JP2653451B2 - Method for determining insulation thickness of superconducting conductor - Google Patents

Method for determining insulation thickness of superconducting conductor

Info

Publication number
JP2653451B2
JP2653451B2 JP63003608A JP360888A JP2653451B2 JP 2653451 B2 JP2653451 B2 JP 2653451B2 JP 63003608 A JP63003608 A JP 63003608A JP 360888 A JP360888 A JP 360888A JP 2653451 B2 JP2653451 B2 JP 2653451B2
Authority
JP
Japan
Prior art keywords
superconducting
thickness
temperature
superconducting wire
conductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP63003608A
Other languages
Japanese (ja)
Other versions
JPH01183008A (en
Inventor
進 島本
博史 辻
良和 高橋
清 奥野
高太郎 浜島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP63003608A priority Critical patent/JP2653451B2/en
Publication of JPH01183008A publication Critical patent/JPH01183008A/en
Application granted granted Critical
Publication of JP2653451B2 publication Critical patent/JP2653451B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Superconductor Devices And Manufacturing Methods Thereof (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)

Description

【発明の詳細な説明】 〔発明の構成〕 (産業上の利用分野) 本発明は超電導線の表面に被覆されるホルマールなど
の絶縁材の厚みを決定する超電導導体の絶縁厚み決定方
法に関するものである。
The present invention relates to a method for determining the insulation thickness of a superconducting conductor for determining the thickness of an insulating material such as formal coated on the surface of a superconducting wire. is there.

(従来の技術) 一般に線材をホルマールなどの絶縁物で被覆すれば、
熱伝達特性を向上させることができることから、超電導
導体においてもこの絶縁物を超電導線の絶縁被覆物とし
て用いることが試みられている。
(Prior art) Generally, if a wire is covered with an insulating material such as formal,
Since the heat transfer characteristics can be improved, attempts have been made to use this insulator as an insulating coating for a superconducting wire even in a superconducting conductor.

通常の線材に被覆される絶縁物の厚さは約60μm以上
であるが、超電導線をこれと同じ厚さの絶縁物で被覆す
ると次のような問題がある。
The thickness of the insulator coated on the ordinary wire is about 60 μm or more. However, if the superconducting wire is coated with the same thickness of the insulator, the following problem occurs.

すなわち、高磁界で使用される超電導導体の発熱q
gは、 で示される。ここで、Iは通電電流、Sは安定化材の断
面積、Pは冷却周長、fはある温度Tにおける超電導導
体中の超電導状態と常電導状態の比を表す係数である。
That is, the heat generated by the superconducting conductor used in a high magnetic field q
g is Indicated by Here, I is a conduction current, S is a cross-sectional area of the stabilizing material, P is a cooling circumference, and f is a coefficient representing a ratio of a superconducting state to a normal conducting state in the superconducting conductor at a certain temperature T.

上記(1)式を超電導導体の熱伝達特性上に表示する
と第1図のの破線で示すようになる。このの破線で
示す特性からも明らかなように超電導導体の温度Tが分
流開始温度Ts以下ならばf=0で発熱がなく電流が全て
超電導線を流れている状態、Tが臨界温度Tc以上ならば
f=1で電流が安定化材中を流れて発熱している状態、
TがTsとTcの間ではf=(T−Ts)/(Tc−Ts)で発熱
が少しずつ行なわれている状態を表わす。ただし、臨界
温度Tcは磁界Bに依存し、磁界が強くなると減少する。
When the above equation (1) is displayed on the heat transfer characteristic of the superconducting conductor, it becomes as shown by the broken line in FIG. As is clear from the characteristic shown by the broken line, if the temperature T of the superconducting conductor is equal to or lower than the shunt starting temperature Ts, f = 0 and no heat is generated and all the current flows through the superconducting wire, and if T is equal to or higher than the critical temperature Tc. If f = 1, the current flows through the stabilizing material and generates heat,
When T is between Ts and Tc, f = (T−Ts) / (Tc−Ts) indicates a state in which heat is gradually generated. However, the critical temperature Tc depends on the magnetic field B, and decreases as the magnetic field increases.

しかるに前述したように超電導線を通常の線材と同じ
ような厚さの絶縁物で被覆すると、その熱伝達特性は第
1図のに示すような曲線となるため、超電導導体に加
わる外乱による熱が核沸騰のピーク熱流束quより少なく
ても超電導状態が破れて常電導状態に転移し、場合によ
っては常電導領域が伝播してクエンチに至ることがあ
る。
However, when the superconducting wire is covered with an insulator having a thickness similar to that of a normal wire as described above, the heat transfer characteristic becomes a curve as shown in FIG. 1, so that heat due to disturbance applied to the superconducting conductor is reduced. Even if the heat flux is less than the peak heat flux q u of nucleate boiling, the superconducting state is broken and transitions to the normal conducting state, and in some cases, the normal conducting region propagates to reach quench.

(発明が解決しようとする課題) このように超電導線を被覆する絶縁物の厚さを通常の
線材と同じようにすると超電導導体が不安定になるとい
う問題がある。
(Problems to be Solved by the Invention) When the thickness of the insulator covering the superconducting wire is made the same as that of a normal wire, there is a problem that the superconducting conductor becomes unstable.

本発明の目的は、超電導状態に対する安定性を向上さ
せることが可能な超電導導体の絶縁厚み決定方法を提供
しようとするものである。
An object of the present invention is to provide a method for determining the insulation thickness of a superconducting conductor that can improve the stability in a superconducting state.

〔発明の構成〕[Configuration of the invention]

(課題を解決するための手段) 本発明は上記目的を達成するため、予め通電電流、超
電導線の安定化材の断面積及び冷却周長が定められた固
有の超電導線の表面を絶縁材で被覆してなる超電導導体
の絶縁材の厚みを決定する方法において、前記超電導線
の臨界温度をTc、印加磁界をB、前記絶縁材の熱伝達率
をk、液体ヘリウム温度をTb、超電導線の発熱qg=f
(T)I2/SP(但し、Iは通常電流、Sは超電導線の安
定化材の断面積、Pは冷却周長、f(T)はTsを分流開
始温度、Tcを臨界温度としたときに T≦Tsのとき、f(T)=0 Ts<T<Tcのとき、f(T)=(T−Ts)/(Tc−Ts) Tc<Tのとき、f(T)=1 となる温度Tの関数であり、この超電導導体の温度Tに
おける導体中の超電導状態と常電導状態の比を表す係
数)としたとき、 前記絶縁物の被覆厚さtとして、 t≦k(Tc(B)−Tb)/qg (但し、Tc(B)は印加磁界Bより一義的に決まる超電
導導体の臨界温度)なる条件を満足するように絶縁材の
厚さを決定するようにしたものである。
(Means for Solving the Problems) In order to achieve the above object, the present invention uses an insulating material to cover the surface of a unique superconducting wire in which a current to be passed, a cross-sectional area of a stabilizing material of the superconducting wire and a cooling circumference are determined in advance. In the method of determining the thickness of the insulating material of the superconducting conductor formed by coating, the critical temperature of the superconducting wire is T c , the applied magnetic field is B, the heat transfer coefficient of the insulating material is k, the liquid helium temperature is T b , Wire heating q g = f
(T) I 2 / SP (where, I usually current, S is the cross-sectional area of the stabilizing material of the superconducting wire, P is cooled circumference, f (T) start shunts the T s temperature, the critical temperature T c when T ≦ T s is taken as, when f (T) = 0 T s <T <T c, f (T) = (T-T s) / (T c -T s) T c <T Is a function of the temperature T such that f (T) = 1, and a coefficient representing the ratio between the superconducting state and the normal conducting state in the conductor at the temperature T of the superconducting conductor. As t, t ≦ k (T c (B) −T b ) / q g (where T c (B) is the critical temperature of the superconducting conductor uniquely determined by the applied magnetic field B) The thickness of the insulating material is determined.

(作用) したがって、かかる超電導線の絶縁被覆厚み決定方法
にあっては、超電導線の表面を被覆する絶縁材の厚さを
上記式の条件を満たすような値にすることにより、臨界
温度Tcが磁界の強さに応じて変動しても超電導導体を安
定にすることが可能となる。
(Operation) Therefore, in the method for determining the insulation coating thickness of a superconducting wire, the critical temperature T c is determined by setting the thickness of the insulating material covering the surface of the superconducting wire to a value that satisfies the condition of the above equation. The superconducting conductor can be stabilized even if the value fluctuates according to the strength of the magnetic field.

(実施例) 以下本発明の一実施例を図面を参照して説明する。本
実施例では第2図に示すようにNbTiあるいはNb3Snから
なる超電導物質1と銅からなる安定化材2から構成され
た超電導線3の表面を被覆するホルマールなどの絶縁物
4の厚さとして次のような条件を満し得る厚さにするも
のである。
Embodiment An embodiment of the present invention will be described below with reference to the drawings. In this embodiment, as shown in FIG. 2, the thickness of an insulator 4 such as formal covering the surface of a superconducting wire 3 composed of a superconducting material 1 made of NbTi or Nb 3 Sn and a stabilizer 2 made of copper. The thickness is set to satisfy the following conditions.

すなわち、この絶縁物4は熱伝達特性がよいとはいえ
熱絶縁材であるため、液体ヘリウムと超電導線3との間
に温度差が生じる。この温度差ΔTは熱流束qとの間に なる関係がある。ここで、kはホルマールの場合には約
0.045W/m.kであり、またqとしては超電導線の発熱qg
とればよい。このとき、温度差ΔTが ΔTTc(B)−Tb ……(3) の関係を満足すれば、前述したように核沸騰のピーク熱
流束quより小さい外乱に対して安定になる。但し、Tc
(B)は磁界Bに依存する臨界温度、Tbは液体ヘリウム
温度である。
That is, although the insulator 4 is a heat insulating material although having good heat transfer characteristics, a temperature difference occurs between the liquid helium and the superconducting wire 3. This temperature difference ΔT is between the heat flux q There is a relationship. Where k is about formal
0.045 W / mk, and q may be the heat generation q g of the superconducting wire. At this time, if the temperature difference ΔT is satisfied a relationship ΔTTc (B) -Tb ...... (3 ), becomes stable to peak heat flux q u less disturbance of nucleate boiling as described above. Where Tc
(B) is the critical temperature depending on the magnetic field B, and Tb is the liquid helium temperature.

したがって、今、超電導線3の発熱qgを0.4W/cm2にと
ると、(2)、(3)式からホルマールの厚さtは t11.3×10-6×(Tc(B)−Tb)(m) ……(4) が得られる。
Therefore, if the heat generation q g of the superconducting wire 3 is 0.4 W / cm 2 , the thickness t of the formal is t11.3 × 10 −6 × (Tc (B) − Tb) (m) (4) is obtained.

而して、超電導線3に被覆される絶縁物4の厚さを変
えてその熱伝達特性を第1図に表わすと曲線、に示
す如くなる。かかる曲線からも明らかなように絶縁物4
の厚さとして通常の線材と同じ60μm以上の曲線に比
べて絶縁物4の被覆厚が薄くなるに従って熱伝達特性が
→→の曲線に示すように変化することが判る。こ
の場合、絶縁物4の被覆厚さを前記(4)式を満たすよ
うにしたときの熱伝達特性は曲線に示す如くなり、ま
た絶縁物がない場合の熱伝達特性は曲線に示す如くな
る。
The heat transfer characteristics of the insulator 4 coated on the superconducting wire 3 by changing the thickness thereof are shown in a curve in FIG. As is clear from this curve, the insulator 4
It can be seen that the heat transfer characteristic changes as shown by the curve of →→ as the coating thickness of the insulator 4 becomes thinner than the curve of 60 μm or more, which is the same as the thickness of a normal wire. In this case, the heat transfer characteristic when the coating thickness of the insulator 4 satisfies the equation (4) is as shown by the curve, and the heat transfer characteristic when there is no insulator is as shown by the curve.

このように超電導線3の表面を被覆する絶縁物4の厚
さを前記(4)式の条件を満すような値にすることによ
り、臨界温度Tcが磁界の強さに応じて変動しても超電導
導体を安定にすることができる。
By setting the thickness of the insulator 4 covering the surface of the superconducting wire 3 to a value that satisfies the condition of the above equation (4), the critical temperature Tc varies according to the strength of the magnetic field. Also, the superconducting conductor can be stabilized.

ここで、NbTiからなる超電導物質1と安定化材2とで
構成された超電導線3にホルマールを被覆する場合の厚
さを前記(4)式に従い磁界が6T〜9Tについて計算した
結果をプロットして示すと第3図のような関係が得ら
れ、図示ハッチング部分が安定状態となることが判る。
したがって、磁界が8Tの場合にはホルマールの被覆厚さ
を17.6μm以下とすればよい。
Here, the thickness of a superconducting wire 3 composed of a superconducting material 1 made of NbTi and a stabilizing material 2 coated with formal is calculated based on the above equation (4) for a magnetic field of 6T to 9T. 3 shows that the relationship shown in FIG. 3 is obtained, and it can be seen that the hatched portion in the drawing is in a stable state.
Therefore, when the magnetic field is 8 T, the formal coating thickness may be set to 17.6 μm or less.

なお、上記実施例では絶縁物としてホルマールを用い
る場合について述べたが、熱伝達特性を向上させ得るも
のであれば、他の絶縁物であってもよいことは勿論であ
る。また、上記実施例では絶縁物の被覆厚さの条件を具
体的数値を取入れた(4)式にもとずいて説明したが、
(2)式、(3)式より求められる一般式 tk(Tc(B)−Tb)/qg の条件を満すものであれば、絶縁物の材質、超電導線の
発熱が異なる場合にも前述同様にして実施できるもので
ある。
In the above embodiment, the case where formal is used as an insulator has been described, but it is a matter of course that other insulators may be used as long as heat transfer characteristics can be improved. Further, in the above embodiment, the condition of the coating thickness of the insulator is described based on the expression (4) in which specific numerical values are incorporated.
As long as the condition of tk (Tc (B) -Tb) / q g is satisfied from the formulas (2) and (3), even if the material of the insulator and the heat generation of the superconducting wire are different, This can be implemented in the same manner as described above.

〔発明の効果〕〔The invention's effect〕

以上述べたように本発明によれば、超電導線を被覆す
る絶縁材の厚さを磁界の強さに応じて最適な厚さにする
ことが可能となるので、超電導状態に対する安定性を向
上させることができる超電導導体の絶縁厚み決定方法が
提供できる。
As described above, according to the present invention, it is possible to make the thickness of the insulating material covering the superconducting wire an optimum thickness according to the strength of the magnetic field, thereby improving the stability to the superconducting state. And a method for determining the insulation thickness of the superconducting conductor.

【図面の簡単な説明】[Brief description of the drawings]

第1図は超電導導体の熱伝達特性と高磁界で使用される
超電導導体の発熱特性とをそれぞれ示す図、第2図は本
発明による超電導導体の一実施例を示す断面図、第3図
は同実施例においてホルマールの被覆厚さと磁界の関係
を示す図である。 1……NbTiあるいはNb3Snからなる超電導物質、2……
安定化材、3……超電導線、4……絶縁物。
FIG. 1 is a diagram showing a heat transfer characteristic of a superconductor and a heat generation characteristic of a superconductor used in a high magnetic field. FIG. 2 is a sectional view showing an embodiment of the superconductor according to the present invention. It is a figure which shows the relationship between the coating thickness of formal and a magnetic field in the example. 1. Superconducting material made of NbTi or Nb 3 Sn 2.
Stabilizer, 3 ... superconducting wire, 4 ... insulator.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 高橋 良和 茨城県那珂郡那珂町向山字中原801番地 の1 日本原子力研究所那珂研究所内 (72)発明者 奥野 清 茨城県那珂郡那珂町向山字中原801番地 の1 日本原子力研究所那珂研究所内 (72)発明者 浜島 高太郎 神奈川県横浜市鶴見区末広町2丁目4番 地 株式会社東芝京浜事業所内 (56)参考文献 特開 昭62−259307(JP,A) 特開 昭62−105317(JP,A) 特開 昭60−235309(JP,A) 特開 昭63−81708(JP,A) 特開 昭63−200414(JP,A) 特開 昭63−13208(JP,A) ──────────────────────────────────────────────────続 き Continuing on the front page (72) Yoshikazu Takahashi 801 Nakahara, Naka-cho, Naka-machi, Naka-gun, Ibaraki Pref. Inside the Japan Atomic Energy Research Institute Naka Research Laboratory (72) Kiyoshi Okuno Nakahara, Naka-cho, Naka-cho, Naka-gun, Ibaraki 801-1 Inside the Japan Atomic Energy Research Institute Naka Research Laboratory (72) Inventor Kotaro Hamajima 2-4, Suehirocho, Tsurumi-ku, Yokohama-shi, Kanagawa Prefecture Inside the Toshiba Keihin Works Co., Ltd. (56) References JP-A-62-259307 (JP) JP-A-62-105317 (JP, A) JP-A-60-235309 (JP, A) JP-A-63-81708 (JP, A) JP-A-63-200414 (JP, A) 63-13208 (JP, A)

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】予め通電電流、超電導線の安定化材の断面
積及び冷却周長が定められた固有の超電導線の表面を絶
縁材で被覆してなる超電導導体の絶縁材の厚みを決定す
る方法において、 前記超電導線の臨界温度をTc、印加磁界をB、前記絶縁
材の熱伝達率をk、液体ヘリウム温度をTb、超電導線の
発熱qg=f(T)I2/SP(但し、Iは通常電流、Sは超
電導線の安定化材の断面積、Pは冷却周長、f(T)は
Tsを分流開始温度、Tcを臨界温度としたときに T≦Tsのとき、f(T)=0 Ts<T<Tcのとき、f(T)=(T−Ts)/(Tc−Ts) Tc<Tのとき、f(T)=1 となる温度Tの関数であり、この超電導導体の温度Tに
おける導体中の超電導状態と常電導状態の比を表す係
数)としたとき、 前記絶縁物の被覆厚さtとして、 t≦k(Tc(B)−Tb)/qg (但し、Tc(B)は印加磁界Bより一義的に決まる超電
導導体の臨界温度)なる条件を満足するように絶縁材の
厚さを決定することを特徴とする超電導導体の絶縁厚み
決定方法。
1. A thickness of a superconducting conductor in which a surface of a superconducting wire having a predetermined conducting current, a cross-sectional area of a stabilizing material of a superconducting wire, and a cooling circumference is determined in advance, is determined. In the method, the critical temperature of the superconducting wire is T c , the applied magnetic field is B, the heat transfer coefficient of the insulating material is k, the liquid helium temperature is T b , and the heat generation of the superconducting wire q g = f (T) I 2 / SP (Where I is the normal current, S is the cross-sectional area of the stabilizing material of the superconducting wire, P is the cooling circumference, and f (T) is
T s the current sharing temperature, when T ≦ T s when the T c and the critical temperature, when the f (T) = 0 T s <T <T c, f (T) = (T-T s) / (T c −T s ) T c <T is a function of the temperature T such that f (T) = 1 and represents the ratio of the superconducting state to the normal conducting state in the superconducting conductor at the temperature T. And the coating thickness t of the insulator, t ≦ k (T c (B) −T b ) / q g (where T c (B) is uniquely determined by the applied magnetic field B) A method for determining the insulation thickness of a superconducting conductor, wherein the thickness of the insulation material is determined so as to satisfy a condition (critical temperature of the conductor).
JP63003608A 1988-01-11 1988-01-11 Method for determining insulation thickness of superconducting conductor Expired - Fee Related JP2653451B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63003608A JP2653451B2 (en) 1988-01-11 1988-01-11 Method for determining insulation thickness of superconducting conductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63003608A JP2653451B2 (en) 1988-01-11 1988-01-11 Method for determining insulation thickness of superconducting conductor

Publications (2)

Publication Number Publication Date
JPH01183008A JPH01183008A (en) 1989-07-20
JP2653451B2 true JP2653451B2 (en) 1997-09-17

Family

ID=11562208

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63003608A Expired - Fee Related JP2653451B2 (en) 1988-01-11 1988-01-11 Method for determining insulation thickness of superconducting conductor

Country Status (1)

Country Link
JP (1) JP2653451B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100489268B1 (en) * 2003-05-27 2005-05-17 경상대학교산학협력단 Insulation thickness design process of high temperature superconduction cable

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60235309A (en) * 1984-05-08 1985-11-22 日立電線株式会社 Method of producing nb-ti alloy superconductive wire material coated with enamel insulating coating
JPS62105317A (en) * 1985-10-31 1987-05-15 昭和電線電纜株式会社 Manufacture of internal cooling type conductor
JPH0644421B2 (en) * 1986-05-02 1994-06-08 株式会社日立製作所 Superconducting conductor
JPS6381708A (en) * 1986-09-26 1988-04-12 日本原子力研究所 Superconductor
JPS63200414A (en) * 1987-02-16 1988-08-18 Sumitomo Electric Ind Ltd Superconductive wire

Also Published As

Publication number Publication date
JPH01183008A (en) 1989-07-20

Similar Documents

Publication Publication Date Title
Silsbee A note on electrical conduction in metals at low temperatures
US3333331A (en) Method for producing a superconductive solenoid disc
JPS5840286B2 (en) Method for manufacturing high tensile strength aluminum stabilized superconducting wire
JPH0371518A (en) Superconductor
JP2653451B2 (en) Method for determining insulation thickness of superconducting conductor
JPH0232762B2 (en)
Axt et al. Temperature Dependence of the Flux-Flow Resistance near H c 2 in Type-II Superconductors
Funaki et al. Effects of transient heat transfer to liquid helium on steady propagation velocity of normal zones in superconducting wires
US4371741A (en) Composite superconductors
JPS60100487A (en) Permanent current switch
US3996662A (en) Method for the manufacture of a superconductor having an intermetallic two element compound
JP2597339B2 (en) Superconducting magnet manufacturing method
Devred General formulas for the adiabatic propagation velocity of the normal zone
Hake et al. High-field superconductivity in some bcc Ti-Mo and Nb-Zr alloys
JPS62259307A (en) Superconductor
JPS6340003B2 (en)
JP2003288816A (en) Method of lowering ac loss of superconductive coil
Sytchev et al. Terminal characteristics and thermal stability of composite superconducting materials—Part 1
Sharma et al. Multifilamentary V3Ga wires and tapes with composite cores
JPS603545Y2 (en) superconducting winding
JP2507905B2 (en) Stabilized superconducting wire
Ionov et al. Effect of Localized States Near the Metal/Insulator Transition on the Conductivity and Magnetoconductivity of Strongly Doped n-Germanium
JPS5873104A (en) Superconductive magnet
JPH0716030B2 (en) Superconducting wire manufacturing method
Onishi et al. Stability of Rotating Superconducting Magnet Under Large Centrifugal Acceleration

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees