JPS60100487A - Permanent current switch - Google Patents

Permanent current switch

Info

Publication number
JPS60100487A
JPS60100487A JP58207742A JP20774283A JPS60100487A JP S60100487 A JPS60100487 A JP S60100487A JP 58207742 A JP58207742 A JP 58207742A JP 20774283 A JP20774283 A JP 20774283A JP S60100487 A JPS60100487 A JP S60100487A
Authority
JP
Japan
Prior art keywords
current switch
persistent current
persistent
switch
layers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58207742A
Other languages
Japanese (ja)
Inventor
Yoshihiro Jizo
吉洋 地蔵
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP58207742A priority Critical patent/JPS60100487A/en
Publication of JPS60100487A publication Critical patent/JPS60100487A/en
Pending legal-status Critical Current

Links

Landscapes

  • Containers, Films, And Cooling For Superconductive Devices (AREA)
  • Thermally Actuated Switches (AREA)

Abstract

PURPOSE:To obtain a stable permanent current switch which has high current flowing performance by separating between layers on which an electromagnetic force is acted in a direction for repelling between adjacent layers of a superconductive winding for forming the switch without bonding with resin. CONSTITUTION:Spacers 4 made of a separating material such as a Teflon sheet are disposed between the second and the third layers and between the fourth and the fifth layers. Accordingly, they are separated therebetween, and even if an electromagnetic force of tensile direction is acted, tensile stress is hardly acted on the immersed resin, and a microcrack is hardly generated. Thus, a crack of the immersed resin which causes a factor of a quenching can be prevented, thereby improving and stabilizing the current flowing performance of the switch.

Description

【発明の詳細な説明】 〔発明の概要〕 本発明は、永久電流スイッチの通電性能向上に関する。[Detailed description of the invention] [Summary of the invention] The present invention relates to improving the current carrying performance of a persistent current switch.

〔従来技術〕[Prior art]

オ1図に従来の無誘導ソレノイド巻き永久電流スイッチ
の6線構造を示す。図において、(la)。
Figure 1 shows the 6-wire structure of a conventional non-inductive solenoid wound persistent current switch. In the figure, (la).

(lb)は超電4巻線で例えばCuNi 等の抵抗率の
大きな基材にNbTiのフィラメントヲ埋め込んだ極細
多芯線やあるいはNbTiのみから成る線材のように市
電等時に抵抗の高い超電導線を巻線したものであυ、た
とえば(la)は電流の往きの線を(lb)は帰りの緑
全示し、無誘導に巻線されている。12)はたとえばG
FRP等で構成された熱絶縁層である。また、(8a)
 (8b)は口出し線で、(8a)は1流の往きの線を
、【3b)は帰りの線を示し、線に沿った矢印は電流工
の方向を示す。また、矢印Bt/′i氷久電流氷河電流
スイッチに巻線に鎮交する磁束密度を示す。
(lb) is a 4-winding superconductor wire, for example, a superfine multifilamentary wire with a NbTi filament embedded in a base material with high resistivity such as CuNi, or a wire made only of NbTi, which is wound with a high-resistance superconducting wire used in streetcars, etc. For example, (la) indicates the outgoing current line, and (lb) indicates the return line, and is wound without induction. 12) is, for example, G
This is a thermal insulation layer made of FRP or the like. Also, (8a)
(8b) shows the lead line, (8a) shows the outgoing line of the first flow, [3b] shows the return line, and the arrow along the line shows the direction of the electrician. Further, the arrow Bt/'i indicates the magnetic flux density that intersects with the winding of the current switch.

巻線fi+と熱絶縁層(2)はたとえばエポキシ樹脂の
ようなもので一体に含浸されている。
The winding fi+ and the thermal insulation layer (2) are integrally impregnated with something like epoxy resin, for example.

また、第2図は永久゛電流スイッチの軸方向から兇た巷
11泉の畦流工の方向と憔界Bの方向および゛電流とム
界の間に働く電磁力fの方向を示す。
Furthermore, FIG. 2 shows the direction of the ridges of the 11 springs from the axial direction of the permanent current switch, the direction of the field B, and the direction of the electromagnetic force f acting between the current and the field.

第2図かられかるように、無誘導巻きのため巻線には隣
シ合う層の′電流同士の反発力と、外部のば(交磁束密
度Bによる電磁力の合成電磁力として1層目とf3層目
、8層目と4層目、5層目と6層目の間には圧縮力がi
!Iylき、2層目と8層目、4層目と5層目の間には
引張力が141!I <。0れらの力は互いに打ち消し
合う方向であるので、働く電磁力の大きさは小さなもの
であるが、エポキシ樹脂のような含浸剤は、圧縮方向に
は強いが小さな力でも引張シ方向に力が働くとマイクロ
クラックを生じてしまう。そして、この時に微少な発熱
を生じることになる。永久′を電流スイッチに使用され
る超電#I線材は、その常屯碑抵抗を高くする必要から
、銅安定化されていない線全使用するのが普通であり、
これらの・、誠は本来非常に不安定で、微小の外乱によ
つ゛Cクエンチに到ることが多い。したがって、前述の
引張り方向の電磁力が加わることによって含浸樹脂にマ
イクロクラックが生じ、その1系の発熱によって永久電
流スイッチがクエンチに到るCす能性は非常に大きい。
As can be seen from Figure 2, due to the non-inductive winding, the winding has the repulsive force between the currents in the adjacent layers and the external magnetic field (the composite electromagnetic force of the electromagnetic force due to the alternating magnetic flux density B). There is a compressive force i between the 3rd layer, 8th layer and 4th layer, and 5th layer and 6th layer.
! The tensile force between the 2nd and 8th layers, and the 4th and 5th layers is 141! I<. Since these forces cancel each other out, the magnitude of the electromagnetic force that acts is small.However, impregnating agents such as epoxy resins are strong in the compression direction, but even a small force causes a force in the tension direction. If this occurs, microcracks will occur. At this time, a slight amount of heat is generated. The superconductor #I wire used in permanent current switches is usually made entirely of non-copper-stabilized wire due to the need to increase its constant resistance.
These values are inherently very unstable and often lead to C quench due to minute disturbances. Therefore, the application of the electromagnetic force in the tensile direction described above causes microcracks in the impregnated resin, and the persistent current switch is very likely to be quenched due to the heat generated in the first system.

また、これらの電磁力はおおよそ磁束密度と電流の積に
比例するため、通電電流が大さくなる程、電磁力も大き
くなる。
Furthermore, since these electromagnetic forces are approximately proportional to the product of magnetic flux density and current, the larger the current applied, the larger the electromagnetic force becomes.

ただどの佳反の力が闇けば永久電流スイッチをクエンチ
させるほどの発熱を生じるかは、居浸の状態や巻線の密
着の度合等の66条件によって異なる。
However, which force of reaction generates enough heat to quench the persistent current switch depends on 66 conditions such as the state of immersion and the degree of close contact between the windings.

前述のように従来の永久電流スイッチでは、通電性能が
低く、また、そのバラツキも大きいという重大な欠点が
あった。
As mentioned above, conventional persistent current switches have a serious drawback of low current carrying performance and large variations in current carrying performance.

〔発明の概要〕[Summary of the invention]

本発明はこの欠点に鑑みてなされたもので、通電性能が
高く、安定な永久電流スイッチを提供することを目的と
する。
The present invention was made in view of this drawback, and an object of the present invention is to provide a persistent current switch that has high current carrying performance and is stable.

〔発明の実施例〕[Embodiments of the invention]

以下、第8図に示す本発明の一実施例に従ってd見間す
る。
Hereinafter, an explanation will be given according to an embodiment of the present invention shown in FIG.

第3因において、(4)はたとえば、テフロンシートの
ようlν++を形材から成るスペーサであハ 2層目と
8層目、4層目と5層目の間に施工されている。したが
って、2層目と8層目、4層目と5鳩目の間は離t2さ
れておシ、前述の引張り方向の電磁力が1!l)Jいて
も含浸樹脂VC引張り応力が働きに<<、シたがって、
マイクロクラックも生じにくい。
In the third factor, (4) is a spacer made of lv++ profile material such as a Teflon sheet, which is installed between the second and eighth layers and between the fourth and fifth layers. Therefore, there is a distance t2 between the second layer and the eighth layer, and between the fourth layer and the fifth eyelet, and the electromagnetic force in the above-mentioned tensile direction is 1! l) Even if J, the tensile stress of the impregnated resin VC acts <<, therefore,
Microcracks are also less likely to occur.

このように、巻線の層間に引張り力の働く層間に離形処
理を施すことによって、クエンチの曹因である@浸樹脂
のクランクの発生全防止し、永久電流スイッチの通電性
能の向上と安定rヒをはかることができ、前述の欠点を
改良することができる@ ゛ 層間の離形材としては、テフロンシートや7/リコン焼
付などの離形処理を施した金属板などが考えられるが、
その他離形の目的を達することができるものなら何でも
良い。
In this way, by performing mold release treatment between the layers of the winding where tensile force acts, the occurrence of cranking of @ soaked resin, which is the cause of quenching, is completely prevented, and the current carrying performance of the persistent current switch is improved and stabilized. The release material between the layers can be a Teflon sheet or a metal plate that has been subjected to release treatment such as 7/Recon baking, but
Anything else that can achieve the purpose of mold release may be used.

筐た、熱式永久電流スイッチの場合に、刀・4図の他の
実施例のように加熱用ヒータ(5)をテフロンシート(
41で挟み込んで、ヒータの′電気絶縁を兼用すれば、
j曲間の絶縁物のll;j、さを減らすことが出来て、
加熱、冷却の応答性の向上に効果がある。
In the case of a thermal persistent current switch, the heating heater (5) is covered with a Teflon sheet (
If you sandwich it between 41 and serve as electrical insulation for the heater,
It is possible to reduce the thickness of the insulator between the tracks,
Effective in improving heating and cooling responsiveness.

〔発明の効果〕〔Effect of the invention〕

以上述べたように、この発明によれv′、!、通電性能
が高く、安定な・力作を行なう水入電流スイッチkm供
することが出来る。
As mentioned above, with this invention, v′,! It is possible to provide a water-input current switch km with high current carrying performance and stable and powerful operation.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の永久電流スイッチの@線構ガを示す構造
図、第2図は、巻線に働く電磁力C方向を示す説明図、
第8図は、本発明の一実前例を示す構造図、第4図は本
発明の他の実施例を示す構造図である。 図中、(ia ) T (lb )は超*導線、(2)
は82縁層、(8a) 、 (3b)は口出し線、(4
1け層間雌形材、(5)は加熱ヒータである・ 図中、同一符号は、それぞれ同−又は相当部分を示す。 代理人 大 岩 増 雄 を 第21′4
Fig. 1 is a structural diagram showing the @ wire structure of a conventional persistent current switch, Fig. 2 is an explanatory diagram showing the direction of electromagnetic force C acting on the winding,
FIG. 8 is a structural diagram showing an example of the present invention, and FIG. 4 is a structural diagram showing another embodiment of the present invention. In the figure, (ia) T (lb) is a super* conducting wire, (2)
are 82 marginal layers, (8a) and (3b) are lead lines, (4
1 interlayer female section, (5) is a heater. In the figures, the same reference numerals indicate the same or corresponding parts, respectively. Agent Masuo Oiwa 21'4

Claims (1)

【特許請求の範囲】 fi+ 常’i&c導状慝における抵抗値の高い超電導
線全ソレノイド状に無誘導巻きするとともに樹脂を含浸
硬化し、永久電流によυ運転されるilm 喧導コイル
と並列に接続されて前記超電導線のSR転移現象を利用
゛する永久電流スイッチにおいて、該永久電流スイッチ
の軸方向に鎮交する磁場の方向と永久電流スイッチに通
電される永久電流の方向とが常に同一の関係になるよう
に該超電導コイルの通電方向を決定し、かつ、その通電
方向において、該永久電流スイッチ1r、構成する超電
導巻線の隣り合う層同士が反発する方向に電磁力が働く
層間が捌詣で接着されないように離形してなることを特
徴とする永久電流スイッチ。 (2)上記離形のためにテフロンシートのスペーサを反
発力の働く層間にそう人したことを特徴とする特許請求
の範囲第1項記載の永久電流スイッチ。 (3) 永久電流スイッチは熱式永久電流スイッチであ
シ、テフロンシートで該永久電流スイッチの加熱用ヒー
タの電気絶縁を兼用することを特徴とする特許請求の範
囲オ1項及び第2項記載の永久電流スイッチ〇 +41 9形のために金属板にシリコン焼付等の処理を
施したスペーサを用いたことを特徴とする特許請求の範
囲第1項記載の永久電流スイッチ0
[Claims] fi+ A superconducting wire with a high resistance value in a normal I&C conductor coil is wound non-inductively in a solenoid shape, impregnated with resin and hardened, and is operated by a persistent current in parallel with an ilm conductor coil. In a persistent current switch that is connected to utilize the SR transition phenomenon of the superconducting wire, the direction of the magnetic field that intersects in the axial direction of the persistent current switch and the direction of the persistent current flowing through the persistent current switch are always the same. The current direction of the superconducting coil is determined such that the current flow direction is such that the current flow direction is determined such that the current flow direction of the superconducting coil is determined, and in that current flow direction, the interlayers in which electromagnetic force acts in a direction in which adjacent layers of the superconducting winding forming the persistent current switch 1r repel each other are separated. A persistent current switch characterized by being separated from its shape so that it will not be glued during pilgrimage. (2) The persistent current switch according to claim 1, wherein a Teflon sheet spacer is interposed between the layers on which repulsive force acts to release the mold. (3) The persistent current switch is a thermal persistent current switch, and the Teflon sheet also serves as electrical insulation for the heater of the persistent current switch. Persistent current switch 0 according to claim 1, characterized in that a spacer made of a metal plate subjected to a process such as silicone baking is used for the persistent current switch 〇+419 type.
JP58207742A 1983-11-04 1983-11-04 Permanent current switch Pending JPS60100487A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58207742A JPS60100487A (en) 1983-11-04 1983-11-04 Permanent current switch

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58207742A JPS60100487A (en) 1983-11-04 1983-11-04 Permanent current switch

Publications (1)

Publication Number Publication Date
JPS60100487A true JPS60100487A (en) 1985-06-04

Family

ID=16544779

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58207742A Pending JPS60100487A (en) 1983-11-04 1983-11-04 Permanent current switch

Country Status (1)

Country Link
JP (1) JPS60100487A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6390182A (en) * 1986-10-03 1988-04-21 Railway Technical Res Inst Thermal permanent current switch
JPH03253533A (en) * 1990-03-01 1991-11-12 Sumitomo Light Metal Ind Ltd Aluminum alloy composite for header plate of radiator
US5204650A (en) * 1990-04-27 1993-04-20 Railway Technical Research Institute Switch for controlling current flow in superconductors
JP2012109309A (en) * 2010-11-15 2012-06-07 Toshiba Corp Superconducting coil
JP2012151339A (en) * 2011-01-20 2012-08-09 Toshiba Corp Superconducting coil device
JP2014112617A (en) * 2012-12-05 2014-06-19 Toshiba Corp Superconducting coil and manufacturing method thereof

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6390182A (en) * 1986-10-03 1988-04-21 Railway Technical Res Inst Thermal permanent current switch
JPH03253533A (en) * 1990-03-01 1991-11-12 Sumitomo Light Metal Ind Ltd Aluminum alloy composite for header plate of radiator
US5204650A (en) * 1990-04-27 1993-04-20 Railway Technical Research Institute Switch for controlling current flow in superconductors
JP2012109309A (en) * 2010-11-15 2012-06-07 Toshiba Corp Superconducting coil
JP2012151339A (en) * 2011-01-20 2012-08-09 Toshiba Corp Superconducting coil device
JP2014112617A (en) * 2012-12-05 2014-06-19 Toshiba Corp Superconducting coil and manufacturing method thereof

Similar Documents

Publication Publication Date Title
US3187235A (en) Means for insulating superconducting devices
JP3984303B2 (en) High temperature superconductor and method of using the high temperature superconductor
US3332047A (en) Composite superconductor
US5038127A (en) Process for reducing eddy currents in a superconductor strip, and a superconductor arrangement
JPS60100487A (en) Permanent current switch
US3766502A (en) Cooling device for superconducting coils
US3427391A (en) Composite superconductive conductor
US3486146A (en) Superconductor magnet and method
US3549952A (en) Electromagnetic superconducting accumulator device and method for accumulating electrical energy
KR102567623B1 (en) Ceramic film having function of temperature switch and superconducting coils using the same
Guéraud et al. Thermo-electromagnetic stability of ultrafine multifilamentary superconducting cables for industrial frequency use
JP2839792B2 (en) Thermal permanent current switch
JPS6193604A (en) Superconducting magnet
JPS6215803A (en) Superconductive coil
JPH06176924A (en) Superconducting magnet
JPH0479083B2 (en)
EP0067330B2 (en) Coil for a superconducting magnet device
JP2001245430A (en) Superconducting current-limiting device of magnetic- shielding type
JPS6362207A (en) Superconducting coil
JP2653451B2 (en) Method for determining insulation thickness of superconducting conductor
JPS6320365B2 (en)
JPH0399408A (en) Manufacture of superconducting magnet
JP3286036B2 (en) Forced cooling type superconducting conductor
JPS61265881A (en) Thermal type superconductive switch
JP3363164B2 (en) Superconducting conductor