JP4559834B2 - Manufacturing method of heat conductor - Google Patents

Manufacturing method of heat conductor Download PDF

Info

Publication number
JP4559834B2
JP4559834B2 JP2004351153A JP2004351153A JP4559834B2 JP 4559834 B2 JP4559834 B2 JP 4559834B2 JP 2004351153 A JP2004351153 A JP 2004351153A JP 2004351153 A JP2004351153 A JP 2004351153A JP 4559834 B2 JP4559834 B2 JP 4559834B2
Authority
JP
Japan
Prior art keywords
heat conductor
heat
conductor
cylindrical body
manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004351153A
Other languages
Japanese (ja)
Other versions
JP2006165098A (en
Inventor
政彦 高橋
通隆 小野
安見 大谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2004351153A priority Critical patent/JP4559834B2/en
Publication of JP2006165098A publication Critical patent/JP2006165098A/en
Application granted granted Critical
Publication of JP4559834B2 publication Critical patent/JP4559834B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Superconductors And Manufacturing Methods Therefor (AREA)

Description

本発明は、極低温条件下で使用される被冷却物を冷却するために用いられる熱伝導体の製造方法に関する。 The present invention relates to a method of manufacturing a heat conductor used for cooling the object to be cooled for use under cryogenic conditions.

一般に超電導磁石等、極低温条件に冷却して使用する装置においては、真空断熱した空間に被冷却物を置いて冷凍機等の冷却原と被冷却物とを熱的に接続して冷却する方法か、液体ヘリウム等の冷媒に浸漬して冷却する方法が用いられる。   In general, in devices that are cooled to cryogenic conditions, such as superconducting magnets, a cooling object is placed in a vacuum-insulated space, and a cooling source such as a refrigerator and the cooling object are thermally connected to cool. Alternatively, a method of cooling by immersing in a refrigerant such as liquid helium is used.

このうち、冷却源と被冷却物とを熱的に接続する冷却方法は、熱的に接続するための手段(熱橋)として、銅やアルミニウム等の金属材料に代表される熱伝導体が用いられる。一方、冷媒によって浸漬冷却する方法の場合にも、超電導コイルの内部等の直接液体ヘリウムと接触しない部分の冷却効率を向上させるために熱伝導体を用いることもある。従って、熱伝導体として、熱伝導率の高い材料が伝熱特性を良くするために用いられる。   Among these, the cooling method for thermally connecting the cooling source and the object to be cooled uses a heat conductor typified by a metal material such as copper or aluminum as means for thermally connecting (thermal bridge). It is done. On the other hand, in the case of the immersion cooling method using a refrigerant, a heat conductor may be used to improve the cooling efficiency of a portion that does not come into direct contact with liquid helium, such as the inside of a superconducting coil. Therefore, a material having a high thermal conductivity is used as a heat conductor to improve heat transfer characteristics.

しかしながら、上述のような構成を有する熱伝導体を交流磁場中で使用した場合、渦電流が発生し、この結果、渦電流損失により熱伝導体自身が発熱するという問題があった。一般に、この渦電流損失Qeddyは、無限長モデルにおいて以下の(式1)にて表される。ここで、ρ:比抵抗,B:磁場,W:板幅である。

Figure 0004559834
However, when the heat conductor having the above-described configuration is used in an alternating magnetic field, an eddy current is generated, resulting in a problem that the heat conductor itself generates heat due to eddy current loss. In general, this eddy current loss Q eddy is expressed by the following (formula 1) in an infinite length model. Here, ρ: specific resistance, B: magnetic field, W: plate width.
Figure 0004559834

(式1)に示すとおり、渦電流による発熱は、磁場変化(dB/dt)の2乗に比例して大きくなり、この結果、冷凍機の冷凍能力を超えた発熱が熱伝導体に発生することがあり、この熱が超伝導コイルに伝わって超伝導コイルの温度が上昇する。さらに臨界温度を超える温度となるとクエンチ(常伝導転移現象)が起こる。クエンチが発生すると、再度超伝導コイルを冷却して励磁をやり直すことが必要となる。また場合によっては、発熱により超伝導コイルが破損するといったことが起こることがある。   As shown in (Equation 1), heat generation due to eddy current increases in proportion to the square of the magnetic field change (dB / dt), and as a result, heat generation exceeding the freezing capacity of the refrigerator is generated in the heat conductor. In some cases, this heat is transferred to the superconducting coil and the temperature of the superconducting coil rises. Further, when the temperature exceeds the critical temperature, quenching (normal conduction transition phenomenon) occurs. When a quench occurs, it is necessary to cool the superconducting coil again and perform excitation again. In some cases, the superconducting coil may be damaged by heat generation.

このため従来は、大きな磁場変化によって起こるクエンチの発生を防止するために、励磁、消磁の速度を遅くすることにより磁場変化を小さくしている。そのため励磁、消磁に長時間要するという課題があった。また、超電導コイルの破損を防止するためにも、渦電流損失を抑制することが装置性能の向上の観点から重要であった。   For this reason, conventionally, in order to prevent the occurrence of quenching caused by a large magnetic field change, the magnetic field change is reduced by slowing the speed of excitation and demagnetization. Therefore, there is a problem that it takes a long time for excitation and demagnetization. In order to prevent damage to the superconducting coil, it is important to suppress eddy current loss from the viewpoint of improving the device performance.

こうした課題に対して、従来の技術として、超電導磁石を冷却する構成について渦電流損失による発熱を防止するための技術があり、上記発熱の対策として熱伝導体を短冊状に分割する方法が知られている(例えば、特許文献1参照)。
特開2001−244109号公報
In order to deal with such problems, as a conventional technique, there is a technique for preventing heat generation due to eddy current loss in a configuration for cooling a superconducting magnet, and a method of dividing a heat conductor into strips as a countermeasure for the above heat generation is known. (For example, refer to Patent Document 1).
JP 2001-244109 A

従来、最も一般的な熱橋を構成する熱伝導体は、一枚板の金属材料により構成されていた。この熱橋としては、熱伝達を良好にするために断面積および表面積が大きいことが好ましいが、このような構成の熱伝導体とすることには、渦電流の発生の問題があった。   Conventionally, the heat conductor constituting the most common thermal bridge has been composed of a single-plate metal material. The thermal bridge preferably has a large cross-sectional area and a large surface area in order to improve heat transfer. However, there is a problem of generating eddy currents in the heat conductor having such a configuration.

そこで、上記文献に開示されたような熱伝導体は、例えばアルミニウムや銅等の金属材料で構成した線材を絶縁性樹脂のコーティングにて被覆して被覆材とし、この被覆材を複数接合して熱伝導体を構成したものである。渦電流のループの大きさは、熱伝導体の断面積に比して大きくなるため、熱伝導体の導体部分の直径を小さくすることによって渦電流損失を抑制することができる。   Therefore, the heat conductor as disclosed in the above document is made by coating a wire made of a metal material such as aluminum or copper with a coating of an insulating resin to form a covering material, and joining a plurality of the covering materials. It constitutes a heat conductor. Since the size of the eddy current loop is larger than the cross-sectional area of the heat conductor, eddy current loss can be suppressed by reducing the diameter of the conductor portion of the heat conductor.

しかしながら、熱伝導体の分割幅を狭くすることは、機械工作上の困難を伴い、また製造工程が増えることによって製造コストが増大するという問題があった。そのため実用的な分割幅としては、数mm程度が限界であった。   However, narrowing the division width of the heat conductor is accompanied by difficulties in machining, and there is a problem that the manufacturing cost increases due to an increase in manufacturing steps. Therefore, the practical division width is limited to about several mm.

このように、熱伝導体の導体部分を小径とすることは、渦電流の抑制に有効な手段であるものの、熱伝導体の製法においてなお改良を必要としていた。同時に、製造時および製品使用時における機械工作性と取扱い性に優れた構成の熱伝導体が期待されていた。   Thus, although making the conductor part of a heat conductor small diameter is an effective means for suppression of an eddy current, the manufacturing method of a heat conductor still needed improvement. At the same time, a heat conductor having a structure excellent in machinability and handling at the time of manufacture and use of the product has been expected.

すなわち、極低温条件下において良好な熱伝導率を備えた材料であって、加工性および取扱性に優れ、極低温条件下にある加熱体の熱を効果的に放熱させることが可能で、渦電流の発生およびその影響を抑制する熱伝導体と、この熱伝導体の製作コストを削減する方法が求められていた。   In other words, it is a material that has good thermal conductivity under cryogenic conditions, has excellent workability and handleability, can effectively dissipate the heat of the heating element under cryogenic conditions, There has been a demand for a heat conductor that suppresses the generation of current and its influence, and a method for reducing the manufacturing cost of the heat conductor.

本発明は、上述した課題を解決するためになされたものであり、良好な熱伝導性を備えつつ、渦電流損失による発熱を低減させる熱伝導体の製造方法を提供することを目的とする。 The present invention has been made to solve the problems described above, while providing good thermal conductivity, and an object thereof is to provide a method of manufacturing a heat conductor to reduce the heat generation due to eddy current loss.

発明の熱伝導体の製造方法は、上述した課題を解決するために、熱伝導材より成る線材に絶縁被覆を施して構成した被覆材を円柱形の成形型にコイル状に巻きつけ、これに成型材を固着させて一体化させて筒状体とし、この筒状体の円周上の点にて前記筒状体を少なくとも一箇所切断して帯状の熱伝導体を得ることを特徴とする方法である。 In order to solve the above-described problems, the method of manufacturing a heat conductor according to the present invention winds a covering material formed by applying an insulation coating to a wire made of a heat conduction material around a cylindrical mold in a coil shape. A molding material is fixed and integrated to form a cylindrical body, and at least one portion of the cylindrical body is cut at a point on the circumference of the cylindrical body to obtain a belt-shaped heat conductor It is a method to do.

また、本発明の熱伝導体の製造方法は、上述した課題を解決するために、熱伝導材より成る線材と絶縁性材料とを、前記線材が短絡しないように円柱形の成形型にコイル状に交互に巻きつけ、これに成型材を固着させて一体化させて筒状体とし、この筒状体の円周上の点にてこの筒状体を少なくとも一箇所切断して帯状の熱伝導体を得ることを特徴とする方法である。   In addition, in order to solve the above-described problems, the method of manufacturing a heat conductor according to the present invention includes a wire formed of a heat conductive material and an insulating material in a coil shape in a cylindrical mold so that the wire does not short-circuit. Are alternately wound around, and a molding material is fixed and integrated to form a cylindrical body, and the cylindrical body is cut at least at one point on the circumference of the cylindrical body to form a belt-like heat conduction A method characterized by obtaining a body.

本発明の熱伝導体の製造方法によれば、加工性および取扱性に優れ、極低温条件下にある被冷却物の熱を効果的に放熱させることが可能な高い熱伝導率を備えた熱伝導体およびその製造方法を提供することが可能であり、被冷却物を放熱させる際の渦電流の発生およびその影響を抑制することが可能となる。 According to the method for producing a thermal conductor of the present invention, heat having high thermal conductivity that is excellent in workability and handleability, and can effectively dissipate heat of an object to be cooled under extremely low temperature conditions. It is possible to provide a conductor and a method for manufacturing the conductor, and it is possible to suppress the generation of eddy current and the influence thereof when the object to be cooled is radiated.

本発明に係る熱伝導体の製造方法および当該製造方法によって得られる熱伝導体の実施例について、図面を参照して以下に詳細に説明する。なお、以下の実施例において熱伝導体の長手方向とは、被冷却物と冷凍機とを接続する熱伝導体の配線方向に沿う方向を示し、略長方形に成形される熱伝導体の長辺の方向を必ずしも意味しない。 Embodiments of a method for manufacturing a heat conductor according to the present invention and a heat conductor obtained by the method will be described in detail below with reference to the drawings. In the following examples, the longitudinal direction of the heat conductor indicates the direction along the wiring direction of the heat conductor that connects the object to be cooled and the refrigerator, and the long side of the heat conductor formed into a substantially rectangular shape The direction of is not necessarily meant.

[実施例1]
図1〜3を用いて本発明の実施例1の熱伝導体について説明する。
[Example 1]
The thermal conductor of Example 1 of this invention is demonstrated using FIGS. 1-3.

図1に、本発明の熱伝導体を用いた超電導コイル装置10の構成を示す。この超電導コイル装置10において、超電導コイル1が熱伝導体2によって冷凍機3と熱的に接続される。これら構成要素は、すべて真空断熱容器4内に封入される。また超電導コイル1および冷凍機3は、図示しない電極リードによって真空断熱容器4外部の電源とそれぞれ接続される。   In FIG. 1, the structure of the superconducting coil apparatus 10 using the heat conductor of this invention is shown. In this superconducting coil device 10, the superconducting coil 1 is thermally connected to the refrigerator 3 by a heat conductor 2. All these components are enclosed in a vacuum insulation container 4. The superconducting coil 1 and the refrigerator 3 are connected to a power source outside the vacuum heat insulating container 4 by electrode leads (not shown).

外部電源からの電力供給により超電導コイル1を励磁させて、定格磁場まで立ち上げて運転する。運転終了後は、徐々に電流を減少させて消磁する。このとき、外部から流入する熱と交流損失によって生じる熱とによって超電導コイル1が発熱する。この熱が熱伝導体2によって冷凍機3に流入することにより、超電導コイル1の温度がマイナス200数十度に保たれる。このようにして、超電導コイル1は、断熱真空容器4内にて、冷凍機3により熱伝導体2を経由して冷却されている。   The superconducting coil 1 is excited by supplying power from an external power source, and is operated up to the rated magnetic field. After the operation is completed, the current is gradually decreased to demagnetize. At this time, the superconducting coil 1 generates heat due to heat flowing from outside and heat generated by AC loss. When this heat flows into the refrigerator 3 by the heat conductor 2, the temperature of the superconducting coil 1 is maintained at minus 200 tens of degrees. Thus, the superconducting coil 1 is cooled by the refrigerator 3 via the heat conductor 2 in the heat insulating vacuum vessel 4.

図2に熱伝導体2の詳細な構造を示す幅方向の断面図を示す。また、図3に、図2に示す熱伝導体2のIII−III線に沿う長手方向の断面図を示す。   FIG. 2 is a cross-sectional view in the width direction showing the detailed structure of the heat conductor 2. FIG. 3 is a longitudinal sectional view taken along line III-III of the heat conductor 2 shown in FIG.

図2および図3に示すように、この熱伝導体2は、熱伝導率の高い高純度アルミニウム製の線材15に絶縁被覆16を施し、こうして構成された被覆材17を束ねてシート状に形成し、全体を成型材18で一体化している。   As shown in FIGS. 2 and 3, the heat conductor 2 is formed in a sheet shape by applying an insulating coating 16 to a wire 15 made of high purity aluminum having high thermal conductivity and bundling the thus configured coating material 17. The whole is integrated with the molding material 18.

線材15は、高純度アルミニウム以外にも、熱伝導率に優れた材料で構成すれば良く、例えば高純度銅等の金属材料が使用可能である。この線材15は、例えば直径約1mmに設けられ、この線材15の表面に絶縁被覆16が厚さ約0.1mmとなるようにコーティングされる。絶縁被覆16に用いる材質としては、良好な電気絶縁性を有する材料が好ましい。一方、成型材18としては、電気絶縁性と機械的強度特性に優れたエポキシレジンが好適に使用される。また成型材18として、絶縁材料であるエポキシレジンの代わりにワニス等の材料を用いても良い。   The wire 15 may be made of a material having excellent thermal conductivity other than high-purity aluminum. For example, a metal material such as high-purity copper can be used. The wire 15 is provided with a diameter of about 1 mm, for example, and the surface of the wire 15 is coated with an insulating coating 16 so as to have a thickness of about 0.1 mm. The material used for the insulating coating 16 is preferably a material having good electrical insulation. On the other hand, as the molding material 18, an epoxy resin excellent in electrical insulation and mechanical strength characteristics is preferably used. Further, as the molding material 18, a material such as varnish may be used instead of the epoxy resin which is an insulating material.

このように構成された本実施例の熱伝導体2において、超電導コイル1で発生した熱は、高い熱伝導率を有する高純度アルミニウム製の線材15を経由して伝導伝熱により冷凍機3に伝えられるため、超電導コイル1と冷凍機3との温度差が小さく抑制される。一方、超電導コイル1に交流通電することによって変動磁場が発生しても、熱伝導体2内部の渦電流は、そのループの大きさが線材15の直径程度に抑えられるため、発熱量が十分小さく抑制される。   In the heat conductor 2 of the present embodiment configured as described above, the heat generated in the superconducting coil 1 is transferred to the refrigerator 3 by conduction heat transfer via the high purity aluminum wire 15 having high thermal conductivity. Therefore, the temperature difference between the superconducting coil 1 and the refrigerator 3 is suppressed to be small. On the other hand, even if a fluctuating magnetic field is generated by applying alternating current to the superconducting coil 1, the eddy current in the heat conductor 2 has a sufficiently small amount of heat generation because the size of the loop is suppressed to about the diameter of the wire 15. It is suppressed.

本実施例の熱伝導体の製造方法について、図4の側面図、および図5に示す図4におけるV−V線に沿う断面図を用いて説明する。   The manufacturing method of the thermal conductor of a present Example is demonstrated using sectional drawing in alignment with the VV line | wire in FIG. 4 and the side view of FIG.

まず線材15に絶縁被覆16を施して構成した被覆材17を筒状の成形型19にらせん状に巻きつけて、コイルのように成形する。このとき、被覆材17同士の間隙が空かないように密に巻き上げる。次に、巻き上がったコイル状の成形体に対し、成型材18を塗布等の手段により固着していく。この成型材18によって線材15同士が密に固着され、一体化した筒状の筒状体が成形される。この筒状体を円周方向の少なくとも一箇所、任意の点にて切断する。   First, a covering material 17 formed by applying an insulating coating 16 to a wire 15 is wound around a cylindrical forming die 19 in a spiral shape and formed like a coil. At this time, it winds up densely so that the gap | interval of coating | covering materials 17 may not be vacant. Next, the molding material 18 is fixed to the wound coil-shaped molded body by means such as coating. The wire rods 15 are tightly fixed to each other by the molding material 18 to form an integrated cylindrical tubular body. This cylindrical body is cut at an arbitrary point in at least one place in the circumferential direction.

なお、熱伝導体の長さによって筒状の筒状体の切断位置や成形型19の直径を変更することにより、所望の長さの熱伝導体2を得ることができる。例えば、成形型19の円周を熱伝導体2に必要な長さと同一にすれば、円周方向の一箇所を切断することによって熱伝導体2を得ることが可能である。また、熱伝導体2の幅は、被覆材17の成形型19への巻きつけ回数によって調整可能である。また、成形型19は、図4のようなボビン型であっても、または、単純な円柱形であっても良い。   In addition, the heat conductor 2 of desired length can be obtained by changing the cutting position of a cylindrical cylinder, or the diameter of the shaping | molding die 19 with the length of a heat conductor. For example, if the circumference of the mold 19 is made equal to the length necessary for the heat conductor 2, the heat conductor 2 can be obtained by cutting one place in the circumferential direction. Further, the width of the heat conductor 2 can be adjusted by the number of times the covering material 17 is wound around the mold 19. Further, the mold 19 may be a bobbin type as shown in FIG. 4 or a simple columnar shape.

また一方、成形型19への巻きつけによる製造方法の他、被覆材17を任意の本数平坦面に配置してこれに成型材18を塗布等の手段により固着させ、熱伝導体2を製造することも可能である。   On the other hand, in addition to the manufacturing method by winding around the molding die 19, the coating material 17 is arranged on an arbitrary number of flat surfaces, and the molding material 18 is fixed thereto by means such as coating, whereby the heat conductor 2 is manufactured. It is also possible.

なお、図2および図3に示す熱伝導体2について、被覆材17同士が密に接する構造であるが、例えば、被覆材17と被覆材17とが乖離しており、その間隙が成型材18にて充填された構造としても良いが、熱伝導体2の伝熱性能を考慮すると、被覆材17同士が密に接する構造が好ましい。   2 and FIG. 3, the covering material 17 has a structure in which the covering materials 17 are in close contact with each other. For example, the covering material 17 and the covering material 17 are separated from each other, and the gap is formed between the molding materials 18. However, considering the heat transfer performance of the heat conductor 2, a structure in which the covering materials 17 are in close contact with each other is preferable.

本実施例の熱伝導体2によれば、伝熱特性を良好に保ったまま渦電流発熱を小さく抑えることができる。すなわち、線材15の直径が既出の(式1)における板幅Wに相当するため、超伝導コイル3での磁場変化による熱伝導体2での渦電流の発生で生じる渦電流損失が低く抑えられ、熱伝導体2における発熱を抑制することができる。   According to the heat conductor 2 of the present embodiment, eddy current heat generation can be suppressed to a small value while maintaining good heat transfer characteristics. That is, since the diameter of the wire 15 corresponds to the plate width W in (Expression 1), the eddy current loss caused by the generation of the eddy current in the heat conductor 2 due to the magnetic field change in the superconducting coil 3 can be kept low. Heat generation in the heat conductor 2 can be suppressed.

このように、本実施例の熱伝導体2は、筒状の成形型19に巻きつけることによって容易に成型することが可能であり、また、任意の長さおよび幅に構成することが極めて容易である。従って、良好な熱伝導性を有し、使用する装置に最適な長さの熱伝導体2を少ないコストで得ることが可能となる。   Thus, the heat conductor 2 of the present embodiment can be easily molded by being wound around the cylindrical mold 19, and can be very easily configured to have an arbitrary length and width. It is. Therefore, it is possible to obtain the heat conductor 2 having good heat conductivity and having the optimum length for the apparatus to be used at a low cost.

[実施例2]
次に図6を用いて本発明の実施例2の熱伝導体について説明する。なお、以下の実施例において実施例1の熱伝導体と同一の構成については、同一の符号を付して重複する説明を省略する。
[Example 2]
Next, the heat conductor of Example 2 of this invention is demonstrated using FIG. In addition, about the structure same as the heat conductor of Example 1 in a following example, the same code | symbol is attached | subjected and the overlapping description is abbreviate | omitted.

図6に幅方向の断面を示す熱伝導体21は、線材15を絶縁被覆せずに、線材15間に絶縁性材料である絶縁材シート22を配置し、これを成型材18にて一体的に帯状に構成したものである。   In the heat conductor 21 showing the cross section in the width direction in FIG. 6, the insulating material sheet 22, which is an insulating material, is disposed between the wire materials 15 without insulatingly covering the wire material 15, and this is integrated with the molding material 18. It is configured in a band shape.

すなわち、本発明の熱伝導体は、断面積の小さい線材15が互いに電気的に絶縁されていれば良く、線材15の全表面積にあらかじめ被覆が施されなくても良い。よって、本実施例の熱伝導体21は、線材15と線材15とを絶縁材シート22により電気的絶縁することにより構成される。   That is, in the heat conductor of the present invention, the wire 15 having a small cross-sectional area may be electrically insulated from each other, and the entire surface area of the wire 15 may not be previously coated. Therefore, the heat conductor 21 of the present embodiment is configured by electrically insulating the wire 15 and the wire 15 by the insulating material sheet 22.

この熱伝導体21の製造方法について、図7を参照して以下に説明する。   A method for manufacturing the heat conductor 21 will be described below with reference to FIG.

まず、線材15と絶縁材シート22とが交互に隙間なく巻きつけられるように、成形型19に巻き上げる。このとき、短絡を防ぐため線材15同士が接触しないように巻き上げる。このようにしてコイル状に巻き上げた成形体の表面に対して成型材18を塗布等の手段により固着させ、一体化させたのち、所望の長さに切断して熱伝導体21を得る。   First, the wire 15 and the insulating material sheet 22 are wound up on the mold 19 so that they are alternately wound without any gap. At this time, in order to prevent a short circuit, it winds up so that the wire 15 may not contact. In this way, the molding material 18 is fixed to the surface of the molded body wound up in a coil shape by means such as coating and integrated, and then cut into a desired length to obtain the heat conductor 21.

本実施例の熱伝導体21は、その製造工程において、線材15の表面を絶縁材料にて被覆する工程を削除することができるので、より簡略化された製造工程によって熱伝導体を製造することが可能である。   Since the heat conductor 21 of the present embodiment can omit the step of covering the surface of the wire 15 with an insulating material in the manufacturing process, the heat conductor is manufactured by a more simplified manufacturing process. Is possible.

[実施例3]
図8に、本発明の実施例3の熱伝導体の幅方向の断面図を示す。
[Example 3]
In FIG. 8, sectional drawing of the width direction of the heat conductor of Example 3 of this invention is shown.

この図8に示す熱伝導体31は、線材15と絶縁性材料である絶縁材の糸32とを交互に配置することによって高純度アルミ線材15間の絶縁を確保する構成としている。   The heat conductor 31 shown in FIG. 8 is configured to ensure insulation between the high-purity aluminum wires 15 by alternately arranging the wires 15 and the threads 32 of the insulating material that is an insulating material.

また、本実施例の熱伝導体31の製造方法は、実施例2における絶縁材シート22を絶縁材の糸32にて置き換えたものであり、その製法を図9に図示する。   Moreover, the manufacturing method of the heat conductor 31 of a present Example replaces the insulating material sheet 22 in Example 2 with the thread | yarn 32 of an insulating material, and the manufacturing method is illustrated in FIG.

すなわち図9のように、線材15と絶縁材の糸32とが交互に隙間なく巻きつけられるように、成形型19に巻き上げる。このとき、線材15同士が接触しないように巻き上げる。次に、絶縁材の糸32を巻きつけた部分にさらに絶縁材の糸32を巻きつけて、線材15同士の電気的絶縁を確実にする。   That is, as shown in FIG. 9, the wire 15 and the insulating material thread 32 are wound around the forming die 19 so as to be alternately wound without any gap. At this time, the wires 15 are wound up so as not to contact each other. Next, the insulating material thread 32 is further wound around the portion where the insulating material thread 32 is wound to ensure electrical insulation between the wires 15.

このようにしてコイル状に巻き上げた材料に対して成型材18を塗布等の手段により固着させ、一体化させ、所望の長さに切断して熱伝導体31を得る。   In this way, the molding material 18 is fixed to the material wound up in a coil shape by means such as coating, integrated, and cut into a desired length to obtain the heat conductor 31.

上記のように熱伝導体31の製造工程において、絶縁材の糸32を2重に巻きつけて、線材15同士の間隙に2本の糸32を介在させる構成としても良いが、例えば、絶縁材の糸32の径を太くするなどして、線材15同士の間隙に1本ずつ配置させる構成としても良い。この場合、製造工程をより簡略化することが可能である。   As described above, in the manufacturing process of the heat conductor 31, the insulating yarn 32 may be wound twice, and the two yarns 32 may be interposed in the gap between the wires 15. The diameter of each of the yarns 32 may be increased, or the like may be arranged one by one in the gap between the wires 15. In this case, the manufacturing process can be further simplified.

本実施例の熱伝導体31は、その製造工程において、線材15を被覆する工程を削除することができるので、より簡略化された工程によって熱伝導体を製造することが可能である。   Since the heat conductor 31 of the present embodiment can omit the step of covering the wire 15 in the manufacturing process, the heat conductor can be manufactured by a more simplified process.

[実施例4]
図10に、本発明の実施例4の熱伝導体の長手方向の断面図を示す。
[Example 4]
In FIG. 10, sectional drawing of the longitudinal direction of the heat conductor of Example 4 of this invention is shown.

この実施例4の熱伝導体41は、線材15に絶縁被覆16を施した被覆材17を2重らせん状に撚って、これを成形型18に固着させたものである。   The heat conductor 41 of Example 4 is obtained by twisting a coating material 17 obtained by applying an insulating coating 16 to a wire 15 in a double spiral shape and fixing the coating material 17 to a mold 18.

直線的に被覆材17を並列させて構成した熱伝導体は、長手方向の端部において、まれに線材15同士の短絡がおこることによって電気的絶縁が損なわれることがある。このような場合、径の大きなループが形成され、これにより大きな渦電流損失が生じて発熱することがある。   In the heat conductor constituted by arranging the covering materials 17 in a straight line, electrical insulation may be impaired by a short circuit between the wire materials 15 rarely at the end in the longitudinal direction. In such a case, a loop having a large diameter is formed, which may cause a large eddy current loss and generate heat.

このような不都合を防止するために、本実施例の熱伝導体は、被覆材17を2本ずつ互いに撚り合わせ、2重らせんを形成する。このように、被覆材17を撚ることによって、次のような効果を得ることができる。すなわち、撚られた被覆材17は、2本の被覆材17により長手方向に径の小さいループを形成する。これにより誘導電圧が下がり、渦電流損失による発熱を小さくすることができる。   In order to prevent such an inconvenience, the heat conductor of the present embodiment twists the covering materials 17 two by two to form a double helix. Thus, the following effects can be acquired by twisting the coating | covering material 17. FIG. That is, the twisted covering material 17 forms a loop having a small diameter in the longitudinal direction by the two covering materials 17. As a result, the induced voltage is lowered and heat generation due to eddy current loss can be reduced.

本実施例の熱伝導体41の製造方法について説明する。この熱伝導体41の製造方法は、実施例1の熱伝導体2の製造方法とほぼ同等であって、熱伝導体2の場合、被覆材17を単独で成形型19に巻きつけていくのに対して、熱伝導体41は、下記のような工程によって製造する点においてのみ異なる。   The manufacturing method of the heat conductor 41 of a present Example is demonstrated. The manufacturing method of this heat conductor 41 is substantially the same as the manufacturing method of the heat conductor 2 of Example 1, and in the case of the heat conductor 2, the coating | covering material 17 is wound around the shaping | molding die 19 independently. On the other hand, the heat conductor 41 differs only in that it is manufactured by the following process.

まず、2本の被覆材17を撚り合わせて、2重らせん状に構成する。次に、この撚り合わせた2本の被覆材17を成形型19に巻きつける。これに成型材18を塗布等の手段により固着させ、筒状体を成型する。この筒状体を所望の長さに切断して熱伝導体41を得る。   First, the two covering materials 17 are twisted together to form a double helix. Next, the two covering materials 17 twisted together are wound around the mold 19. The molding material 18 is fixed thereto by means such as coating, and a cylindrical body is molded. The cylindrical body is cut into a desired length to obtain the heat conductor 41.

また、本実施例の熱伝導体41は、次のように製造しても良い。すなわち、まず互いに撚り合わせた被覆材17を平坦面に配置し、これに成型材18を塗布等の手段により固着させて製造する方法である。   Moreover, you may manufacture the heat conductor 41 of a present Example as follows. That is, first, the covering materials 17 twisted together are arranged on a flat surface, and the molding material 18 is fixed thereto by means such as coating or the like.

[実施例5]
図11に、本発明の実施例5の熱伝導体の長手方向の断面図を示す。
[Example 5]
In FIG. 11, sectional drawing of the longitudinal direction of the heat conductor of Example 5 of this invention is shown.

本実施例の熱伝導体51は、被覆材17の長手方向について、一部のみ成型材18にて一体化させるように構成したものである。   The heat conductor 51 of the present embodiment is configured such that only a part thereof is integrated with the molding material 18 in the longitudinal direction of the covering material 17.

このように、熱伝導体51の長手方向に成型材18によって固着された部分と一体化されていない部分とを交互に設けることによって、熱伝導体51のフレキシビリティが向上し、超電導コイル1等の被冷却物と冷凍機3とを熱的に接続する際の施工が簡単になる。また、装置内の構成要素のレイアウトがしやすくなり、装置設計の柔軟性を向上させることが可能である。   As described above, by alternately providing the portion fixed by the molding material 18 and the portion not integrated in the longitudinal direction of the heat conductor 51, the flexibility of the heat conductor 51 is improved, and the superconducting coil 1 or the like. The construction for thermally connecting the object to be cooled and the refrigerator 3 is simplified. In addition, the layout of the components in the apparatus is facilitated, and the flexibility of the apparatus design can be improved.

本実施例の熱伝導体51の製造方法は、図4に示す実施例1の熱伝導体2の製造方法とほぼ同等であるが、被覆材17を成形型19に巻きつけた後、成型材18を成形型19の円周方向の部分的に固着させることによって製造して、成型材18により固着された部分と、被覆材17が露出した部分とを交互に設ける。   The manufacturing method of the thermal conductor 51 of the present embodiment is almost the same as the manufacturing method of the thermal conductor 2 of the first embodiment shown in FIG. 4, but after the coating material 17 is wound around the molding die 19, the molding material is 18 is manufactured by partially fixing the mold 19 in the circumferential direction, and the portions fixed by the molding material 18 and the portions where the covering material 17 is exposed are alternately provided.

[実施例6]
図12に、本発明の実施例6の熱伝導体の長手方向の断面図を示す。
[Example 6]
In FIG. 12, sectional drawing of the longitudinal direction of the heat conductor of Example 6 of this invention is shown.

本実施例の熱伝導体61は、線材15の端部に端子板62を設けて伝熱面積を大きくすることにより、被覆材17と超電導コイル1および冷凍機3との間の接触熱抵抗を低減する構成としたものである。   The heat conductor 61 of the present embodiment has a contact heat resistance between the covering material 17, the superconducting coil 1, and the refrigerator 3 by providing a terminal plate 62 at the end of the wire 15 to increase the heat transfer area. The configuration is reduced.

この熱伝導体61の製造方法は、実施例1の熱伝導体2とほぼ同等である。すなわち、実施例1の熱伝導体2と同等の方法にて得られた筒状体を所望の長さに切断した後、長手方向の端部の成型材18を適当な長さだけ除去し、この部分の被覆材17の絶縁被覆16を剥して線材15を露出させ、これに端子板62を固着させる。   The manufacturing method of the heat conductor 61 is substantially the same as that of the heat conductor 2 of the first embodiment. That is, after cutting the cylindrical body obtained by the same method as the heat conductor 2 of Example 1 to a desired length, the molding material 18 at the end in the longitudinal direction is removed by an appropriate length, The insulation coating 16 of the coating material 17 in this portion is peeled off to expose the wire 15 and the terminal board 62 is fixed thereto.

または、線材15の端部を加工変形して端子板62を形成させても良い。   Alternatively, the terminal plate 62 may be formed by processing and deforming the end of the wire 15.

あるいは、成型材18の塗布工程において、実施例5の熱伝導体51のように予め線材15の露出した部分を設けて、この部分に合わせて筒状体を切断し、熱伝導体61を製造しても良い。   Alternatively, in the step of applying the molding material 18, the exposed portion of the wire 15 is provided in advance as in the thermal conductor 51 of Example 5, and the cylindrical body is cut in accordance with this portion to manufacture the thermal conductor 61. You may do it.

[実施例7]
図13に、本発明の実施例7の熱伝導体の長手方向の断面図を示す。
[Example 7]
In FIG. 13, sectional drawing of the longitudinal direction of the heat conductor of Example 7 of this invention is shown.

本実施例の熱伝導体71は、被覆材17のうち端部の絶縁被覆16を剥し、すべての線材15を高い熱伝導率を有する一方良好な電気絶縁材である窒化アルミニウム72にまとめて直接接触させることにより、接続部の接触熱抵抗を低減する構成としたものである。   The thermal conductor 71 of the present embodiment peels off the insulating coating 16 at the end of the coating material 17, and all the wires 15 are directly combined into aluminum nitride 72 which is a good electrical insulation material while having a high thermal conductivity. By making it contact, it is set as the structure which reduces the contact thermal resistance of a connection part.

この熱伝導体71の製造方法は、実施例6の熱伝導体61の製造方法とほぼ同等である。すなわち、成形型19に被覆材17を巻きつけた後、成型材18を塗布等の手段により固着させるが、このとき一部に成型材18を固着させない部分を形成させ、この部分にて筒状体を切断する。得られた材料の端部の被覆材17の絶縁材料16を剥し、露出した線材15を窒化アルミニウム72にて被覆して、熱伝導体71を得ることができる。   The method for manufacturing the heat conductor 71 is substantially the same as the method for manufacturing the heat conductor 61 of the sixth embodiment. That is, after the coating material 17 is wound around the molding die 19, the molding material 18 is fixed by means such as coating, but at this time, a portion where the molding material 18 is not fixed is formed in part, and at this portion, a cylindrical shape is formed. Cut the body. The insulating material 16 of the covering material 17 at the end of the obtained material is peeled off, and the exposed wire 15 is covered with the aluminum nitride 72, whereby the heat conductor 71 can be obtained.

あるいは、実施例1のように製造した熱伝導体2の端部にて、線材15を露出させる。   Alternatively, the wire 15 is exposed at the end of the heat conductor 2 manufactured as in Example 1.

このような構成および製造方法による熱伝導体71は、実施例6の熱伝導体61の製造方法に比較して、より工程を簡略化することができる。   Compared with the manufacturing method of the heat conductor 61 of Example 6, the heat conductor 71 by such a structure and manufacturing method can simplify a process more.

本発明の熱伝導体を使用した超電導コイル装置の一般的な冷却構成を示す構成図。The block diagram which shows the general cooling structure of the superconducting coil apparatus using the heat conductor of this invention. 実施例1の熱伝導体の幅方向の断面図。Sectional drawing of the width direction of the heat conductor of Example 1. FIG. 図2のIII−III線に沿う実施例1の熱伝導体の長手方向の断面図。Sectional drawing of the longitudinal direction of the heat conductor of Example 1 which follows the III-III line of FIG. 実施例1の熱伝導体の製造方法を示す側面図。The side view which shows the manufacturing method of the heat conductor of Example 1. FIG. 図4の側面図のV−V線に沿う断面図。Sectional drawing which follows the VV line of the side view of FIG. 実施例2の熱伝導体の幅方向の断面図。Sectional drawing of the width direction of the heat conductor of Example 2. FIG. 実施例2の熱伝導体の製造方法を示す側面図。The side view which shows the manufacturing method of the heat conductor of Example 2. FIG. 実施例3の熱伝導体の幅方向の断面図。Sectional drawing of the width direction of the heat conductor of Example 3. FIG. 実施例3の熱伝導体の製造方法を示す側面図。The side view which shows the manufacturing method of the heat conductor of Example 3. FIG. 実施例4の熱伝導体の長手方向の断面図。Sectional drawing of the longitudinal direction of the heat conductor of Example 4. FIG. 実施例5の熱伝導体の長手方向の断面図。Sectional drawing of the longitudinal direction of the heat conductor of Example 5. FIG. 実施例6の熱伝導体の長手方向の断面図。Sectional drawing of the longitudinal direction of the heat conductor of Example 6. FIG. 実施例7の熱伝導体の長手方向の断面図。Sectional drawing of the longitudinal direction of the heat conductor of Example 7. FIG.

符号の説明Explanation of symbols

1 超電導コイル
2 熱伝導体
3 冷凍機
4 真空断熱容器
15 線材
17 成型材
16 絶縁被覆
18 成型材
19 成形型
21 熱伝導体
22 絶縁材シート
31 熱伝導体
32 絶縁材の糸
41 熱伝導体
51 熱伝導体
61 熱伝導体
62 端子板
71 熱伝導体
72 窒化アルミ板
DESCRIPTION OF SYMBOLS 1 Superconducting coil 2 Thermal conductor 3 Refrigerator 4 Vacuum insulation container 15 Wire material 17 Molding material 16 Insulation coating 18 Molding material 19 Molding die 21 Thermal conductor 22 Insulating material sheet 31 Thermal conductor 32 Insulating material thread 41 Thermal conductor 51 Thermal conductor 61 Thermal conductor 62 Terminal plate 71 Thermal conductor 72 Aluminum nitride plate

Claims (5)

熱伝導材より成る線材に絶縁被覆を施して構成した被覆材を円柱形の成形型にコイル状に巻きつけ、これに成型材を固着させて一体化させて筒状体とし、この筒状体の円周上の点にて前記筒状体を少なくとも一箇所切断して帯状の熱伝導体を得ることを特徴とする熱伝導体の製造方法。A coating material formed by applying an insulating coating to a wire made of a heat conductive material is wound around a cylindrical mold in a coil shape, and the molding material is fixed and integrated to form a cylindrical body. A method for producing a thermal conductor, comprising: cutting the cylindrical body at a point on the circumference of the substrate to obtain a strip-shaped thermal conductor. 前記被覆材を2本撚り合わせて2重らせん状に構成し、この2重らせん状とした前記被覆材を前記成形型に巻きつけ、これに成型材を固着させて一体化させて筒状体とし、この筒状体の円周上の点にて前記筒状体を少なくとも一箇所切断して帯状の熱伝導体を得ることを特徴とする請求項1記載の熱伝導体の製造方法。Two coating materials are twisted together to form a double helix, the double helix coating material is wound around the mold, and the molding material is fixed and integrated to form a cylindrical body. The method for producing a heat conductor according to claim 1, wherein the tubular body is cut at least at one point at a point on the circumference of the tubular body to obtain a belt-like heat conductor. 前記被覆材を前記成形型にコイル状に巻きつけたのち、前記成型材を前記成形型の円周方向に部分的に固着させて筒状体とし、この筒状体の円周上の点にてこの筒状体を少なくとも一箇所切断することにより、成型材によって固着された部分と前記被覆材が露出した部分とが交互に設けられた熱伝導体を得ることを特徴とする請求項1記載の熱伝導体の製造方法。After the covering material is wound around the molding die in a coil shape, the molding material is partially fixed in the circumferential direction of the molding die to form a cylindrical body, and a point on the circumference of the cylindrical body is formed. The heat conductor in which the portion fixed by the molding material and the portion where the covering material is exposed is obtained by cutting the cylindrical body at least at one place. Of manufacturing a thermal conductor. 熱伝導材より成る線材と絶縁性材料とを、前記線材が短絡しないように円柱形の成形型にコイル状に交互に巻きつけ、これに成型材を固着させて一体化させて筒状体とし、この筒状体の円周上の点にてこの筒状体を少なくとも一箇所切断して帯状の熱伝導体を得ることを特徴とする熱伝導体の製造方法。A wire made of a heat-conducting material and an insulating material are alternately wound in a coil shape around a cylindrical mold so that the wire does not short-circuit, and the molding material is fixed and integrated to form a cylindrical body. A method for producing a heat conductor, characterized in that a strip-shaped heat conductor is obtained by cutting at least one portion of the cylindrical body at a point on the circumference of the cylindrical body. 前記絶縁性材料がシート状または糸状であることを特徴とする請求項4記載の熱伝導体の製造方法。5. The method of manufacturing a heat conductor according to claim 4, wherein the insulating material is in a sheet form or a thread form.
JP2004351153A 2004-12-03 2004-12-03 Manufacturing method of heat conductor Expired - Fee Related JP4559834B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004351153A JP4559834B2 (en) 2004-12-03 2004-12-03 Manufacturing method of heat conductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004351153A JP4559834B2 (en) 2004-12-03 2004-12-03 Manufacturing method of heat conductor

Publications (2)

Publication Number Publication Date
JP2006165098A JP2006165098A (en) 2006-06-22
JP4559834B2 true JP4559834B2 (en) 2010-10-13

Family

ID=36666787

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004351153A Expired - Fee Related JP4559834B2 (en) 2004-12-03 2004-12-03 Manufacturing method of heat conductor

Country Status (1)

Country Link
JP (1) JP4559834B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4908338B2 (en) * 2007-07-17 2012-04-04 公益財団法人鉄道総合技術研究所 Heat generation prevention device for metal heat exchanger of superconducting transformer
JP2011155117A (en) * 2010-01-27 2011-08-11 Fdk Corp Heat dissipation structure of coil
JP6433767B2 (en) * 2014-11-21 2018-12-05 公益財団法人鉄道総合技術研究所 Superconducting magnetic bearing
JP7409968B2 (en) * 2020-05-28 2024-01-09 株式会社日立製作所 Composite material body and superconducting magnet equipped with the same

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07142242A (en) * 1993-11-19 1995-06-02 Toshiba Corp Superconducting magnet device
JPH1118290A (en) * 1997-06-20 1999-01-22 Mitsubishi Electric Corp Superconducting current limiting device
JPH1130574A (en) * 1997-07-11 1999-02-02 Jeol Ltd Thermal conductor
JP2001185414A (en) * 1999-12-24 2001-07-06 Mitsubishi Heavy Ind Ltd Cooling structure for super conducting coil
JP2001244109A (en) * 2000-02-28 2001-09-07 Toshiba Corp High-temperature superconducting coil device
JP2003179277A (en) * 2001-12-11 2003-06-27 Hitachi Ltd Cryogenic container for superconducting quantum interference device storage

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07142242A (en) * 1993-11-19 1995-06-02 Toshiba Corp Superconducting magnet device
JPH1118290A (en) * 1997-06-20 1999-01-22 Mitsubishi Electric Corp Superconducting current limiting device
JPH1130574A (en) * 1997-07-11 1999-02-02 Jeol Ltd Thermal conductor
JP2001185414A (en) * 1999-12-24 2001-07-06 Mitsubishi Heavy Ind Ltd Cooling structure for super conducting coil
JP2001244109A (en) * 2000-02-28 2001-09-07 Toshiba Corp High-temperature superconducting coil device
JP2003179277A (en) * 2001-12-11 2003-06-27 Hitachi Ltd Cryogenic container for superconducting quantum interference device storage

Also Published As

Publication number Publication date
JP2006165098A (en) 2006-06-22

Similar Documents

Publication Publication Date Title
KR101548404B1 (en) Conductor arrangement for a resistive switching element having at least two composite conductors made from superconducting conductor bands
JP4620637B2 (en) Resistive superconducting fault current limiter
JP3936755B2 (en) Superconducting coil
JP6270479B2 (en) High temperature superconductor (HTS) coil
US7183678B2 (en) AC winding with integrated cooling system and method for making the same
US7911308B2 (en) Low thermal impedance conduction cooled magnetics
KR100706494B1 (en) Superconducting cable
US8185175B2 (en) Superconducting coil and superconductor used for the same
JP2012089838A (en) Liquid cooled magnetic component with indirect cooling for high frequency and high power applications
US10032549B2 (en) Superconducting coil device with coil winding and production method
JP5921940B2 (en) Superconducting coil conductive cooling plate and superconducting coil device
US20160276888A1 (en) Windings for electrical machines
JP5274983B2 (en) Superconducting coil device
JP4559834B2 (en) Manufacturing method of heat conductor
JP2012038812A (en) Superconducting coil device
JP2001093721A (en) High-temperature superconducting magnet
JP2013246881A (en) Insulation coating structure of superconducting wire rod
JP2000114027A (en) Superconducting coil device
JP4805688B2 (en) Superconducting wire and superconducting device using the same
CN103765532A (en) Method for producing superconducting coils and apparatus comprising a superconducting coil produced in accordance with the method
KR20120092077A (en) Composite with coated conductor
JP2549695B2 (en) Superconducting stranded wire and manufacturing method thereof
JP3349179B2 (en) Superconducting busbar conductor
JP2883071B1 (en) Superconducting field winding conductor
JP2016178119A (en) Superconducting coil

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070508

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091021

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091117

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100106

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100629

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100723

R151 Written notification of patent or utility model registration

Ref document number: 4559834

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130730

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees