JP2883071B1 - Superconducting field winding conductor - Google Patents

Superconducting field winding conductor

Info

Publication number
JP2883071B1
JP2883071B1 JP10064883A JP6488398A JP2883071B1 JP 2883071 B1 JP2883071 B1 JP 2883071B1 JP 10064883 A JP10064883 A JP 10064883A JP 6488398 A JP6488398 A JP 6488398A JP 2883071 B1 JP2883071 B1 JP 2883071B1
Authority
JP
Japan
Prior art keywords
conductor
superconducting
copper
field winding
aluminum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP10064883A
Other languages
Japanese (ja)
Other versions
JPH11260627A (en
Inventor
潔 山口
寛 留奥
谷口  司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP10064883A priority Critical patent/JP2883071B1/en
Application granted granted Critical
Publication of JP2883071B1 publication Critical patent/JP2883071B1/en
Publication of JPH11260627A publication Critical patent/JPH11260627A/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Abstract

【要約】 【課題】本発明は超電導発電機の回転子にある超電導界
磁巻線を、高い導体電流密度で完全安定化が可能な超電
導導体構造を提供する。 【解決手段】3層構造の超電導素線4を、1次撚線超電
導導体化して超電導複合導体の中心に配置し、アルミニ
ウム安定化材3を包囲した銅ニッケル合金2を1次撚線
超電導導体の両側に配置し、これらを銅あるいは銅合金
の薄板1で一体に囲み、内部構造物間を半田5で接合し
熱抵抗を最小限にする。
The present invention provides a superconducting conductor structure capable of completely stabilizing a superconducting field winding in a rotor of a superconducting generator with a high conductor current density. A superconducting element wire having a three-layer structure is formed into a primary stranded superconducting conductor and arranged at the center of a superconducting composite conductor, and a copper-nickel alloy surrounding an aluminum stabilizer is used as a primary stranded superconducting conductor. , And these are integrally surrounded by a thin plate 1 of copper or copper alloy, and the internal structures are joined with solder 5 to minimize thermal resistance.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、回転子に超電導界
磁巻線を持つ超電導発電機の界磁巻線に用いる導体の構
造に関する。特に、高速で回転する回転子の中で液体ヘ
リウムは超臨界圧となり、その冷却能力は静止重力場中
の約10倍になり、その高い冷却能力を利用した完全に
安定化された界磁巻線の導体構造に関する。
The present invention relates to a structure of a conductor used for a field winding of a superconducting generator having a superconducting field winding on a rotor. In particular, liquid helium has a supercritical pressure in a high-speed rotating rotor, and its cooling capacity is about 10 times that in a static gravitational field. A completely stabilized field winding utilizing its high cooling capacity The present invention relates to a conductor structure of a wire.

【0002】[0002]

【従来の技術】超電導発電機の超電導界磁巻線は部分安
定化を指向するものと、完全安定化を指向するものがあ
る。部分安定化を指向するものではコイルを含浸する等
して擾乱に強いコイル構成を採っている。また、それに
用いる導体は1次撚線や2次撚線の構成を採っている。
一方、完全安定化を指向するものにおいても1次撚線や
2次撚線の構成を採っている。
2. Description of the Related Art A superconducting field winding of a superconducting generator includes one for partial stabilization and one for complete stabilization. In the case of partial stabilization, a coil configuration resistant to disturbance is employed by impregnating the coil. Also, the conductor used for this has a configuration of a primary stranded wire or a secondary stranded wire.
On the other hand, the structure aiming for complete stabilization also employs a primary stranded wire or a secondary stranded wire.

【0003】発電機は外部の送電系統とつながってお
り、系統の事故など外乱の多い環境であり、界磁巻線は
交流損失の少ないことが求められている。これを反映し
て超電導発電機の界磁巻線に用いる導体は50kW/m
3以下の交流損失の少ないものが使われていた。
[0003] The generator is connected to an external power transmission system, and is in an environment where there is much disturbance such as a system accident, and the field winding is required to have a small AC loss. Reflecting this, the conductor used for the field winding of the superconducting generator is 50 kW / m
Those with less than 3 AC losses were used.

【0004】[0004]

【発明が解決しようとする課題】上記従来技術は、完全
安定化を指向するものにおいて、交流損失の少ない構造
の導体は、長手方向の部分的に常電導化した場合に内部
に大きな温度勾配を必然的に持つ可能性が大きく、冷却
能力が低下する問題があった。
In the above prior art, which aims at complete stabilization, a conductor having a structure with a small AC loss has a large temperature gradient inside when the conductor is partially made normal in the longitudinal direction. There is a problem that the cooling ability is inevitably increased, which is inevitable.

【0005】本発明の目的は、超電導発電機の界磁巻線
に用いる導体の冷却能力を保持する構造を与えることを
目的としており、更に高い遠心力による変形を防止する
導体構造を提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a structure for maintaining a cooling capacity of a conductor used for a field winding of a superconducting generator, and to provide a conductor structure for preventing deformation due to a higher centrifugal force. It is in.

【0006】[0006]

【課題を解決するための手段】上記問題を解決するため
に、本発明では常電導転移後の発熱部分である主たる安
定化材を冷却面に近い部分に配置するとともに、安定化
材の素材として4.2K付近で銅よりも固有抵抗の小さ
いアルミニウムを使い、超電導電流が流れる超電導線の
部分を導体中央に配置し、これらを銅あるいは銅合金か
らなる薄板を用いて周囲から一体化して、導体内部は半
田を充填して熱伝達性能を向上させる。
In order to solve the above-mentioned problems, in the present invention, a main stabilizing material which is a heat-generating portion after a normal-conductivity transition is arranged in a portion close to a cooling surface, and a material for the stabilizing material is used. Around 4.2K, aluminum having a lower specific resistance than copper is used, a portion of the superconducting wire through which the superconducting current flows is arranged at the center of the conductor, and these are integrated from the periphery using a thin plate made of copper or a copper alloy to form a conductor. The interior is filled with solder to improve heat transfer performance.

【0007】また、アルミニウム安定化材を適正量用い
ることや薄板に高抵抗の銅合金を用いることで、交流損
失の増加を適正範囲内に抑えることが出来る。このよう
な導体構造をとることで、常電導転移時に導体内部の温
度勾配を十分に小さくでき、冷却能力を低下させずに超
電導界時巻線の完全安定化を達成できる。
Further, by using an appropriate amount of the aluminum stabilizing material or using a high-resistance copper alloy for the thin plate, it is possible to suppress an increase in AC loss within an appropriate range. By adopting such a conductor structure, the temperature gradient inside the conductor can be sufficiently reduced at the time of normal conduction transition, and the superconducting field winding can be completely stabilized without lowering the cooling capacity.

【0008】また、1次撚線超電導導体を構成する超電
導素線のマトリックスの一部を銅ニッケル合金で構成し
たり、機械強度に優れる銅合金の薄板を用いることによ
り、成形超電導複合導体の全体としての強度を高めるこ
とができて、遠心力による変形を防止できる。
[0008] Further, by forming a part of the matrix of the superconducting wires constituting the primary stranded superconducting conductor by a copper-nickel alloy or by using a copper alloy thin plate having excellent mechanical strength, the whole of the formed superconducting composite conductor is improved. And the deformation due to centrifugal force can be prevented.

【0009】上記のような構造をとることにより、常電
導転移時の発熱部であるアルミニウムが冷却面に近いこ
とと、アルミニウムの熱伝導率が非常に高いことによ
り、導体内部の温度勾配が十分に小さくでき、超電導導
体の冷却能力が向上できて、超電導発電機の回転子にあ
る超電導界時巻線の運転電流範囲での完全安定化が達成
できる。また、高い強度により遠心力による変形を防止
できる。
[0009] With the above structure, the temperature gradient inside the conductor can be sufficiently increased because aluminum, which is a heat generating part at the time of normal conduction transition, is close to the cooling surface and the thermal conductivity of aluminum is very high. The cooling capacity of the superconducting conductor can be improved, and the superconducting generator can achieve complete stabilization in the operating current range of the superconducting field winding in the rotor. In addition, deformation due to centrifugal force can be prevented by high strength.

【0010】[0010]

【発明の実施の形態】本発明の一実施例である超電導界
磁巻線用導体の断面図を図1に示す。超電導発電機の超
電導界磁巻線は2極あるいは、4極の超電導巻線であ
る。超電導発電機の界磁巻線は高速で回転する回転子上
に備え付けられており、運転状態では4000〜500
0Gの加速度が作用している。このような高い加速度場
の中で液体ヘリウムは一般に超臨界圧になり、その冷却
特性は1Gの重力場中の冷却特性の10倍程度になる。
FIG. 1 is a cross-sectional view of a conductor for a superconducting field winding according to an embodiment of the present invention. The superconducting field winding of the superconducting generator is a two-pole or four-pole superconducting winding. The field winding of the superconducting generator is provided on a rotor that rotates at a high speed.
An acceleration of 0G is acting. In such a high acceleration field, liquid helium generally has a supercritical pressure, and its cooling characteristic is about ten times that in a 1G gravitational field.

【0011】NbTiを用いる超電導巻線は1Gの重力場
中では40〜50A/mm2の電流密度の運転電流密度
を持たせて導体の高安定化を図ると、超電導巻線の部分
的な常電導転移が生じた場合でも冷却特性が導体の発熱
特性を上回り、超電導状態に復帰するいわゆる完全安定
化の設計が可能である。4000〜5000Gの高い加
速度場では冷却能力が10倍程度になるので、電流密度
で(40〜50)×√10=132〜165A/mm2
の電流密度でも完全安定化の設計が可能となる。 発電
機の回転子は遠心力でその外径を制限され、振動特性で
その長さが制限されるので、超電導界磁巻線は150A
/mm2程度の電流密度が確保できないと、経済的な発
電機としての機能が十分に果せない。
When the superconducting winding using NbTi is provided with an operating current density of 40 to 50 A / mm2 in a gravitational field of 1 G to achieve high stability of the conductor, a partial normal conduction of the superconducting winding is achieved. Even when the transition occurs, the cooling characteristic exceeds the heat generation characteristic of the conductor, and a so-called perfect stabilization design that returns to the superconducting state is possible. In a high acceleration field of 4000 to 5000 G, the cooling capacity becomes about 10 times, so that the current density is (40 to 50) × √10 = 132 to 165 A / mm 2
Even at a current density of, a completely stable design can be achieved. The outer diameter of the rotor of the generator is limited by centrifugal force and its length is limited by vibration characteristics.
If a current density of about / mm2 cannot be secured, the function as an economical generator cannot be sufficiently achieved.

【0012】高い遠心力場の液体ヘリウムの冷却能力を
使って、完全安定化を図ると150A/mm2程度でそ
れが可能となり、十分に経済的な大きさを持つ超電導発
電機が製作できる。
If the liquid helium is cooled in a high centrifugal force field and complete stabilization is achieved, it can be achieved at about 150 A / mm 2, and a superconducting generator having a sufficiently economical size can be manufactured.

【0013】超電導発電機の超電導界磁巻線を完全安定
化すると、所定の電流の範囲内では何らかの発熱による
常電導の芽が発生しても縮小して消滅し、クエンチには
至らない。信頼性が求められる電力機器としての超電導
発電機がクエンチの危険性を完全に回避できることは重
要である。
When the superconducting field winding of the superconducting generator is completely stabilized, even if buds of normal conduction due to some heat generation occur within a predetermined current range, the buds are reduced and disappear, and no quench occurs. It is important that a superconducting generator as a power device requiring reliability can completely avoid the danger of quench.

【0014】以上に説明した超電導発電機の完全安定化
された超電導界磁巻線に用いる導体は図1に示す構成を
持つ。
The conductor used for the completely stabilized superconducting field winding of the superconducting generator described above has the configuration shown in FIG.

【0015】超電導界磁巻線において巻線を構成する導
体の半径と平行な両側面が導体長手方向の30〜70%
が冷却される構造においては、以下の導体構造を採る。
In the superconducting field winding, both sides parallel to the radius of the conductor constituting the winding are 30 to 70% of the longitudinal direction of the conductor.
In the structure where is cooled, the following conductor structure is adopted.

【0016】超電導フィラメントが銅で安定化され、そ
の周囲が銅ニッケル合金で囲まれた単位を多数を持つ、
3層構造の超電導素線4を1次撚線超電導導体化して成
形超電導複合導体の中心に配置する。アルミニウム安定
化材3は銅ニッケル合金2で被覆され、1次撚線超電導
導体の両側に配置される。これら1次撚線超電導導体と
両側の銅ニッケル合金2で被覆されたアルミニウム安定
化材3はその周囲を銅あるいは銅合金の薄板1で囲まれ
て一体化される。更に、一体化された内部構造物の間に
は半田5を充填して熱抵抗を最小限にする。
The superconducting filament is stabilized by copper, and has a number of units surrounded by a copper-nickel alloy.
The superconducting element wire 4 having a three-layer structure is converted into a primary stranded superconducting conductor and arranged at the center of the formed superconducting composite conductor. The aluminum stabilizer 3 is coated with the copper-nickel alloy 2 and arranged on both sides of the primary stranded superconducting conductor. The primary stranded superconducting conductor and the aluminum stabilizing material 3 covered with the copper-nickel alloy 2 on both sides are integrated around the periphery thereof by a thin plate 1 of copper or a copper alloy. Further, the space between the integrated internal structures is filled with solder 5 to minimize thermal resistance.

【0017】図2に他の超電導界磁巻線用導体の例を示
す。銅あるいは銅合金の薄板1は成形超電導複合導体を
被覆するように周囲を包むが、管状ではなく隙間6の開
いた構造とし、その隙間を超電導素線4が対応する中央
付近に配置する。
FIG. 2 shows another example of a conductor for a superconducting field winding. The copper or copper alloy thin plate 1 is wrapped around so as to cover the formed superconducting composite conductor, but has a structure in which a gap 6 is opened instead of a tube, and the gap is arranged near the center corresponding to the superconducting element wire 4.

【0018】図3に他の超電導界磁巻線用導体の例を示
す。銅あるいは銅合金の薄板1には厚みを貫通する貫通
孔7が平均的な分布密度を持つように開けられている。
FIG. 3 shows an example of another conductor for a superconducting field winding. In the thin plate 1 made of copper or copper alloy, a through hole 7 penetrating the thickness is formed so as to have an average distribution density.

【0019】超電導発電機の超電導界磁巻線では図4に
示すような冷却特性を持つことが実験的に確かめられて
いる。マドックの完全安定化理論に従い導体の完全安定
化を図った場合、最大限30kW/m2程度の熱流束が
とれるが、冷却特性は図4に示す値に対し±25%の特
性のバラツキを考慮すべきである。従って、本発明の導
体では冷却面8への熱負荷が、所定電流を通電している
ときに常電導転移した場合に20kW/m2以下として
下限の特性に対しても完全安定化を満たすようにする。
It has been experimentally confirmed that the superconducting field winding of the superconducting generator has a cooling characteristic as shown in FIG. When the conductor is completely stabilized in accordance with Maddock's theory of complete stabilization, a maximum heat flux of about 30 kW / m 2 can be obtained, but the cooling characteristic takes into account the characteristic variation of ± 25% with respect to the value shown in FIG. Should. Therefore, in the conductor of the present invention, the thermal load on the cooling surface 8 is set to 20 kW / m 2 or less when a normal current is transferred when a predetermined current is applied so that the lower limit characteristics can be completely stabilized. To

【0020】超電導発電機の超電導界磁巻線において通
常の低速応励磁を行なうと、5T/s程度の磁界変化に
なるが、その時に本発明の導体の交流損が200〜50
0kW/m3であるとする。所定の励磁電流で常電導転
移して発する熱は2000〜3000kW/m3である
ので、200〜500kW/m3の交流損は問題になら
ない。交流損失を現状の技術を用いて低減すれば50k
W/m3以下にできるが、そのようにした場合に生じる
常電導転移時の熱抵抗による内部の大きな温度差は完全
安定化の達成を阻害するが、交流損失を200〜500
kW/m3まで許容することで熱不良導体金属の使用を
少なくできて熱抵抗を十分に小さくできる。
When ordinary low-speed excitation is performed in the superconducting field winding of the superconducting generator, the magnetic field changes by about 5 T / s. At that time, the AC loss of the conductor of the present invention is 200 to 50.
It is assumed that it is 0 kW / m 3 . Since the heat generated by the normal conductive transition at a predetermined exciting current is 2000~3000kW / m 3, AC loss 200~500kW / m 3 is not a problem. 50k if AC loss is reduced using current technology
W / m 3 or less, but a large internal temperature difference due to thermal resistance at the time of normal conduction transition generated in such a case hinders achievement of complete stabilization, but AC loss is reduced to 200 to 500.
By allowing up to kW / m 3, the use of poorly conductive metal can be reduced and the thermal resistance can be reduced sufficiently.

【0021】超電導界磁巻線の導体の巻き方にはエッジ
ワイズとフラットワイズがあり、先の説明ではエッジワ
イズに適した導体構成を示した。フラットワイズの場合
にも先に示した構成が可能ではあるが、以下に示す構成
とすることもできる。
The conductors of the superconducting field winding are wound in an edgewise manner or a flatwise manner. In the above description, the conductor configuration suitable for the edgewise manner is shown. Although the above-described configuration is possible in the case of flat wise, the following configuration can also be used.

【0022】図5に他の超電導界磁巻線用導体の例を示
す。超電導フィラメントが銅で安定化され、その周囲が
銅ニッケル合金で囲まれた単位を多数を持つ、3層構造
の超電導素線4を1次撚線超電導導体化して成形超電導
複合導体の冷却面8と反対側に配置する。
FIG. 5 shows another example of a conductor for a superconducting field winding. The superconducting filament is stabilized by copper, and the periphery of the superconducting filament has a large number of units surrounded by a copper-nickel alloy. And placed on the opposite side.

【0023】図6に他の超電導界磁巻線用導体の例を示
す。銅あるいは銅合金の薄板1は成形超電導複合導体を
被覆するように周囲を包むが、管状ではなく隙間6の開
いた構造とし、その隙間を冷却面8でない面の中央付近
に配置する。
FIG. 6 shows another example of a conductor for a superconducting field winding. The copper or copper alloy thin plate 1 is wrapped around so as to cover the formed superconducting composite conductor, but has a structure in which a gap 6 is opened instead of a tube, and the gap is arranged near the center of a surface other than the cooling surface 8.

【0024】図7に他の超電導界磁巻線用導体の例を示
す。銅あるいは銅合金の薄板には厚みを貫通する貫通孔
7が平均的な分布密度を持つように開けられている。
FIG. 7 shows an example of another conductor for a superconducting field winding. In a thin plate made of copper or a copper alloy, through holes 7 penetrating the thickness are formed so as to have an average distribution density.

【0025】以上述べたように、本発明によれば、アル
ミニウム安定化材の極低温における低い電気抵抗と大き
な熱伝導率を活かし、超電導導体が常電導転移したとき
の発熱を回転場中の超臨界圧ヘリウムの大きな熱伝達率
によって効果的に冷却できるので、導体電流密度が13
2〜165A/mm2の超電導界磁巻線を完全安定化で
きる。
As described above, according to the present invention, the heat generated when the superconducting conductor undergoes a normal-conductivity transition utilizes the low electric resistance of the aluminum stabilizing material at a very low temperature and the large thermal conductivity, thereby reducing the heat generated in the rotating field. Since the cooling can be effectively performed by the large heat transfer coefficient of the critical pressure helium, the conductor current density is 13
The superconducting field winding of 2 to 165 A / mm 2 can be completely stabilized.

【0026】[0026]

【発明の効果】1次撚線超電導導体を導体の中心に置
き、さらに側面の冷却面に近いところにアルミニウム安
定化材を置き、それらを銅あるいは銅合金の薄板で一体
化して内部を半田で充填することにより、内部発熱した
場合に温度勾配が小さく冷却効果に優れて、完全安定化
が可能な超電導界磁巻線用導体が得られる。
The primary stranded superconducting conductor is placed at the center of the conductor, an aluminum stabilizing material is placed near the cooling surface on the side surface, and they are integrated with a copper or copper alloy thin plate, and the inside is soldered. By filling, a conductor for a superconducting field winding that has a small temperature gradient and excellent cooling effect when internal heat is generated and that can be completely stabilized can be obtained.

【0027】また、1次撚線超電導導体を導体の断面の
一端に置き、他の一端の冷却面に近いところにアルミニ
ウム安定化材を置き、それらを銅あるいは銅合金の薄板
で一体化して内部を半田で充填してもよい。
Also, the primary stranded superconducting conductor is placed at one end of the cross section of the conductor, an aluminum stabilizer is placed near the cooling surface at the other end, and they are integrated with a copper or copper alloy thin plate to form an interior. May be filled with solder.

【0028】導体の内部を囲む銅あるいは銅合金の薄板
の一部を切り欠くことによって、導体製作時に導体の内
部構造体を包むように連続的に成形導体の製作が可能と
なる。
By cutting out a part of the copper or copper alloy thin plate surrounding the inside of the conductor, it is possible to continuously manufacture a molded conductor so as to surround the internal structure of the conductor during the production of the conductor.

【0029】薄板に貫通孔を平均的に分布するように設
けることで、成形導体の曲げ剛性を小さくでき、巻線加
工が容易になる。
By providing the through-holes in the thin plate so as to be distributed evenly, the bending rigidity of the formed conductor can be reduced, and the winding process is facilitated.

【0030】導体の運転時の電流密度を132〜165
A/mm2にし、常電導転移したときの冷却面の熱負荷
を20kW/mm2以下にすることで超電導発電機の回
転子の中に置かれる界磁巻線を完全安定化することがで
きる。
The current density during operation of the conductor is 132 to 165.
A / mm 2, and by setting the heat load on the cooling surface at the time of normal conduction transition to 20 kW / mm 2 or less, the field winding placed in the rotor of the superconducting generator can be completely stabilized. .

【0031】界磁巻線導体が5T/sの変動磁界中で2
00〜500kW/m3の交流損失特性を許容すること
で導体内部の熱抵抗を小さくでき、完全安定化できる導
体構成が可能になる。
The field winding conductor is driven in a fluctuating magnetic field of 5 T / s.
By allowing an AC loss characteristic of 00 to 500 kW / m 3 , the heat resistance inside the conductor can be reduced, and a conductor configuration that can be completely stabilized becomes possible.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施例である超電導界磁巻線用導体
の断面図。
FIG. 1 is a cross-sectional view of a conductor for a superconducting field winding according to an embodiment of the present invention.

【図2】本発明の他の実施例である超電導界磁巻線用導
体の断面図。
FIG. 2 is a sectional view of a superconducting field winding conductor according to another embodiment of the present invention.

【図3】本発明の他の実施例である超電導界磁巻線用導
体の斜視図。
FIG. 3 is a perspective view of a superconducting field winding conductor according to another embodiment of the present invention.

【図4】本発明の超電導界磁巻線における冷却特性を示
す図。
FIG. 4 is a diagram showing cooling characteristics in a superconducting field winding of the present invention.

【図5】本発明の他の実施例である超電導界磁巻線用導
体の断面図。
FIG. 5 is a cross-sectional view of a superconducting field winding conductor according to another embodiment of the present invention.

【図6】本発明の他の実施例である超電導界磁巻線用導
体の断面図。
FIG. 6 is a sectional view of a superconducting field winding conductor according to another embodiment of the present invention.

【図7】本発明の他の実施例である超電導界磁巻線用導
体の斜視図。
FIG. 7 is a perspective view of a superconducting field winding conductor according to another embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1…銅あるいは銅合金の薄板、2…銅ニッケル合金、3
…アルミニウム安定化材、4…3層構造の超電導素線、
5…半田、6…隙間、7…貫通孔、8…冷却面。
1: thin copper or copper alloy sheet, 2: copper-nickel alloy, 3
... Aluminum stabilizer, 4 ... Three-layer superconducting wire,
5 solder, 6 gap, 7 through hole, 8 cooling surface.

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.6,DB名) H01F 6/06 H01B 12/02 ──────────────────────────────────────────────────続 き Continued on the front page (58) Field surveyed (Int.Cl. 6 , DB name) H01F 6/06 H01B 12/02

Claims (6)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 超電導フィラメントを安定化する銅並び
にアルミニウム、導体マトリックスの一部が銅ニッケル
合金から構成され、対向する2側面が液体ヘリウム或い
は超臨界圧ヘリウムで冷却される長方形断面の成形超電
導複合導体を用いた超電導界磁巻線用導体において、銅
ニッケル合金をマトリックスに含む超電導素線を撚線化
した1次撚線超電導導体を前記成形超電導複合導体の中
心に配置し、前記成形超電導複合導体の冷却面に近い両
側面に銅ニッケル合金で被覆したアルミニウム安定化材
を配置し、前記1次撚線超電導導体とアルミニウム安定
化材とを銅或いは銅合金より成る薄板により一体化し、
前記1次撚線超電導導体とアルミニウム安定化材を前記
薄板を互いに接する面を半田で接合したことを特徴とす
る超電導界磁巻線用導体。
1. A molded superconducting composite having a rectangular cross section, in which copper and aluminum for stabilizing a superconducting filament, a part of a conductor matrix are composed of a copper-nickel alloy, and two opposite sides are cooled by liquid helium or supercritical helium. In a superconducting field winding conductor using a conductor, a primary stranded superconducting conductor obtained by twisting a superconducting element wire containing a copper-nickel alloy in a matrix is disposed at the center of the molded superconducting composite conductor, An aluminum stabilizing material coated with a copper-nickel alloy is arranged on both sides near the cooling surface of the conductor, and the primary stranded superconducting conductor and the aluminum stabilizing material are integrated by a thin plate made of copper or a copper alloy,
A conductor for a superconducting field winding, wherein the primary stranded superconducting conductor and an aluminum stabilizing material are joined by soldering the surfaces of the thin plates that are in contact with each other.
【請求項2】 超電導フィラメントを安定化する銅並び
にアルミニウム、導体マトリックスの一部が銅ニッケル
合金から構成され、対向する2側面が液体ヘリウム或い
は超臨界圧ヘリウムで冷却される長方形断面の成形超電
導複合導体を用いた超電導界磁巻線用導体において、超
電導素線を撚線化した1次撚線超電導導体を前記成形超
電導複合導体の冷却面と反対側の面近傍に配置し、前記
成形超電導複合導体の冷却面に近い側の側面に銅ニッケ
ル合金で被覆したアルミニウム安定化材を配置し、前記
1次撚線超電導導体とアルミニウム安定化材を、銅或い
は銅合金より成る薄板により一体化し、前記1次撚線超
電導導体とアルミニウム安定化材と前記薄板とを互いに
接する面を半田で接合したことを特徴とする超電導界磁
巻線用導体。
2. A molded superconducting composite having a rectangular cross section in which copper and aluminum for stabilizing a superconducting filament and a part of a conductor matrix are composed of a copper-nickel alloy and two opposite sides are cooled by liquid helium or supercritical helium. In a superconducting field winding conductor using a conductor, a primary stranded superconducting conductor obtained by twisting a superconducting element wire is arranged near a surface opposite to a cooling surface of the molded superconducting composite conductor, and the molded superconducting composite is formed. An aluminum stabilizer coated with a copper-nickel alloy is disposed on a side of the conductor near the cooling surface, and the primary stranded superconducting conductor and the aluminum stabilizer are integrated with a thin plate made of copper or a copper alloy, A conductor for a superconducting field winding, wherein a surface of a primary stranded superconducting conductor, an aluminum stabilizer, and the thin plate that are in contact with each other are joined by soldering.
【請求項3】 上記銅或いは銅合金の薄板は長手方向に
成形超電導複合導体の長さを持ち、前記成形超電導複合
導体の断面では前記成形超電導複合導体を被覆するよう
に一周するが、冷却されない面の中心において周方向の
端部が隙間を持って接することを特徴とする請求項1又
は2記載の超電導界磁巻線用導体。
3. The copper or copper alloy thin plate has a length of the formed superconducting composite conductor in a longitudinal direction, and in a cross section of the formed superconducting composite conductor, makes a round so as to cover the formed superconducting composite conductor, but is not cooled. 3. The conductor for a superconducting field winding according to claim 1, wherein an end in a circumferential direction is in contact with a gap at a center of the surface.
【請求項4】 上記銅或いは銅合金の薄板は平均した分
布の厚み方向の貫通孔を持つことを特徴とする請求項1
又は2記載の超電導界磁巻線用導体。
4. The thin plate of copper or copper alloy has through holes in the thickness direction having an average distribution.
Or the conductor for superconducting field winding according to 2.
【請求項5】 運転電流範囲にある前記成形超電導複合
導体の電流密度が132〜165A/mm2であり、液
体ヘリウム或いは超臨界圧ヘリウムの中で常電導転移し
た時の発熱による熱流束が、前記成形超電導複合導体の
冷却面において、20kW/m2以下であることを特徴
とする請求項1又は2記載の超電導界磁巻線用導体。
5. The molded superconducting composite conductor in the operating current range has a current density of 132 to 165 A / mm 2, and the heat flux due to the heat generated during normal-conductivity transition in liquid helium or supercritical helium, 3. The superconducting field winding conductor according to claim 1, wherein the cooling surface of the formed superconducting composite conductor is 20 kW / m2 or less.
【請求項6】 上記成形超電導複合導体は5T/sの変
動磁界中で200〜500kW/m3の交流損失特性を
持つことを特徴とする請求項1又は2記載の超電導界磁
巻線用導体。
6. The conductor for a superconducting field winding according to claim 1, wherein the molded superconducting composite conductor has an AC loss characteristic of 200 to 500 kW / m3 in a fluctuating magnetic field of 5 T / s.
JP10064883A 1998-03-16 1998-03-16 Superconducting field winding conductor Expired - Fee Related JP2883071B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10064883A JP2883071B1 (en) 1998-03-16 1998-03-16 Superconducting field winding conductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10064883A JP2883071B1 (en) 1998-03-16 1998-03-16 Superconducting field winding conductor

Publications (2)

Publication Number Publication Date
JP2883071B1 true JP2883071B1 (en) 1999-04-19
JPH11260627A JPH11260627A (en) 1999-09-24

Family

ID=13270963

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10064883A Expired - Fee Related JP2883071B1 (en) 1998-03-16 1998-03-16 Superconducting field winding conductor

Country Status (1)

Country Link
JP (1) JP2883071B1 (en)

Also Published As

Publication number Publication date
JPH11260627A (en) 1999-09-24

Similar Documents

Publication Publication Date Title
JP4482477B2 (en) Combined reactor winding structure
JP2980097B2 (en) Superconducting coil
JP5512175B2 (en) Reinforced high-temperature superconducting wire and high-temperature superconducting coil wound around it
JP6505565B2 (en) Connection structure of high temperature superconducting conductor, high temperature superconducting coil and high temperature superconducting coil
JPS61278109A (en) Conical impregnation-free winding for magnetic resonance
JP2923988B2 (en) Superconducting conductor
JP5274983B2 (en) Superconducting coil device
JP2001093721A (en) High-temperature superconducting magnet
JP2883071B1 (en) Superconducting field winding conductor
US3440336A (en) Web-shaped superconductor
JP4805688B2 (en) Superconducting wire and superconducting device using the same
JPS63196016A (en) Superconducting coil
KR20230096080A (en) Aluminum-Carbon Metal Matrix Composite Magnet Wires
JP4559834B2 (en) Manufacturing method of heat conductor
KR100777182B1 (en) High temperature superconducting power cable
JPH0491408A (en) Superconducting coil
JP3120626B2 (en) Oxide superconducting conductor
JP3199782B2 (en) Superconducting coil manufacturing method
JP3120625B2 (en) Oxide superconducting conductor
JPH04116904A (en) Coil
JPH11214215A (en) Current lead for chiller cooled superconducting magnet
JP6327794B2 (en) Superconducting coil device
JPS6215803A (en) Superconductive coil
JPH0869827A (en) Terminal part of ac superconducting apparatus
JP2021039978A (en) High-temperature superconducting coil

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees