JPH0716030B2 - Superconducting wire manufacturing method - Google Patents

Superconducting wire manufacturing method

Info

Publication number
JPH0716030B2
JPH0716030B2 JP58199119A JP19911983A JPH0716030B2 JP H0716030 B2 JPH0716030 B2 JP H0716030B2 JP 58199119 A JP58199119 A JP 58199119A JP 19911983 A JP19911983 A JP 19911983A JP H0716030 B2 JPH0716030 B2 JP H0716030B2
Authority
JP
Japan
Prior art keywords
superconducting wire
base material
nbti
superconducting
cuni
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58199119A
Other languages
Japanese (ja)
Other versions
JPS6091684A (en
Inventor
暁 村瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP58199119A priority Critical patent/JPH0716030B2/en
Publication of JPS6091684A publication Critical patent/JPS6091684A/en
Publication of JPH0716030B2 publication Critical patent/JPH0716030B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Containers, Films, And Cooling For Superconductive Devices (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)

Description

【発明の詳細な説明】 〔発明の属する技術分野〕 この発明は磁気浮上列車,半導体のパターン転写装置等
の産業エレクトロニクス用超電導磁石等に用いて、超電
導永久電流モードを達成するに必要な熱式超電導スイッ
チや交流用超電導線に使用できる超電導線の製造方法に
関する。
Description: TECHNICAL FIELD The present invention is applied to a superconducting magnet for industrial electronics such as a magnetic levitation train and a pattern transfer device for semiconductors, etc., and is a thermal system required to achieve a superconducting persistent current mode. The present invention relates to a method for manufacturing a superconducting wire that can be used for a superconducting switch and an AC superconducting wire.

〔従来技術とその問題点〕[Prior art and its problems]

従来、超電導スイツチにはCuNi母材のNbTi超電導線を用
いていた。しかし、CuNi母材のNi量はたかだか10%で母
材の比抵抗は約10μΩ・cmである。これでは超電導スイ
ツチの抵抗値として低く特に高速励磁用途には問題があ
つた。また、母材の比抵抗を上げるためにNi濃度を増す
と加工が困難となる欠点があつた。このことは高抵抗の
母材を必要とする交流用超電導線においても同様であ
る。
Conventionally, NbTi superconducting wire of CuNi base material was used for the superconducting switch. However, the Ni content of the CuNi base material is at most 10%, and the specific resistance of the base material is about 10 μΩ · cm. In this case, the resistance value of the superconducting switch is low, and there is a problem particularly in high-speed excitation applications. In addition, if the Ni concentration is increased in order to increase the specific resistance of the base material, there is a drawback that processing becomes difficult. This also applies to an AC superconducting wire which requires a high resistance base material.

〔発明の目的〕[Object of the Invention]

この発明は上述した不都合を解決し、従来の超電導スイ
ッチや交流用超電導線に使用されるNbTi超電導線の母材
を高比抵抗した超電導線の製造方法を提供することを目
的とする。
An object of the present invention is to solve the above-mentioned inconvenience and to provide a method for producing a superconducting wire in which a base material of a NbTi superconducting wire used in a conventional superconducting switch or an AC superconducting wire has a high specific resistance.

〔発明の概要〕[Outline of Invention]

この発明はCuNi母材に埋込まれたNbTi超電導線の表面に
Sn、Ga、In、Zn、Bi等の低融点金属元素のうち一元素又
は複数元素を被覆した後、前記元素の融点以上550℃以
下の温度で拡散反応させCuNi母材に添加させたものであ
る。拡散反応温度の下限以下では拡散反応がほとんど促
進されない。また上限以上ではNbTi超電導線の特性劣化
を招く。
This invention is applied to the surface of NbTi superconducting wire embedded in CuNi base material.
Sn, Ga, In, Zn, after coating one element or a plurality of elements of the low melting point metal elements such as Bi, it was added to the CuNi base material by diffusion reaction at a temperature of the melting point of the element or more 550 ℃ or less is there. Below the lower limit of the diffusion reaction temperature, the diffusion reaction is hardly promoted. Further, if it exceeds the upper limit, the characteristics of the NbTi superconducting wire are deteriorated.

〔発明の効果〕〔The invention's effect〕

この発明を実施することにより母材の比抵抗が20〜30μ
Ω・cmに上昇し、100Ωを越える高抵抗の超電導線がで
き、高速励磁や交流電流にも堪えることができた。
By implementing this invention, the specific resistance of the base material is 20 to 30μ.
It was able to withstand high-speed excitation and alternating current, with the superconducting wire having a high resistance of over 100 Ω, which increased to Ω · cm.

〔発明の実施例〕Example of Invention

以下に図面にもとづいて本発明の具体的実施例を示す。
第1図はCu10%Ni母材(3)のNbTi超電導線()の断
面図である。この超電導線(1)を300℃に保つたSn浴
を通過させ超電導線の表面にSn(4)を被覆させた(第
2図)。NbTi(2)の特性を低下させない温度300℃×3
00時間の熱処理をしてSn(4)をCuNi母材(3)中に拡
散させた(第3図)。このようにして得られたNbTi超電
導線()の母材(5)の比抵抗は20μΩ・cmと高い値
が得られ、これを巻回してつくつた超電導スイツチの抵
抗は105Ωとなり高速励磁が可能となつた。このことは
他のGa、In、Zn、Biにおいても同様である。
Specific embodiments of the present invention will be described below with reference to the drawings.
FIG. 1 is a sectional view of a NbTi superconducting wire ( 1 ) made of a Cu10% Ni base material (3). This superconducting wire (1) was passed through a Sn bath maintained at 300 ° C to coat the surface of the superconducting wire with Sn (4) (Fig. 2). Temperature that does not deteriorate the characteristics of NbTi (2) 300 ℃ × 3
After heat treatment for 00 hours, Sn (4) was diffused into the CuNi base material (3) (Fig. 3). The resistivity of the base material (5) of the NbTi superconducting wire ( 1 ) thus obtained is as high as 20 μΩ · cm, and the resistance of the superconducting switch formed by winding this is 105 Ω and high-speed excitation is possible. It was possible. This also applies to other Ga, In, Zn, and Bi.

【図面の簡単な説明】[Brief description of drawings]

第1図は従来の超電導線の断面図、第2図は本発明によ
つて金属被覆した超電導線の断面図、第3図は本発明の
熱式超電導スイツチに用いる超電導線断面図である。 ……NbTi超電導線、2……NbTiフイラメント 3……CuNi母材、4……Sn 5……Sn添加CuNi母材
FIG. 1 is a sectional view of a conventional superconducting wire, FIG. 2 is a sectional view of a superconducting wire metal-coated according to the present invention, and FIG. 3 is a sectional view of a superconducting wire used in a thermal superconducting switch of the present invention. 1 ... NbTi superconducting wire, 2 ... NbTi filament 3 ... CuNi base material, 4 ... Sn 5 ... Sn-added CuNi base material

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】CuNi母材とNbTi系合金フィラメントからな
るNbTi超電導線の母材にSn、Ga、In、Zn、Biから選ばれ
る1種類以上の元素を添加する超電導線の製造方法にお
いて、 前記添加すべき元素をめっき又は浸漬法により前記NbTi
超電導線の表面に被覆した後、前記元素の融点以上550
℃以下の温度で前記CuNi母材に拡散反応させることを特
徴とする超電導線の製造方法。
1. A method for producing a superconducting wire, wherein one or more elements selected from Sn, Ga, In, Zn and Bi are added to a base material of an NbTi superconducting wire composed of a CuNi base material and an NbTi alloy filament. The element to be added is NbTi
After coating the surface of the superconducting wire, above the melting point of the above element 550
A method for producing a superconducting wire, which comprises causing a diffusion reaction in the CuNi base material at a temperature of ℃ or less.
JP58199119A 1983-10-26 1983-10-26 Superconducting wire manufacturing method Expired - Lifetime JPH0716030B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58199119A JPH0716030B2 (en) 1983-10-26 1983-10-26 Superconducting wire manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58199119A JPH0716030B2 (en) 1983-10-26 1983-10-26 Superconducting wire manufacturing method

Publications (2)

Publication Number Publication Date
JPS6091684A JPS6091684A (en) 1985-05-23
JPH0716030B2 true JPH0716030B2 (en) 1995-02-22

Family

ID=16402450

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58199119A Expired - Lifetime JPH0716030B2 (en) 1983-10-26 1983-10-26 Superconducting wire manufacturing method

Country Status (1)

Country Link
JP (1) JPH0716030B2 (en)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54140171A (en) * 1978-04-24 1979-10-31 Mitsubishi Electric Corp Thermal permanent current switch
JPS566315A (en) * 1979-06-26 1981-01-22 Furukawa Electric Co Ltd Method of manufacturing compound superconductor

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
日本金属学会編「金属データブック」(昭49−7−20)丸善P.152

Also Published As

Publication number Publication date
JPS6091684A (en) 1985-05-23

Similar Documents

Publication Publication Date Title
US3429032A (en) Method of making superconductors containing flux traps
US3372470A (en) Process for making composite conductors
US3996661A (en) Method for the manufacture of a superconductor having an intermetallic two element compound
JP2693255B2 (en) Nb (Bottom 3) Method and apparatus for manufacturing Al-based superconducting wire
JP2975246B2 (en) Sn-plated wire for electrical contact and method of manufacturing the same
JPH0716030B2 (en) Superconducting wire manufacturing method
US4153986A (en) Method for producing composite superconductors
US3676577A (en) Superconductors containing flux traps
US3996662A (en) Method for the manufacture of a superconductor having an intermetallic two element compound
JPH0716029B2 (en) Superconducting wire
JPS6062009A (en) Composite superconductor stabilized by ag-filled oxygenless copper
Sharma et al. Superconducting properties of a copper-ternary alloy
CA1042640A (en) Method for stabilizing a superconductor
JPS60250506A (en) Compound superconductive wire blank
JP2653451B2 (en) Method for determining insulation thickness of superconducting conductor
JPS6017804A (en) Superconductive wire for permanent current switch
JPS59805A (en) Compound superconductive wire
JP3257703B2 (en) Pulse or AC current lead and method for connecting A15 type compound superconducting stranded wire to said current lead
JP3153539B2 (en) Superconducting wire
Tachikawa et al. Alloy for superconductive magnet
JPS63313416A (en) Superconductive wire rod and its manufacture
JPS60235309A (en) Method of producing nb-ti alloy superconductive wire material coated with enamel insulating coating
JPS6222205B2 (en)
Deis et al. Surface diffusion processed multifilament Nb3Sn conductors
JPS59191208A (en) Method of producing nb3sn superconductive conductor