JPH0399408A - Manufacture of superconducting magnet - Google Patents

Manufacture of superconducting magnet

Info

Publication number
JPH0399408A
JPH0399408A JP23458789A JP23458789A JPH0399408A JP H0399408 A JPH0399408 A JP H0399408A JP 23458789 A JP23458789 A JP 23458789A JP 23458789 A JP23458789 A JP 23458789A JP H0399408 A JPH0399408 A JP H0399408A
Authority
JP
Japan
Prior art keywords
coil
superconducting
layer
wire
wire material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP23458789A
Other languages
Japanese (ja)
Other versions
JP2597339B2 (en
Inventor
Shoichi Ogawa
彰一 小川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Heavy Industries Ltd
Original Assignee
Sumitomo Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Heavy Industries Ltd filed Critical Sumitomo Heavy Industries Ltd
Priority to JP23458789A priority Critical patent/JP2597339B2/en
Publication of JPH0399408A publication Critical patent/JPH0399408A/en
Application granted granted Critical
Publication of JP2597339B2 publication Critical patent/JP2597339B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Superconductors And Manufacturing Methods Therefor (AREA)
  • Particle Accelerators (AREA)

Abstract

PURPOSE:To make it possible to manufacture a highly efficient small size superconducting magnet in which a quenching is hardly generated by a method wherein the inner layer of a coil is constituted using a completely stabilized superconducting wire material, the coil layer on the side outer than the above-mentioned layer is constituted by an incompletely stabilized superconducting wire material. CONSTITUTION:A superconducting coil is formed by winding a superconducting wire on a coil bobbin 1 as far as to the n-layer shown in the diagram. The first layer on the innermost layer side and the second layer are formed using a completely stabilized superconducting wire material 2. The third layer and upward layers are formed using an incompletely stabilized superconducting wire material 3. The electromagnetic force applied to the coil wire material when excitation is F2 at both end parts of the first layer. The electromagnetic force applied to the coil wire material in the vicinity of the center part of the first layer of the coil is shown by F1. The first and the second layers are especially affected substantially by the effect of the above-mentioned magnetic force, the wire material is slightly vibrated and slipped. However, the frictional heat by the above-mentioned slipping is absorbed and dispersed by the completely stabilized superconducting wire material with which the first and the second layers are formed, and the situation is brought under control without having a quenching.

Description

【発明の詳細な説明】 [発明の目的コ (産業上の利用分野) 本発明は、クエンチを防止する超電導磁石の製作方法に
関する。
DETAILED DESCRIPTION OF THE INVENTION [Objective of the Invention (Field of Industrial Application) The present invention relates to a method of manufacturing a superconducting magnet that prevents quenching.

(従来の技術) 超電導線を用いて製作した超電導磁石は、常電導磁石に
比べて、小型で強力な磁石を作ることができる。しかし
、超電導磁石は、コイルを形成する超電導線の超電導状
態が壊れ、クエンチを起こすことがある。
(Prior Art) Superconducting magnets made using superconducting wires can be made smaller and stronger than normal conducting magnets. However, in a superconducting magnet, the superconducting state of the superconducting wire that forms the coil may be broken, causing quenching.

クエンチが起こる原因の1つとして、超電導磁石を励磁
するとき、超電導磁石を形成している超電導線材に働く
電磁力がある。この電磁力の作用により、コイルを形成
している超電導線材がスリップし、摩擦熱が発生する。
One of the causes of quenching is the electromagnetic force that acts on the superconducting wire forming the superconducting magnet when the superconducting magnet is excited. Due to the action of this electromagnetic force, the superconducting wire forming the coil slips, generating frictional heat.

この摩擦熱により、線材の温度が上昇し、臨界温度を越
えた場合、超電導線材の一部が超電導状態から常電導状
態へ転換する。常電導状態になった部分は、電気抵抗値
が発生し、通電下であるためジュール熱が発生する。こ
の熱発生により、・臨界温度を越える領域がさらに増加
し、ついにはコイル全体が常伝導状態となる。このよう
な状態が起こると、温度の上昇や、高電圧の発生により
、コイルが損傷する場合がある。
This frictional heat causes the temperature of the wire to rise, and when it exceeds a critical temperature, a portion of the superconducting wire changes from a superconducting state to a normal conducting state. In the normally conductive state, an electrical resistance value is generated and Joule heat is generated since the part is under current. Due to this heat generation, the area exceeding the critical temperature further increases, and finally the entire coil becomes a normal conduction state. If such a situation occurs, the coil may be damaged due to increased temperature or generation of high voltage.

従来、超電導線材のクエンチを防ぐために、安定化超電
導線材として知られているものがある。
Conventionally, in order to prevent quenching of superconducting wires, there are known stabilized superconducting wires.

第3図、および第4図に安定化超電導線材の断面図を示
す。第3図に示すように、無酸素銅のような安定化材6
中に、NbTiなどの超電導材5を埋め込んだ線材であ
る。安定化材6は熱伝導に優れ、熱容量の大きいものが
用いられる。
FIGS. 3 and 4 show cross-sectional views of the stabilized superconducting wire. As shown in Figure 3, a stabilizing material such as oxygen-free copper 6
It is a wire rod in which a superconducting material 5 such as NbTi is embedded. The stabilizing material 6 used has excellent thermal conductivity and a large heat capacity.

安定化線材は超電導材と安定化材の比率の点から、大き
く2種に分けられる。安定化線材の超電導材の断面積を
5cus安定材の断面積をSsとする。安定化材/超電
導材の断面積比:(Scu/SS)は超電導線材の安定
性に関係する量である。
Stabilizing wires can be broadly divided into two types based on the ratio of superconducting material to stabilizing material. The cross-sectional area of the superconducting material of the stabilizing wire is 5cus, and the cross-sectional area of the stabilizing material is Ss. The cross-sectional area ratio of stabilizing material/superconducting material: (Scu/SS) is a quantity related to the stability of the superconducting wire.

この比: (Scu/Ss)が7以上になるような超電
導線材は、安定性が高いことから、完全安定化超電導線
材と呼ぶ。
A superconducting wire with this ratio (Scu/Ss) of 7 or more is called a fully stabilized superconducting wire because it has high stability.

上記、完全安定化超電導線材においては、外乱により、
線材の一部で温度上昇が起きても、発熱量に比べて線材
の熱容量が大きいため、上昇温度は小さく、臨界温度を
超えることなく、超電導状態を保ち、その後冷媒により
冷却され、初期の温度に回復することができる。また、
この場合、−時的に常電導状態となっても、回復可能で
ある。
In the fully stabilized superconducting wire mentioned above, due to disturbance,
Even if a temperature rise occurs in a part of the wire, the heat capacity of the wire is larger than its calorific value, so the temperature rise will be small and the superconducting state will be maintained without exceeding the critical temperature, after which it will be cooled by a refrigerant and the initial temperature will be lowered. can be recovered to. Also,
In this case, it is possible to recover from the temporary state of normal conduction.

このような、超電導線材で超電導磁石のコイルを形成す
れば、クエンチを起こしにくい超電導磁石を作ることが
できる。
By forming the coil of a superconducting magnet using such superconducting wire, it is possible to create a superconducting magnet that is less likely to quench.

これにたいして、第4図に示すような、安定化材/超電
導材の断面積比: (Scu/Ss)が2ないし3種度
の超電導線材は、不完全安定化超電導線材と呼ぶ。
On the other hand, a superconducting wire having a stabilizing material/superconducting material cross-sectional area ratio (Scu/Ss) of 2 to 3, as shown in FIG. 4, is called an incompletely stabilized superconducting wire.

超電導磁石において、クエンチ現象が発生する箇所は、
電磁力が最も強く作用する箇所、すなわちコイルの最内
殻の数層である。従来、このようなりエンチ現象を防止
するため、グレーディング法により超電導磁石のコイル
を形成する方法がある。グレーディング法は、磁場が強
く働く、コイル内層を形成する超電導線材中の超電導材
の断面積を大きくして、超電導線材の電流密度を低下さ
せる方法である。第5図にグレーティング法の説明図を
示す。コイル外層に用いる超電導線材がC線材、コイル
内層に使用する線材としてC線材、およびC線材が示さ
れている。線材を示す図は、線材の断面の模式図である
が、必ずしも現実の線材の構造を示すものではなく、超
電導材と安定化材の比を表現したものである。円の中央
の斜線部が超電導材の断面積:SCuを、その周囲の空
白部が安定化材の断面積:SSを示す。C線材、および
C線材の超電導材の断面積:ScuはC線材のSCuよ
り大きくなっている。C線材とC線材の違いは安定化材
/超電導材の断面積比にある。C線材は比: (Scu
/Ss)がC線材の比: (Scu/Ss)に等しく、
C線材では比: (Scu/Ss)がC線材の比: (
Scu/Ss)より小さい。グレーティング法は外層に
C線材、内層にb線材、C線材ないしはその中間的な線
材を使用するものである。
In superconducting magnets, the locations where the quench phenomenon occurs are:
This is where the electromagnetic force acts most strongly, that is, the innermost few layers of the coil. Conventionally, in order to prevent this quenching phenomenon, there is a method of forming superconducting magnet coils by a grading method. The grading method is a method of reducing the current density of the superconducting wire by increasing the cross-sectional area of the superconducting material in the superconducting wire forming the inner layer of the coil, on which a strong magnetic field acts. FIG. 5 shows an explanatory diagram of the grating method. The superconducting wire used for the outer layer of the coil is C wire, and the wire used for the inner layer of the coil is C wire and C wire. Although the diagram showing the wire is a schematic diagram of the cross section of the wire, it does not necessarily show the actual structure of the wire, but expresses the ratio of the superconducting material and the stabilizing material. The hatched area in the center of the circle indicates the cross-sectional area of the superconducting material: SCu, and the blank area around it indicates the cross-sectional area of the stabilizing material: SS. The cross-sectional area: Scu of the C wire and the superconducting material of the C wire is larger than SCu of the C wire. The difference between C wire and C wire lies in the cross-sectional area ratio of stabilizing material/superconducting material. C wire rod has ratio: (Scu
/Ss) is equal to the ratio of C wire: (Scu/Ss),
For C wire, the ratio: (Scu/Ss) is the ratio for C wire: (
Scu/Ss). The grating method uses C wire for the outer layer and B wire, C wire, or an intermediate wire for the inner layer.

(発明が解決しようとする問題点) 上記、グレーティング法が、内層に使用する線材の安定
化材/超電導材の断面積比が、外層に用いられている超
電導線材のそれにくらべて、同程度か、ないしはそれ以
下であるため、クエンチに対する抵抗力の点で不十分で
ある。
(Problems to be Solved by the Invention) In the grating method described above, is it possible to determine whether the cross-sectional area ratio of the stabilizing material/superconducting material of the wire used in the inner layer is the same as that of the superconducting wire used in the outer layer? , or less, so it is insufficient in terms of resistance to quenching.

また、前述した完全安定化超電導線材だけでコイルを形
成すると、全断面積に比較して超電導材断面積が小さい
ため、コイルが大型化してしまう欠点がある。
Furthermore, if a coil is formed using only the completely stabilized superconducting wire described above, the cross-sectional area of the superconducting material is smaller than the total cross-sectional area, so there is a drawback that the coil becomes large.

本発明は、クエンチを防止し、かつ小型の超電導磁石の
新規な製作方法を得ることを目的とする。
An object of the present invention is to prevent quenching and to obtain a novel method for manufacturing a small-sized superconducting magnet.

[発明の構成コ (問題点を解決するための手段) 上記、グレーティング法が、コイル内層の超電導線材の
超電導材の断面積を大きくして電流密度を下げてクエン
チを防ごうという方法であるのに対して、本発明の方法
は、コイル内層を形成する超電導線材として、熱容量の
大きい完全安定化超電導線材により構成してクエンチを
防ぎ、それより外側のコイル層を不完全安定化超電導線
材により構成するようにしたものである。
[Structure of the Invention (Means for Solving Problems) The grating method described above is a method of increasing the cross-sectional area of the superconducting material of the superconducting wire in the inner layer of the coil to lower the current density and prevent quenching. In contrast, in the method of the present invention, the superconducting wire forming the inner layer of the coil is made of a fully stabilized superconducting wire with a large heat capacity to prevent quenching, and the outer coil layer is made of an incompletely stabilized superconducting wire. It was designed to do so.

安定化材/超電導材の断面積比が小さい超電導線材はク
エンチが発生しやすい欠点があるが、コイルを製作する
と小型化できる長所がある。安定化材/超電導材の断面
積比が大きい超電導線材はクエンチは発生しにくいが、
全断面積が大きい必要があり、コイルが大型化してしま
う。そこで、これら線材の特長と、クエンチの発生する
箇所を熟慮検討した結果、本発明に至ったものである。
A superconducting wire with a small cross-sectional area ratio of stabilizing material/superconducting material has the disadvantage of being easily quenched, but it has the advantage of being able to be made smaller by manufacturing a coil. Superconducting wires with a large cross-sectional area ratio of stabilizing material/superconducting material are less likely to be quenched, but
The total cross-sectional area must be large, making the coil large. Therefore, as a result of careful consideration of the features of these wire rods and the locations where quenching occurs, we have arrived at the present invention.

本発明の方法を模式的に説明する図を第6図に示す。コ
イル外層に使用するa線材と、コイル内層に使用するb
線材の違いは安定化材/超電導材の断面積比である。第
5図と同様に、斜線部が超電導材を、周囲の空白部が安
定化材を表わしている。a線材が不完全安定化超電導線
材、b線材が完全安定化超電導線材である。この図から
も明らかなように、b線材だけでコイルを形成すると大
型化してしまう。
A diagram schematically explaining the method of the present invention is shown in FIG. A wire used for the outer layer of the coil and B used for the inner layer of the coil
The difference between the wires is the cross-sectional area ratio of the stabilizing material/superconducting material. Similar to FIG. 5, the shaded area represents the superconducting material, and the surrounding blank area represents the stabilizing material. The a-wire is an incompletely stabilized superconducting wire, and the b-wire is a completely stabilized superconducting wire. As is clear from this figure, if the coil is formed only from B wire, it will become large.

(実施例) 以下、本発明の実施例゛を図面に基づいて説明する。第
1図は本発明の超電導磁石のコイル部の断面図である。
(Example) Hereinafter, an example of the present invention will be described based on the drawings. FIG. 1 is a sectional view of the coil portion of the superconducting magnet of the present invention.

コイル巻枠1に超電導線をn層にわたり巻装して超電導
コイルを形成する。最内層側の第1層と第2層を完全安
定化超電導線材2で形成する。第3層以上の層を不完全
超電導線材3で形成する。
A superconducting coil is formed by winding n layers of superconducting wire around a coil winding frame 1. The first layer and the second layer on the innermost layer side are formed of completely stabilized superconducting wire 2. The third layer and higher layers are formed from the imperfect superconducting wire 3.

励磁時にコイル線材に加わる電磁力は、第1層の両端部
で、図に示すように力F2がかかる。第2図に、コイル
の第taの中央部付近のコイル線材と、該線材に加わる
電磁力F1を示す。第1層および第2層はこれらの電磁
力の影響を特に強く受け、線材が微動し、スリップする
が、これにともなって発生する摩擦熱は第1Ji11第
2JiIを形成する完全安定化超電導線材により吸収、
分散され、クエンチに至らずに収拾される。
The electromagnetic force applied to the coil wire during excitation is a force F2 at both ends of the first layer, as shown in the figure. FIG. 2 shows the coil wire near the ta-th central part of the coil and the electromagnetic force F1 applied to the wire. The first and second layers are particularly strongly affected by these electromagnetic forces, causing the wire to move slightly and slip, but the frictional heat generated due to this is absorbed by the fully stabilized superconducting wire forming the 1st Ji11 2nd JiI. absorption,
It is dispersed and brought under control without reaching quench.

[発明の効果コ 本発明の製作方法により、小型で、クエンチを起こしに
くい、高性能の超電導磁石を作ることができる効果があ
る。
[Effects of the Invention] The production method of the present invention has the effect of making it possible to produce a compact, high-performance superconducting magnet that is resistant to quenching.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例の超電導磁石のコイルの断面図
、第2図はコイル部の拡大図、第3図は完全安定化超電
導線材の断面図、第4図は不完全安定化超電導線材の断
面図、第6図はグレーティング法の説明図、第6図は本
発明で使用する線材の説明図である。 1・・・コイル巻枠、2・・・完全安定化超電導線材、
3・・・不完全安定化超電導線材、4・・・超電導線材
、5.7−・・超電導材、6.8・・・安定化材第1図 第2図 第4図 コイル外層に 使用する線材 コイル外層に 使用する線材 第〔 コイル内層に 使用する線材 C線材 図 コイル内層に 使用する線材 す破材 3図
Fig. 1 is a cross-sectional view of the coil of a superconducting magnet according to an embodiment of the present invention, Fig. 2 is an enlarged view of the coil portion, Fig. 3 is a cross-sectional view of a fully stabilized superconducting wire, and Fig. 4 is an incompletely stabilized superconducting wire. A sectional view of the wire rod, FIG. 6 is an explanatory view of the grating method, and FIG. 6 is an explanatory view of the wire rod used in the present invention. 1... Coil winding frame, 2... Completely stabilized superconducting wire,
3... Incompletely stabilized superconducting wire, 4... Superconducting wire, 5.7-... Superconducting material, 6.8... Stabilizing material Figure 1 Figure 2 Figure 4 Used in the outer layer of the coil Wire rods used for the outer layer of the coil Wire rod C wire used for the inner layer of the coil Wire rod used for the inner layer of the coil Figure 3

Claims (1)

【特許請求の範囲】[Claims] (1)超電導線材を用いた超電導磁石の製作において、
超電導コイルの強い電磁力作用を受けるコイル内層を完
全安定化超電導線材を用いて構成し、それより外側のコ
イル層を不完全安定化超電導線材より構成したことを特
徴とする超電導磁石の製作方法。
(1) In the production of superconducting magnets using superconducting wire,
A method for manufacturing a superconducting magnet, characterized in that the inner coil layer, which is subjected to the strong electromagnetic force of a superconducting coil, is made of a fully stabilized superconducting wire, and the outer coil layer is made of an imperfectly stabilized superconducting wire.
JP23458789A 1989-09-12 1989-09-12 Superconducting magnet manufacturing method Expired - Lifetime JP2597339B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23458789A JP2597339B2 (en) 1989-09-12 1989-09-12 Superconducting magnet manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23458789A JP2597339B2 (en) 1989-09-12 1989-09-12 Superconducting magnet manufacturing method

Publications (2)

Publication Number Publication Date
JPH0399408A true JPH0399408A (en) 1991-04-24
JP2597339B2 JP2597339B2 (en) 1997-04-02

Family

ID=16973359

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23458789A Expired - Lifetime JP2597339B2 (en) 1989-09-12 1989-09-12 Superconducting magnet manufacturing method

Country Status (1)

Country Link
JP (1) JP2597339B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04326707A (en) * 1991-04-26 1992-11-16 Hitachi Ltd Superconducting coil device
US5410289A (en) * 1993-10-12 1995-04-25 Delta Star Electric, Inc. Electromagnet
JP2020198373A (en) * 2019-06-03 2020-12-10 株式会社日立製作所 Superconducting magnet

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04326707A (en) * 1991-04-26 1992-11-16 Hitachi Ltd Superconducting coil device
US5396205A (en) * 1991-04-26 1995-03-07 Hitachi, Ltd. Unspliced superconducting coil device with high stability
US5410289A (en) * 1993-10-12 1995-04-25 Delta Star Electric, Inc. Electromagnet
JP2020198373A (en) * 2019-06-03 2020-12-10 株式会社日立製作所 Superconducting magnet

Also Published As

Publication number Publication date
JP2597339B2 (en) 1997-04-02

Similar Documents

Publication Publication Date Title
JP2017533579A (en) Metal assembly including superconductor
KR20100069602A (en) Arrangement having a superconducting cable
US3332047A (en) Composite superconductor
JP6895897B2 (en) Superconducting wire and superconducting coil
JPH0399408A (en) Manufacture of superconducting magnet
JP6829716B2 (en) High-temperature superconducting wire
US4694268A (en) Superconducting solenoid having alumina fiber insulator
JPS60100487A (en) Permanent current switch
JPS6165407A (en) Superconductive device
WO2021172276A1 (en) Superconductive coil device and manufacturing method therefor
EP0067330B2 (en) Coil for a superconducting magnet device
JP2525016B2 (en) Superconducting wire
JPH08125242A (en) Permanent current switch
JPH11329823A (en) Magnetic system
JP2685367B2 (en) Superconducting conductor
JP2001245430A (en) Superconducting current-limiting device of magnetic- shielding type
JPS58119611A (en) Superconducting coil
JP2803685B2 (en) Superconducting coil and manufacturing method thereof
JPH0146963B2 (en)
JPH01251517A (en) Superconductive stranded wire and manufacture thereof
JP3073552B2 (en) Superconducting wire
JPH11111084A (en) Nb3sn superconductive wire member to obtain high critical current density, and manufacture thereof
JPH08181014A (en) Superconductive magnet device and its manufacture
JPH07312237A (en) Connecting part of superconductive wire, and connecting method therefor
JP3363164B2 (en) Superconducting conductor