素子を20枚作製し、YBCO薄膜11に印加できる最大電圧の400Vまで電圧を増加させ限流試験を10回繰返し行ったところ、すべての素子が損傷することなく限流動作した。また、限流特性から保護抵抗21の温度上昇を見積もったところすべて室温以下であった。
[Example 2]
In Example 2, in the superconducting current limiting element having the same structure as in Example 1, the value of the protective resistance at room temperature was further adjusted. When the parameters in Table 1 are substituted into the equations (8) and (13), the appropriate range of the protective resistor 21 at room temperature is 1.5Ω to 3.7Ω. Further, as described in the first embodiment, the value of the protective resistor 21 at the cooling temperature needs to be 0.76Ω or less. Therefore, by changing the amount of metal added to silicon carbide, as shown in FIG. 9, the value of protective resistance 21 is 0.7Ω at the liquid nitrogen temperature, which is the cooling temperature, and 1.6Ω at room temperature. It was adjusted. Twenty superconducting current limiting elements were fabricated, the current was increased to 400 V, the maximum voltage that can be applied to the YBCO thin film 11, and the current limiting test was repeated 10 times. As a result, all elements were current limited without damage. Further, when the temperature rise of the protective resistor 21 was estimated from the current limiting characteristics, all were room temperature or lower.

[比較例1、2、3]
液体窒素温度での保護抵抗21の値を1Ωと大きくした以外は実施例1と同様の限流素子を作製した(比較例1)。限流試験を行ったところ、限流初期にYBCO薄膜11が断線してしまった。また、室温での保護抵抗21の値を1.1Ωと小さくした以外は実施例2と同様の限流素子を作製した(比較例2)。その限流特性から見積もったところ、限流中に保護抵抗21は350Kと室温以上に温度上昇していることが判明した。また、室温での保護抵抗21の値を5Ωと大きくした以外は実施例1と同様の限流素子を作製した(比較例3)。限流特性を調べたところ、限流中に80A(実効値)とIcの2倍以下に電流が絞られ、保護抵抗が損傷することが判明した。
[Comparative Examples 1, 2, 3]
A current limiting element similar to Example 1 was produced except that the value of the protective resistance 21 at the liquid nitrogen temperature was increased to 1Ω (Comparative Example 1). When the current limiting test was performed, the YBCO thin film 11 was disconnected at the initial stage of the current limiting. Further, a current limiting element similar to that of Example 2 was produced except that the value of the protective resistance 21 at room temperature was reduced to 1.1Ω (Comparative Example 2). As a result of estimation from the current limiting characteristics, it was found that the protective resistance 21 increased to 350 K and higher than room temperature during the current limiting. Further, a current limiting element similar to that of Example 1 was produced except that the value of the protective resistance 21 at room temperature was increased to 5Ω (Comparative Example 3). When the current limiting characteristics were examined, it was found that during the current limiting, the current was restricted to 80 A (effective value) and less than twice I c , and the protective resistance was damaged.

[実施例3]
実施例3に係る超電導限流素子は図3(a)の平面図および図3(b)の断面図(図3(a)のB−B’線に沿った断面)に示す構造を有する。図3に示すように、サファイア基板12の表面に成膜したYBCO薄膜11と、AlN基板23の表面に成膜したNi薄膜22を、両端で低融点半田7により電気的に並列接続した。表2に各パラメータの値を示す。

Figure 0004119403
[Example 3]
The superconducting current limiting element according to Example 3 has a structure shown in a plan view of FIG. 3A and a cross-sectional view of FIG. 3B (cross section taken along line BB ′ of FIG. 3A). As shown in FIG. 3, the YBCO thin film 11 formed on the surface of the sapphire substrate 12 and the Ni thin film 22 formed on the surface of the AlN substrate 23 were electrically connected in parallel with the low melting point solder 7 at both ends. Table 2 shows the value of each parameter.
Figure 0004119403

表1と表2に示したパラメータを(3)式、(11)式、(13)式に代入すると、保護抵抗22の適正値は液体窒素温度では0.76Ω以下、室温では1.8Ω以上3Ω以下となる。そのため、AlN基板23上に厚さ200nmのNi薄膜22を電子ビーム蒸着法により成膜する条件を変えて、保護抵抗22の値が図10に示すように、液体窒素温度で0.6Ω、室温で2.5Ωとなるように調整した。この超電導限流素子を20枚作製し、YBCO薄膜11に印加できる最大電圧の400Vまで電圧を増加させ限流試験を繰返し10回行ったところ、すべての素子が損傷することなく限流動作した。また、限流特性から保護抵抗の温度上昇を見積もったところすべて室温以下であった。   Substituting the parameters shown in Tables 1 and 2 into Equations (3), (11), and (13), the appropriate value of protective resistor 22 is 0.76Ω or less at liquid nitrogen temperature and 1.8Ω or more at room temperature. 3Ω or less. Therefore, by changing the conditions for forming the Ni thin film 22 having a thickness of 200 nm on the AlN substrate 23 by the electron beam evaporation method, the value of the protective resistance 22 is 0.6Ω at the liquid nitrogen temperature, room temperature as shown in FIG. Was adjusted to 2.5Ω. Twenty of these superconducting current limiting elements were fabricated, the voltage was increased to the maximum voltage of 400 V that could be applied to the YBCO thin film 11, and the current limiting test was repeated 10 times. As a result, all elements were current limiting without damage. Moreover, when the temperature rise of the protective resistance was estimated from the current limiting characteristics, all were below room temperature.

[実施例4、5]
実施例4、5に係る超電導限流素子は図4(a)の平面図および図4(b)の断面図(図4(a)のB−B’線に沿った断面)に示す構造を有する。図4に示すように、サファイア基板12の表面に成膜したYBCO薄膜11と、炭化珪素に金属粒子を添加して焼結したバルク部材21にNi薄膜22を被覆した保護抵抗を、両端で低融点半田7により電気的に接続した。表1と表2に示すパラメータを用いて、バルク部材の抵抗R21とNi薄膜の抵抗R22およびR21とR22の合成抵抗R3が(3)式、(12)式、(13)式を満足するように、バルク部材の添加金属の量やNi薄膜の厚さを調整した。その結果、合成抵抗R3は冷却温度で0.5Ω、室温で2Ωであり、R21とR22の値を変えて、図11(実施例3)、図12(実施例4)に示すように温度とともに抵抗の増加率が小さくなるような温度変化をする2種類の保護抵抗を得ることができた。これらの超電導限流素子を10枚ずつ作製し、400Vまで電圧を増加させて限流試験を10回行ったところ、すべての素子が損傷することなく限流動作した。また、限流特性から保護抵抗の温度上昇を見積もったところ、すべて室温以下であった。
[Examples 4 and 5]
The superconducting current limiting element according to Examples 4 and 5 has the structure shown in the plan view of FIG. 4A and the cross-sectional view of FIG. 4B (cross section taken along line BB ′ of FIG. 4A). Have. As shown in FIG. 4, the YBCO thin film 11 formed on the surface of the sapphire substrate 12 and the bulk resistance 21 obtained by adding metal particles to silicon carbide and sintering the Ni thin film 22 are covered with a low protective resistance at both ends. Electrical connection was made by melting point solder 7. Using the parameters shown in Tables 1 and 2, the resistance R 21 of the bulk member and the resistance R 22 of the Ni thin film and the combined resistance R 3 of R 21 and R 22 are expressed by the following expressions (3), (12), (13) The amount of added metal in the bulk member and the thickness of the Ni thin film were adjusted so as to satisfy the equation. As a result, the combined resistance R 3 is 0.5Ω at the cooling temperature and 2Ω at room temperature, and the values of R 21 and R 22 are changed, as shown in FIG. 11 (Example 3) and FIG. 12 (Example 4). In addition, two types of protective resistors that change in temperature so that the rate of increase in resistance decreases with temperature can be obtained. Ten of these superconducting current-limiting elements were produced, and the current-limiting test was performed 10 times by increasing the voltage to 400 V. As a result, all elements were current-limited without being damaged. Moreover, when the temperature rise of the protective resistance was estimated from the current limiting characteristics, all were below room temperature.

[比較例4]
保護抵抗として、AlN基板上に厚さ200nmのNi薄膜を電子ビーム蒸着法により成膜した。成膜条件によりNi薄膜の抵抗R4を、冷却温度で0.5Ω、室温で2Ωに調整し、図13に示すような温度変化を示した。比較のために、実施例3の保護抵抗の抵抗R3を図中に示す。このようにR4は温度に対する抵抗の増加率の変化がR3に比べてかなり小さくなっている。この比較例4と実施例3の超電導限流素子を10枚ずつ作製し、400Vまで電圧を増加させて限流試験を行った後、保護抵抗の復帰時間、すなわち保護抵抗が冷却温度まで冷却されるまでの時間を調べた。その結果、実施例3の保護抵抗の復帰時間は20秒であったのに対し、比較例4の保護抵抗の復帰時間は40秒と長かった。
[Comparative Example 4]
As a protective resistor, a Ni thin film having a thickness of 200 nm was formed on an AlN substrate by an electron beam evaporation method. The resistance R 4 of the Ni thin film was adjusted to 0.5Ω at the cooling temperature and 2Ω at room temperature depending on the film forming conditions, and the temperature change as shown in FIG. 13 was shown. For comparison, the resistance R 3 of the protective resistance of Example 3 is shown in the figure. Thus, R 4 has a considerably smaller change in the rate of increase of resistance with respect to temperature than R 3 . Ten superconducting current limiting elements of Comparative Example 4 and Example 3 were manufactured, and after a current limiting test was performed by increasing the voltage to 400 V, the recovery time of the protective resistance, that is, the protective resistance was cooled to the cooling temperature. Investigate the time until. As a result, the recovery time of the protective resistance of Example 3 was 20 seconds, whereas the recovery time of the protective resistance of Comparative Example 4 was as long as 40 seconds.

[比較例5]
図14は比較例5に係る超電導限流素子の構造を示した図であり、図14(a)は平面図、図14(b)は図14(a)のB−B’線に沿った断面図である。図14に示すように、サファイア基板12の表面に成膜したYBCO薄膜11と炭化珪素に金属粒子を添加して焼結したバルク部材21にNi薄膜22を被覆した保護抵抗とを両端で低融点半田7により電気的に接続している。実施例3においては冷却温度での抵抗が小さいNi薄膜22がYBCO薄膜11の近くに配置されているのに対し、比較例5においては冷却温度での抵抗の大きいバルク部材21がYBCO薄膜11の近くに配置されている。この実施例3と比較例5の超電導限流素子を10枚ずつ作製し、400Vまで電圧を増加させて限流試験を行った後、YBCO薄膜の復帰時間、すなわちYBCO薄膜が常伝導状態から超電導状態へ復帰する時間を調べた。その結果、実施例3のYBCO薄膜の復帰時間は20秒であるのに対し、比較例4のYBCO薄膜の復帰時間は30秒と長くなることが分かった。
[Comparative Example 5]
14A and 14B are diagrams showing the structure of a superconducting current limiting element according to Comparative Example 5. FIG. 14A is a plan view, and FIG. 14B is along the line BB ′ in FIG. It is sectional drawing. As shown in FIG. 14, the YBCO thin film 11 formed on the surface of the sapphire substrate 12 and the bulk resistance 21 obtained by adding metal particles to silicon carbide and sintering the protective resistance coated with the Ni thin film 22 have low melting points at both ends. Electrical connection is made by solder 7. In Example 3, the Ni thin film 22 having a low resistance at the cooling temperature is arranged near the YBCO thin film 11, whereas in Comparative Example 5, the bulk member 21 having a high resistance at the cooling temperature is formed of the YBCO thin film 11. Located nearby. Ten superconducting current limiting elements of Example 3 and Comparative Example 5 were produced and subjected to a current limiting test by increasing the voltage up to 400 V, and then the recovery time of the YBCO thin film, that is, the YBCO thin film was superconducting from the normal state. The time to return to the state was examined. As a result, it was found that the recovery time of the YBCO thin film of Example 3 was 20 seconds, whereas the recovery time of the YBCO thin film of Comparative Example 4 was as long as 30 seconds.

[実施例6]
実施例6に係る超電導限流素子は図7(a)の平面図および図7(b)の断面図(図7(a)のB−B’線に沿った断面)に示す構造を有する。図7に示すように、サファイア基板12の表面に共蒸着法により成膜したYBCO薄膜11と、AlN基板23の表面に電子ビーム蒸着法により成膜したNi薄膜22とNiCr薄膜26の積層からなる保護抵抗を、両端で低融点半田7により電気的に接続した。絶縁基材上に形成された保護抵抗の適正範囲は、実施例3と同様に表1と表2および(3)式、(12)式、(13)式を用いると、液体窒素温度では0.76Ω以下、室温では1.8Ω以上3.7Ω以下となる。そこで、Ni薄膜の抵抗R22とNiCr薄膜の抵抗R26の合成抵抗R4が上記の適正範囲になるように、Ni薄膜とNiCr薄膜の厚さをそれぞれ200nmと1μmとした。その結果、合成抵抗R4は図15に示すような温度変化を示した。このような超電導限流素子を20枚作製し、400Vまで電圧を増加させ限流試験を繰返し10回行ったところ、すべての素子が損傷することなく限流動作した。また、限流特性から保護抵抗の温度上昇を見積もったところすべて室温以下であった。
[Example 6]
The superconducting current limiting element according to Example 6 has a structure shown in the plan view of FIG. 7A and the cross-sectional view of FIG. 7B (cross section taken along the line BB ′ of FIG. 7A). As shown in FIG. 7, the YBCO thin film 11 is formed on the surface of the sapphire substrate 12 by the co-evaporation method, and the Ni thin film 22 and the NiCr thin film 26 are formed on the surface of the AlN substrate 23 by the electron beam evaporation method. The protective resistance was electrically connected by the low melting point solder 7 at both ends. The appropriate range of the protective resistance formed on the insulating base material is 0 at the liquid nitrogen temperature using Tables 1 and 2 and the expressions (3), (12), and (13) as in Example 3. .76Ω or less, and 1.8Ω or more and 3.7Ω or less at room temperature. Therefore, the thicknesses of the Ni thin film and the NiCr thin film are set to 200 nm and 1 μm, respectively, so that the combined resistance R 4 of the resistance R 22 of the Ni thin film and the resistance R 26 of the NiCr thin film falls within the above-described appropriate range. As a result, the combined resistance R 4 showed a temperature change as shown in FIG. Twenty such superconducting current limiting elements were prepared, and the current limiting test was repeated 10 times by increasing the voltage up to 400 V. As a result, all elements were current limiting without damage. Moreover, when the temperature rise of the protective resistance was estimated from the current limiting characteristics, all were below room temperature.

[実施例7]
実施例7に係る超電導限流素子は図8(a)の平面図および図8(b)の断面図(図8(a)のB−B’線に沿った断面)に示す構造を有する。図8に示すように、サファイア基板12の表面に成膜したYBCO薄膜11と、炭化珪素に金属粒子を添加して焼結したバルク部材21およびMn酸化物のバルク部材27からなる保護抵抗を、両端で低融点半田7により電気的に接続した。表1と表2に示すパラメータを用いて、保護抵抗の抵抗値が(3)式、(12)式を満足するように、バルク部材の添加金属の量や厚さを調整した。その結果、保護抵抗の値は冷却温度で0.7Ω、室温で1.6Ωとなった。この超電導限流素子を10枚ずつ作製し、400Vまで電圧を増加させて限流試験を10回行ったところ、すべての素子が損傷することなく限流動作した。また、限流特性から保護抵抗の温度上昇を見積もったところ、すべて室温以下であった。
[Example 7]
The superconducting current limiting element according to Example 7 has a structure shown in the plan view of FIG. 8A and the cross-sectional view of FIG. 8B (cross section taken along the line BB ′ of FIG. 8A). As shown in FIG. 8, a protective resistance comprising a YBCO thin film 11 formed on the surface of a sapphire substrate 12, a bulk member 21 obtained by adding metal particles to silicon carbide and sintering, and a bulk member 27 of Mn oxide, Both ends were electrically connected by a low melting point solder 7. Using the parameters shown in Table 1 and Table 2, the amount and thickness of the added metal of the bulk member were adjusted so that the resistance value of the protective resistance satisfied the expressions (3) and (12). As a result, the value of the protective resistance was 0.7Ω at the cooling temperature and 1.6Ω at room temperature. Ten superconducting current-limiting devices were produced, and the current-limiting test was performed 10 times by increasing the voltage to 400 V. As a result, all devices were current-limited without being damaged. Moreover, when the temperature rise of the protective resistance was estimated from the current limiting characteristics, all were below room temperature.

本発明の実施例1に係る超電導限流素子の構成と試験回路を示す図。The figure which shows the structure and test circuit of the superconducting current limiting element which concern on Example 1 of this invention. 本発明の実施例1に係る超電導限流素子の構造を示す図で、(a)は平面図、(b)は(a)のB−B’線に沿った断面図。1A and 1B are diagrams showing a structure of a superconducting current limiting element according to Embodiment 1 of the present invention, where FIG. 1A is a plan view and FIG. 1B is a cross-sectional view taken along line B-B ′ in FIG. 本発明の実施例3に係る超電導限流素子の構造を示す図で、(a)は平面図、(b)は(a)のB−B’線に沿った断面図。It is a figure which shows the structure of the superconducting current limiting element which concerns on Example 3 of this invention, (a) is a top view, (b) is sectional drawing along the B-B 'line of (a). 本発明の実施例4および5に係る超電導限流素子の構造を示す図で、(a)は平面図、(b)は(a)のB−B’線に沿った断面図。It is a figure which shows the structure of the superconducting current limiting element which concerns on Example 4 and 5 of this invention, (a) is a top view, (b) is sectional drawing along the B-B 'line | wire of (a). 保護抵抗の温度変化を示す図。The figure which shows the temperature change of protection resistance. 本発明の実施例4、5および6に係る超電導限流素子の構成を示す図。The figure which shows the structure of the superconducting current limiting element which concerns on Example 4, 5 and 6 of this invention. 本発明の実施例6に係る超電導限流素子の構造を示す図で、(a)は平面図、(b)は(a)のB−B’線に沿った断面図。It is a figure which shows the structure of the superconducting current limiting element which concerns on Example 6 of this invention, (a) is a top view, (b) is sectional drawing along the B-B 'line of (a). 本発明の実施例7に係る超電導限流素子の構造を示す図で、(a)は平面図、(b)は(a)のB−B’線に沿った断面図。It is a figure which shows the structure of the superconducting current limiting element which concerns on Example 7 of this invention, (a) is a top view, (b) is sectional drawing along the B-B 'line of (a). 本発明の実施例2に係る超電導限流素子の保護抵抗の温度変化を示す図。The figure which shows the temperature change of the protection resistance of the superconducting current limiting element which concerns on Example 2 of this invention. 本発明の実施例3に係る超電導限流素子の保護抵抗の温度変化を示す図。The figure which shows the temperature change of the protection resistance of the superconducting current limiting element which concerns on Example 3 of this invention. 本発明の実施例4に係る超電導限流素子の保護抵抗の温度変化を示す図。The figure which shows the temperature change of the protection resistance of the superconducting current limiting element which concerns on Example 4 of this invention. 本発明の実施例5に係る超電導限流素子の保護抵抗の温度変化を示す図。The figure which shows the temperature change of the protection resistance of the superconducting current limiting element which concerns on Example 5 of this invention. 比較例4に係る超電導限流素子の保護抵抗の温度変化を示す図。The figure which shows the temperature change of the protection resistance of the superconducting current limiting element which concerns on the comparative example 4. FIG. 比較例5に係る超電導限流素子の保護抵抗の温度変化を示す図。The figure which shows the temperature change of the protection resistance of the superconducting current limiting element which concerns on the comparative example 5. FIG. 本発明の実施例6に係る超電導限流素子の保護抵抗の温度変化を示す図。The figure which shows the temperature change of the protection resistance of the superconducting current limiting element which concerns on Example 6 of this invention.

符号の説明Explanation of symbols

1…超電導薄膜、11…超電導薄膜、12…基材、2…保護抵抗、21…バルク形態の保護抵抗、22…薄膜形態の保護抵抗、23…薄膜形態の保護抵抗が設けられた基材、24…保護抵抗、25…保護抵抗、26…薄膜形態の保護抵抗、27…バルク形態の保護抵抗、3…超電導限流素子、4…電源、5…回路インピーダンス、6…スイッチ、7…低融点半田。   DESCRIPTION OF SYMBOLS 1 ... Superconducting thin film, 11 ... Superconducting thin film, 12 ... Base material, 2 ... Protection resistance, 21 ... Protection resistance of a bulk form, 22 ... Protection resistance of a thin film form, 23 ... Base material provided with the protection resistance of a thin film form, 24 ... Protection resistance, 25 ... Protection resistance, 26 ... Protection resistance in the form of a thin film, 27 ... Protection resistance in the form of bulk, 3 ... Superconducting current limiting element, 4 ... Power supply, 5 ... Circuit impedance, 6 ... Switch, 7 ... Low melting point solder.

Claims (7)

基材上に設けられた超電導体と、前記超電導体の保護抵抗とを並列接続した超電導限流素子であって、冷却温度における前記保護抵抗の値Rnが下記の式
Figure 0004119403
(ここで、ρyは臨界温度直上における超電導体の抵抗率、dは超電導体の厚さ、Wは超電導体の幅、lは超電導体が常伝導転移した領域の長さ、Iqは限流開始電流値、Psは超電導体が設けられた基材が破壊しない最大熱負荷である。)
満足し、
前記保護抵抗がバルク形態をなし、室温における前記保護抵抗の値R b が下記の式
Figure 0004119403
(ここで、V y は保護抵抗に接続された超電導体に印加される最大電圧、Δtは電圧を印加する時間、C b およびσ b はバルク形態の保護抵抗の室温における比熱および密度、W b 、d b およびl b はバルク形態の保護抵抗の幅、厚さおよび長さ、ΔT max は冷却温度と室温との温度差、I c は超電導体の臨界電流である。)
を満足することを特徴とする超電導限流素子。
A superconducting current limiting element in which a superconductor provided on a substrate and a protective resistance of the superconductor are connected in parallel, and the value R n of the protective resistance at a cooling temperature is expressed by the following equation:
Figure 0004119403
(Here, [rho y the resistivity of the superconductor at the critical temperature just above, d is the thickness of the superconductor, W is the width of the superconductor, l is the length of the region where the superconductor is normal conducting transition, I q is limited (The flow start current value, P s, is the maximum heat load at which the base material provided with the superconductor does not break.)
Satisfied,
The protective resistor has a bulk form, and the value R b of the protective resistor at room temperature is expressed by the following formula:
Figure 0004119403
(Where V y is the maximum voltage applied to the superconductor connected to the protective resistor, Δt is the voltage application time, C b and σ b are the specific heat and density at room temperature of the bulk form protective resistor, W b , D b and l b are the width, thickness and length of the bulk form protective resistor, ΔT max is the temperature difference between the cooling temperature and room temperature, and I c is the critical current of the superconductor.)
A superconducting current limiting element characterized by satisfying
基材上に設けられた超電導体と、前記超電導体の保護抵抗とを並列接続した超電導限流素子であって、冷却温度における前記保護抵抗の値RA superconducting current limiting element in which a superconductor provided on a substrate and a protective resistance of the superconductor are connected in parallel, and the value R of the protective resistance at a cooling temperature nn が下記の式Is the following formula
Figure 0004119403
Figure 0004119403
(ここで、ρ(Where ρ yy は臨界温度直上における超電導体の抵抗率、dは超電導体の厚さ、Wは超電導体の幅、lは超電導体が常伝導転移した領域の長さ、IIs the resistivity of the superconductor immediately above the critical temperature, d is the thickness of the superconductor, W is the width of the superconductor, l is the length of the region where the superconductor is in the normal conduction transition, I qq は限流開始電流値、PIs the current limiting start current value, P ss は超電導体が設けられた基材が破壊しない最大熱負荷である。)Is the maximum heat load at which the substrate provided with the superconductor does not break. )
を満足し、Satisfied,
前記保護抵抗が絶縁基材上に形成された薄膜形態をなし、室温における前記保護抵抗の値RThe protective resistance is in the form of a thin film formed on an insulating substrate, and the value R of the protective resistance at room temperature. ff が下記の式Is the following formula
Figure 0004119403
Figure 0004119403
(ここで、V(Where V yy は保護抵抗に接続された超電導体に印加される最大電圧、Δtは電圧を印加する時間、WIs the maximum voltage applied to the superconductor connected to the protective resistor, Δt is the time to apply the voltage, W ff は薄膜形態の保護抵抗の幅、lIs the width of the protective resistor in the form of a thin film, l ff は薄膜形態の保護抵抗の長さ、ΔTIs the length of the protective resistor in the form of a thin film, ΔT maxmax は冷却温度と室温との温度差、κIs the temperature difference between the cooling temperature and room temperature, κ ss 、C, C ss およびσAnd σ ss は保護抵抗が設けられた基材の室温における熱伝導率、比熱および密度、IIs the room temperature thermal conductivity, specific heat and density of the substrate provided with protective resistance, I cc は超電導体の臨界電流である。)Is the critical current of the superconductor. )
を満足することを特徴とする超電導限流素子。A superconducting current limiting element characterized by satisfying
基材上に設けられた超電導体と、前記超電導体の保護抵抗とを並列接続した超電導限流素子であって、冷却温度における前記保護抵抗の値RA superconducting current limiting element in which a superconductor provided on a substrate and a protective resistance of the superconductor are connected in parallel, and the value R of the protective resistance at a cooling temperature nn が下記の式Is the following formula
Figure 0004119403
Figure 0004119403
(ここで、ρ(Where ρ yy は臨界温度直上における超電導体の抵抗率、dは超電導体の厚さ、Wは超電導体の幅、lは超電導体が常伝導転移した領域の長さ、IIs the resistivity of the superconductor immediately above the critical temperature, d is the thickness of the superconductor, W is the width of the superconductor, l is the length of the region where the superconductor is in the normal conduction transition, I qq は限流開始電流値、PIs the current limiting start current value, P ss は超電導体が設けられた基材が破壊しない最大熱負荷である。)Is the maximum heat load at which the substrate provided with the superconductor does not break. )
を満足し、Satisfied,
前記保護抵抗が薄膜形態の部材とバルク形態の部材との積層構造を持ち、室温における薄膜形態の部材の抵抗値RThe protective resistance has a laminated structure of a thin film member and a bulk member, and the resistance value R of the thin film member at room temperature. ff と室温におけるバルク形態の部材の抵抗値RAnd the resistance value R of the bulk member at room temperature bb が下記の式Is the following formula
Figure 0004119403
Figure 0004119403
(ここで、V(Where V yy は保護抵抗に接続された超電導体に印加される最大電圧、Δtは電圧を印加する時間、CIs the maximum voltage applied to the superconductor connected to the protective resistor, Δt is the time to apply the voltage, C bb 、κ, Κ bb 、σ, Σ bb 、W, W bb 、l, L bb およびdAnd d bb はバルク形態の部材の室温における比熱、熱伝導率、密度、幅、長さおよび厚さであり、ΔTIs the specific heat at room temperature, thermal conductivity, density, width, length and thickness of the bulk form member, and ΔT maxmax は冷却温度と室温との温度差、IIs the temperature difference between the cooling temperature and room temperature, I cc は超電導体の臨界電流である。)Is the critical current of the superconductor. )
を満足することを特徴とする超電導限流素子。A superconducting current limiting element characterized by satisfying
前記保護抵抗の温度に対する抵抗の増加率が温度とともに小さくなることを特徴とする請求項1ないし3のいずれか1項に記載の超電導限流素子。 The superconducting current limiting element according to any one of claims 1 to 3, wherein an increasing rate of the resistance of the protective resistor with respect to temperature decreases with temperature. 前記保護抵抗は、温度に対する抵抗の増加率が異なる2つ以上の部材が電気的に接続されたものであることを特徴とする請求項4に記載の超電導限流素子。 The superconducting current limiting element according to claim 4 , wherein the protective resistance is formed by electrically connecting two or more members having different resistance increasing rates with respect to temperature. 前記保護抵抗を構成する2つ以上の部材は積層されていることを特徴とする請求項5に記載の超電導限流素子。 The superconducting current limiting element according to claim 5 , wherein two or more members constituting the protective resistance are laminated. 冷却温度の単位長さ当りの抵抗が小さい部材を、冷却温度の単位長さ当りの抵抗が大きい部材よりも、前記超電導体の近くに配置したことを特徴とする請求項5または6に記載の超電導限流素子。 The member resistance is small per unit of cooling temperature length, than member resistance is large per unit of cooling temperature length, according to claim 5 or 6, characterized in that located close to the superconductor Superconducting current limiting element.
JP2004191344A 2004-06-29 2004-06-29 Superconducting current limiting element Active JP4119403B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004191344A JP4119403B2 (en) 2004-06-29 2004-06-29 Superconducting current limiting element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004191344A JP4119403B2 (en) 2004-06-29 2004-06-29 Superconducting current limiting element

Publications (2)

Publication Number Publication Date
JP2006013316A JP2006013316A (en) 2006-01-12
JP4119403B2 true JP4119403B2 (en) 2008-07-16

Family

ID=35780164

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004191344A Active JP4119403B2 (en) 2004-06-29 2004-06-29 Superconducting current limiting element

Country Status (1)

Country Link
JP (1) JP4119403B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ATE417396T1 (en) * 2006-01-13 2008-12-15 Europ High Temperature Superco CURRENT LIMITER
GB2453181B (en) 2007-10-11 2009-07-15 Magnex Scient Ltd Superconducting switch operation
JP6046036B2 (en) * 2011-05-24 2016-12-14 古河電気工業株式会社 Superconducting element for superconducting fault current limiter, superconducting element manufacturing method for superconducting fault current limiter, and superconducting fault current limiter

Also Published As

Publication number Publication date
JP2006013316A (en) 2006-01-12

Similar Documents

Publication Publication Date Title
RU2126568C1 (en) Device limiting electric current
KR0178953B1 (en) Assemblies of ptc circuit protection device
US7660096B2 (en) Circuit protection device having thermally coupled MOV overvoltage element and PPTC overcurrent element
JP5259289B2 (en) Integrated thermistor, metal element device and method
EP0315976B1 (en) Superconducting current limiting apparatus
JPH08213204A (en) Ptc thermistor and current limiter with at least one ptc thermistor
JP2005197539A (en) Superconductivity current limiting element
JP4644779B2 (en) Superconducting current limiting element
JP2000032654A (en) Current limiting element using oxide superconductor, and current limiter thereof
JP3977884B2 (en) Current limiting element, current limiter using oxide superconductor, and manufacturing method thereof
JP4119403B2 (en) Superconducting current limiting element
KR910001317B1 (en) Ptc resistor
US9601243B2 (en) Contact element for varistor
JP2004006963A (en) Circuit protection device
JP2009049257A (en) Superconducting current-limiting element
EP3167495B1 (en) Current limiter arrangement and method for manufacturing a current limiter arrangement
JPH06132571A (en) Current limiting element and current limiting device
JP4131769B2 (en) Superconducting current limiting fuse and overcurrent control system using the same
JP2017005237A (en) Surge protection device
JPH03226228A (en) Current limit resistance device
JP5472682B2 (en) Superconducting current limiting element
US6853527B2 (en) Over-current protection apparatus for high voltage
JP3699884B2 (en) Superconducting current limiting element
JPH10270217A (en) Current limiter provided with ptc element and wiring breaker
JPH10271667A (en) Current limiter and breaker for wiring

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080129

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080331

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080422

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080424

R151 Written notification of patent or utility model registration

Ref document number: 4119403

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110502

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110502

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120502

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120502

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130502

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130502

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140502

Year of fee payment: 6