JP2597339B2 - Superconducting magnet manufacturing method - Google Patents

Superconducting magnet manufacturing method

Info

Publication number
JP2597339B2
JP2597339B2 JP23458789A JP23458789A JP2597339B2 JP 2597339 B2 JP2597339 B2 JP 2597339B2 JP 23458789 A JP23458789 A JP 23458789A JP 23458789 A JP23458789 A JP 23458789A JP 2597339 B2 JP2597339 B2 JP 2597339B2
Authority
JP
Japan
Prior art keywords
wire
superconducting
coil
superconducting wire
cross
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP23458789A
Other languages
Japanese (ja)
Other versions
JPH0399408A (en
Inventor
彰一 小川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Heavy Industries Ltd
Original Assignee
Sumitomo Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Heavy Industries Ltd filed Critical Sumitomo Heavy Industries Ltd
Priority to JP23458789A priority Critical patent/JP2597339B2/en
Publication of JPH0399408A publication Critical patent/JPH0399408A/en
Application granted granted Critical
Publication of JP2597339B2 publication Critical patent/JP2597339B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Superconductors And Manufacturing Methods Therefor (AREA)
  • Particle Accelerators (AREA)

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) 本発明は、クエンチを防止する超電導磁石の製作方法
に関する。
DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Industrial application field) The present invention relates to a method for manufacturing a superconducting magnet for preventing quench.

(従来の技術) 超電導線を用いて製作した超電導磁石は、常電導磁石
に比べて、小型で強力な磁石を作ることができる。しか
し、超電導磁石は、コイルを形成する超電導線の超電導
状態が壊れ、クエンチを起こすことがある。
(Conventional technology) A superconducting magnet manufactured using a superconducting wire can produce a small and powerful magnet as compared with a normal conducting magnet. However, in the superconducting magnet, the superconducting state of the superconducting wire forming the coil may be broken and quench may occur.

クエンチが起こる原因の1つとして、超電導磁石を励
磁するとき、超電導磁石を形成している超電導線材に働
く電磁力がある。この電磁力の作用により、コイルを形
成している超電導線材がスリップし、摩擦熱が発生す
る。この摩擦熱により、線材の温度が上昇し、臨界温度
を越えた場合、超電導線材の一部が超電導状態から常電
導状態へ転換する。常電導状態になった部分は、電気抵
抗値が発生し、通電下であるためジュール熱が発生す
る。この熱発生により、臨界温度を越える領域がさらに
増加し、ついにはコイル全体が常伝導状態となる。この
ような状態が起こると、温度の上昇や、高電圧の発生に
より、コイルが損傷する場合がある。
One of the causes of the quench is an electromagnetic force acting on the superconducting wire forming the superconducting magnet when the superconducting magnet is excited. By the action of this electromagnetic force, the superconducting wire forming the coil slips, generating frictional heat. Due to the frictional heat, when the temperature of the wire rises and exceeds the critical temperature, a part of the superconducting wire is changed from a superconducting state to a normal conducting state. The portion in the normal conduction state generates an electric resistance value, and generates Joule heat because it is energized. Due to this heat generation, the region exceeding the critical temperature further increases, and eventually the entire coil becomes a normal conduction state. When such a state occurs, the coil may be damaged due to an increase in temperature or generation of a high voltage.

従来、超電導線材のクエンチを防ぐために、安定化超
電導線材として知られているものがある。第3図、およ
び第4図に安定化超電導線材の断面図を示す。第3図に
示すように、無酸素銅のような安定化材6中に、NbTiな
どの超電導材5を埋め込んだ線材である。安定化材6は
熱伝導に優れ、熱容量の大きいものが用いられる。
Conventionally, in order to prevent quenching of a superconducting wire, there is known a stabilized superconducting wire. 3 and 4 are cross-sectional views of the stabilized superconducting wire. As shown in FIG. 3, it is a wire rod in which a superconducting material 5 such as NbTi is embedded in a stabilizing material 6 such as oxygen-free copper. The stabilizing material 6 is excellent in heat conduction and has a large heat capacity.

安定化線材は超電導材と安定化材の比率の点から、大
きく2種に分けられる。安定化線材の超電導材の断面積
をSCu、安定材の断面積をSSとする。安定化材/超電導
材の断面積比:(SCu/SS)は超電導線材の安定性に関係
する量である。この比:(SCu/SS)が7以上になるよう
な超電導線材は、安定性が高いことから、完全安定化超
電導線材と呼ぶ。
The stabilizing wire is roughly divided into two types in terms of the ratio of the superconducting material to the stabilizing material. The cross-sectional area of the superconducting material of the stabilizing wire is S Cu , and the cross-sectional area of the stabilizing material is S S. The cross-sectional area ratio of the stabilizer / superconducting material: (S Cu / S S ) is an amount related to the stability of the superconducting wire. A superconducting wire having this ratio: (S Cu / S S ) of 7 or more is referred to as a completely stabilized superconducting wire because of its high stability.

上記、完全安定化超電導線材においては、外乱によ
り、線材の一部で温度上昇が起きても、発熱量に比べて
線材の熱容量が大きいため、上昇温度は小さく、臨界温
度を超えることなく、超電導状態を保ち、その後冷媒に
より冷却され、初期の温度に回復することができる。ま
た、この場合、一時的に常電導状態となっても、回復可
能である。このような、超電導線材で超電導磁石のコイ
ルを形成すれば、クエンチを起こしにくい超電導磁石を
作ることができる。
In the above-mentioned fully stabilized superconducting wire, even if the temperature rises in a part of the wire due to disturbance, since the heat capacity of the wire is large compared to the calorific value, the rising temperature is small and the superconducting temperature does not exceed the critical temperature. The state is maintained, and then cooled by the refrigerant, and the temperature can be restored to the initial temperature. Further, in this case, even if the normal conduction state is temporarily established, the state can be recovered. If the coil of the superconducting magnet is formed of such a superconducting wire, a superconducting magnet that is unlikely to quench can be manufactured.

これにたいして、第4図に示すような、安定化材/超
電導材の断面積比:(SCu/SS)が2ないし3程度の超電
導線材は、不完全安定化超電導線材と呼ぶ。
On the other hand, a superconducting wire having a cross-sectional area ratio of stabilizing material / superconducting material: (S Cu / S S ) of about 2 to 3 as shown in FIG. 4 is called an incompletely stabilized superconducting wire.

超電導磁石において、クエンチ現象が発生する箇所
は、電磁力が最も強く作用する箇所、すなわちコイルの
最内殻の数層である。従来、このようなクエンチ現象を
防止するため、グレーディング法により超電導磁石のコ
イルを形成する方法がある。グレーディング法は、磁場
が強く働く、コイル内層を形成する超電導線材中の超電
導材の断面積を大きくして、超電導線材の電流密度を低
下させる方法である。第5図にグレーティング法の説明
図を示す。コイル外層に用いる超電導線材がa線材、コ
イル内層に使用する線材としてc線材、およびd線材が
示されている。線材を示す図は、線材の断面の模式図で
あるが、必ずしも現実の線材の構造を示すものではな
く、超電導材と安定化材の比を表現したものである。円
の中央の斜線部が超電導材の断面積:SCuを、その周囲の
空白部が安定化材の断面積:SSを示す。c線材、および
d線材の超電導材の断面積:SCuはa線材のSCuより大き
くなっている。c線材とd線材の違いは安定化材/超電
導材の断面積比にある。c線材は比:(SCu/SS)がa線
材の比:(SCu/SS)に等しく、d線材では比:(SCu/
SS)がa線材の比:(SCu/SS)より小さい。グレーティ
ング法は外層にa線材、内層にb線材、c線材ないしは
その中間的な線材を使用するものである。
In the superconducting magnet, the place where the quench phenomenon occurs is a place where the electromagnetic force acts most strongly, that is, several layers of the innermost shell of the coil. Conventionally, there is a method of forming a coil of a superconducting magnet by a grading method in order to prevent such a quench phenomenon. The grading method is a method in which the cross-sectional area of the superconducting wire in the superconducting wire forming the inner layer of the coil, in which the magnetic field acts strongly, is increased to reduce the current density of the superconducting wire. FIG. 5 is an explanatory view of the grating method. The superconducting wire used for the coil outer layer is a wire, and the wire used for the coil inner layer is c wire and d wire. Although the diagram showing the wire is a schematic diagram of the cross section of the wire, it does not necessarily show the actual structure of the wire, but expresses the ratio between the superconducting material and the stabilizing material. Sectional area shaded portion of the center of the superconducting material of the circle: the S Cu, the cross-sectional area of the blank portion is stabilizing material surrounding: shows the S S. c wire, and cross-sectional area of the superconducting material of the d-line material: S Cu is larger than the S Cu of a wire. The difference between the c-wire and the d-wire is the cross-sectional area ratio of the stabilizer / superconductor. c wire ratio: (S Cu / S S) is the ratio of a wire: (S Cu / S S) to equal the d-line material ratio: (S Cu /
S S ) is smaller than the ratio of a-wire material: (S Cu / S S ). The grating method uses an a-wire material for the outer layer and a b-wire material, a c-wire material or an intermediate wire material for the inner layer.

(発明が解決しようとする問題点) 上記、グレーティング法が、内層に使用する線材の安
定化材/超電導材の断面積比が、外層に用いられている
超電導線材のそれにくらべて、同程度か、ないしはそれ
以下であるため、クエンチに対する抵抗力の点で不十分
である。
(Problems to be Solved by the Invention) In the above-mentioned grating method, the cross-sectional area ratio of the stabilizing material / superconducting material of the wire used for the inner layer is about the same as that of the superconducting wire used for the outer layer. Or less, which is insufficient in terms of resistance to quench.

また、前述した安全安定化超電導線材だけでコイルを
形成すると、全断面積に比較して超電導材断面積が小さ
いため、コイルが大型化してしまう欠点がある。
Further, when a coil is formed only of the above-described safety-stabilized superconducting wire, there is a disadvantage that the coil becomes large because the cross-sectional area of the superconducting material is smaller than the entire cross-sectional area.

本発明は、クエンチを防止し、かつ小型の超電導磁石
の新規な製作方法を得ることを目的とする。
An object of the present invention is to prevent quenching and to obtain a new method for manufacturing a small superconducting magnet.

[発明の構成] (問題点を解決するための手段) 上記、グレーティング法が、コイル内層の超電導線材
の超電導材の断面積を大きくして電流密度を下げてクエ
ンチを防ごうという方法であるのに対して、本発明の方
法は、コイル内層を形成する超電導線材として、熱容量
の大きい完全安定化超電導線材により構成してクエンチ
を防ぎ、それより外側のコイル層を不完全安定化超電導
線材により構成するようにしたものである。
[Constitution of the Invention] (Means for Solving the Problems) The above-mentioned grating method is a method of increasing the cross-sectional area of the superconducting material of the superconducting wire in the inner layer of the coil to reduce the current density to prevent quench. On the other hand, the method of the present invention uses a completely stabilized superconducting wire having a large heat capacity as a superconducting wire forming an inner layer of a coil to prevent quench, and a coil layer outside the same is constituted by an incompletely stabilized superconducting wire. It is something to do.

安定化材/超電導材の断面積比が小さい超電導線材は
クエンチが発生しやすい欠点があるが、コイルを製作す
ると小型化できる長所がある。安定化材/超電導材の断
面積比が大きい超電導線材はクエンチは発生しにくい
が、全断面積が大きい必要があり、コイルが大型化して
しまう。そこで、これら線材の特長と、クエンチの発生
する箇所を熟慮検討した結果、本発明に至ったものであ
る。
A superconducting wire having a small cross-sectional area ratio of the stabilizing material / superconducting material has a disadvantage that quenching is apt to occur, but there is an advantage that the coil can be miniaturized when manufactured. A superconducting wire having a large cross-sectional area ratio of the stabilizing material / superconducting material is unlikely to cause quench, but requires a large total cross-sectional area, resulting in an increase in size of the coil. Thus, the present invention has been accomplished as a result of careful consideration of the features of these wires and the locations where quench occurs.

本発明の方法を模式的に説明する図を第6図に示す。
コイル外層に使用するa線材と、コイル内層に使用する
b線材の違いは安定化材/超電導材の断面積比である。
第5図と同様に、斜線部が超電導材を、周囲の空白部が
安定化材を表わしている。a線材が不完全安定化超電導
線材、b線材が完全安定化超電導線材である。この図か
らも明らかなように、b線材だけでコイルを形成すると
大型化してしまう。
FIG. 6 schematically illustrates the method of the present invention.
The difference between the a wire used for the coil outer layer and the b wire used for the coil inner layer is the cross-sectional area ratio of the stabilizing material / superconducting material.
As in FIG. 5, the hatched portion represents the superconducting material, and the surrounding blank portion represents the stabilizing material. Wire a is an incompletely stabilized superconducting wire, and wire b is a completely stabilized superconducting wire. As is clear from this figure, if the coil is formed only with the b wire, the size will be increased.

(実施例) 以下、本発明の実施例を図面に基づいて説明する。第
1図は本発明の超電導磁石のコイル部の断面図である。
コイル巻枠1に超電導線をn層にわたり巻装して超電導
コイルを形成する。最内層側の第1層と第2層を完全安
定化超電導線材2で形成する。第3層以上の層を不完全
超電導線材3で形成する。
(Example) Hereinafter, an example of the present invention will be described with reference to the drawings. FIG. 1 is a sectional view of a coil portion of a superconducting magnet of the present invention.
A superconducting wire is wound around the coil winding frame 1 over n layers to form a superconducting coil. The first and second layers on the innermost layer side are formed of the fully stabilized superconducting wire 2. The third or more layers are formed of the incomplete superconducting wire 3.

励磁時にコイル線材に加わる電磁力は、第1層の両端
部で、図に示すように力F2がかかる。第2図に、コイル
の第1層の中央部付近のコイル線材と、該線材に加わる
電磁力F1を示す。第1層および第2層はこれらの電磁力
の影響を特に強く受け、線材が微動し、スリップする
が、これにともなって発生する摩擦熱は第1層、第2層
を形成する安全安定化超電導線材により吸収、分散さ
れ、クエンチに至らずに収拾される。
Electromagnetic force applied to the coil wire at the time of excitation, at both ends of the first layer, it is applied a force F 2 as shown in FIG. In FIG. 2, showing a coil wire around the center portion of the first layer of the coil, the electromagnetic force F 1 exerted on該線material. The first layer and the second layer are particularly strongly affected by the electromagnetic force, and the wire slightly moves and slips, but the frictional heat generated thereby causes the first layer and the second layer to be safely stabilized. Absorbed and dispersed by the superconducting wire and collected without quench.

[発明の効果] 本発明の製作方法により、小型で、クエンチを起こし
にくい、高性能の超電導磁石を作ることができる効果が
ある。
[Effect of the Invention] According to the manufacturing method of the present invention, there is an effect that a high-performance superconducting magnet that is small and hardly causes quench can be manufactured.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明の実施例の超電導磁石のコイルの断面
図、第2図はコイル部の拡大図、第3図は完全安定化超
電導線材の断面図、第4図は不完全安定化超電導線材の
断面図、第5図はグレーティング法の説明図、第6図は
本発明で使用する線材の説明図である。 1……コイル巻枠、2……完全安定化超電導線材、 3……不完全安定化超電導線材、4……超電導線材、 5,7……超電導材、6,8……安定化材
1 is a sectional view of a coil of a superconducting magnet according to an embodiment of the present invention, FIG. 2 is an enlarged view of a coil portion, FIG. 3 is a sectional view of a completely stabilized superconducting wire, and FIG. FIG. 5 is an explanatory view of a grating method, and FIG. 6 is an explanatory view of a wire used in the present invention. 1 ... Coil winding frame, 2 ... Fully stabilized superconducting wire, 3 ... Incompletely stabilized superconducting wire, 4 ... Superconducting wire, 5,7 ... Superconducting material, 6,8 ... Stabilizing material

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】超電導線材を用いた超電導磁石の製作にお
いて、超電導コイルの強い電磁力作用を受けるコイル内
層を完全安定化超電導線材を用いて構成し、それより外
側のコイル層を不完全安定化超電導線材より構成したこ
とを特徴とする超電導磁石の製作方法。
In the manufacture of a superconducting magnet using a superconducting wire, an inner layer of the superconducting coil which is subjected to a strong electromagnetic force is constituted by a completely stabilized superconducting wire, and an outer coil layer is incompletely stabilized. A method for manufacturing a superconducting magnet, comprising a superconducting wire.
JP23458789A 1989-09-12 1989-09-12 Superconducting magnet manufacturing method Expired - Lifetime JP2597339B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23458789A JP2597339B2 (en) 1989-09-12 1989-09-12 Superconducting magnet manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23458789A JP2597339B2 (en) 1989-09-12 1989-09-12 Superconducting magnet manufacturing method

Publications (2)

Publication Number Publication Date
JPH0399408A JPH0399408A (en) 1991-04-24
JP2597339B2 true JP2597339B2 (en) 1997-04-02

Family

ID=16973359

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23458789A Expired - Lifetime JP2597339B2 (en) 1989-09-12 1989-09-12 Superconducting magnet manufacturing method

Country Status (1)

Country Link
JP (1) JP2597339B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2560561B2 (en) * 1991-04-26 1996-12-04 株式会社日立製作所 Superconducting coil device
US5410289A (en) * 1993-10-12 1995-04-25 Delta Star Electric, Inc. Electromagnet
JP7402620B2 (en) * 2019-06-03 2023-12-21 株式会社日立製作所 superconducting magnet

Also Published As

Publication number Publication date
JPH0399408A (en) 1991-04-24

Similar Documents

Publication Publication Date Title
US3332047A (en) Composite superconductor
JP2597339B2 (en) Superconducting magnet manufacturing method
US3427391A (en) Composite superconductive conductor
JP6895897B2 (en) Superconducting wire and superconducting coil
US4623862A (en) Thermally stabilized superconductors
JPS599809A (en) Superconductive conductor
US3466581A (en) Winding for a magnet coil of high field strength and method of manufacturing the same
JPS60100487A (en) Permanent current switch
US4458106A (en) Super conductive wire
JP2020025014A (en) High-temperature superconducting coil and superconducting magnet device
JP3273953B2 (en) Method for producing niobium-tin superconducting wire
JP3272017B2 (en) AC superconducting wire and method of manufacturing the same
US3504314A (en) Composite superconductive conductor
JP2768844B2 (en) Superconductor and superconducting coil
JPH03239308A (en) Superconducting coil
JPS62213012A (en) Superconductor
JPS59101704A (en) Superconductive conductor and method of producing same
JP3322981B2 (en) Permanent current switch
JP3176952B2 (en) Superconducting wire and method of manufacturing superconducting wire
JPS5923406B2 (en) superconducting wire
JPH06349349A (en) Superconductive wire
JPH02273417A (en) Superconductor
JPS5941879A (en) Permanent current switch
JPH02288110A (en) Superconducting conductor
JP2883071B1 (en) Superconducting field winding conductor