JPS5873104A - Superconductive magnet - Google Patents

Superconductive magnet

Info

Publication number
JPS5873104A
JPS5873104A JP17149381A JP17149381A JPS5873104A JP S5873104 A JPS5873104 A JP S5873104A JP 17149381 A JP17149381 A JP 17149381A JP 17149381 A JP17149381 A JP 17149381A JP S5873104 A JPS5873104 A JP S5873104A
Authority
JP
Japan
Prior art keywords
insulating materials
materials
spacers
conductor
conductors
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP17149381A
Other languages
Japanese (ja)
Other versions
JPH0250608B2 (en
Inventor
Susumu Shimamoto
進 島本
Masataka Nishi
正孝 西
Hisanao Ogata
久直 尾形
Kazumasa Fujioka
藤岡 和正
Yoshinori Shiraku
善則 白楽
Yoshiomi Yagi
八木 義臣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Japan Atomic Energy Agency
Original Assignee
Hitachi Ltd
Japan Atomic Energy Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd, Japan Atomic Energy Research Institute filed Critical Hitachi Ltd
Priority to JP17149381A priority Critical patent/JPS5873104A/en
Publication of JPS5873104A publication Critical patent/JPS5873104A/en
Publication of JPH0250608B2 publication Critical patent/JPH0250608B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

PURPOSE:To obtain a compact and stable superconductive magnet by a method wherein insulating materials are fixed to the circumference of compound superconductive conductors and lubricating materials are applied to the outsides of the insulating materials or low friction spacers are positioned for winding. CONSTITUTION:In layers composed by winding compound superconductors, interlayer insulating materials 3, such as glass fiber inserted epoxy resin, cloth inserted phenol resin, are buried in and fixed to the suitable places at the layer sides of stabilizing materials 2 and spacers 4 are inserted and positioned between the spaces facing these interlayer insulating materials 3. Electromagnetic force acting on the layers is transferred to the conductors through the interlayer insulating materials 3 and the spacers 4. Meanwhile, in the spaces between conductor turns, interturn insulating materials 5 are fixed to the insides of the turns of the stabilizing materials 2 and spacers 6 such as ethylene tetrafluoride having low friction coefficient are inserted and positioned at the middle of the interturn insulating materials 5. This does not generate friction heat involved in conductor transition on the surfaces of the conductors and a compact and stable magnet can be obtained.

Description

【発明の詳細な説明】 本発明は超電導体を利用し九超電導マグネットの構造に
関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to the structure of a nine-superconducting magnet using a superconductor.

従来、超電導マグネットを実用化するにおいてもつと4
問題となっている点の一つに導体の安定性がある。すな
わち、超電導導体を巻線してマグネットとして利用する
際の通電可能な電流値が必ずしも超電導導体単体の特性
と一致せず、しばしば低い電流値で超電導破壊をお辷す
、この不安定性の原因の一つとして、導体自身に加わる
電磁力のために導体が変移し、その時に放出されるエネ
ルギが導体を超電導に維持するに必要な臨界温度以上に
加熱することがあげられている。そこで、かジに超電導
が破れても、冷却に見合うだけの低いジュール損失にお
さえるぺく、超電導導体の周囲に多量の銅またはアル2
ニウムからなる安定化材を付けた複合超電導導体が使わ
れる。
Conventionally, there were four points in the practical application of superconducting magnets.
One of the issues is the stability of the conductor. In other words, the current value that can be passed when a superconducting conductor is wound and used as a magnet does not necessarily match the characteristics of the superconducting conductor itself, and the superconductor often breaks down at low current values. One possibility is that the electromagnetic force exerted on the conductor itself causes the conductor to displace itself, and the energy released heats the conductor above the critical temperature needed to maintain it as a superconductor. Therefore, even if the superconductor were to break, a large amount of copper or aluminum was placed around the superconductor in order to keep the Joule loss low enough to justify cooling.
A composite superconducting conductor with a stabilizing material made of Ni is used.

このような導体では、一般に安定化材の断面積が大きく
なり、マグネット全体としての電流密度を低下させ、ひ
いてはコストを増大させるという欠点があった。
Such a conductor generally has the disadvantage that the cross-sectional area of the stabilizing material becomes large, which reduces the current density of the magnet as a whole and increases the cost.

本発明は、上記欠点を改善するためになされたもので、
コンパクトでかつ安定な超電導マグネットを提供するも
のであシ、複合超電導導体の周囲に電気絶縁材を固着し
、その絶縁材の外側に潤滑剤を塗布するかまたは低摩擦
性のスペーサを配置して巻設し、導体の変移にともなう
摩擦熱が導体の表面で生じないように構成したことを特
徴とする。
The present invention was made to improve the above drawbacks, and
To provide a compact and stable superconducting magnet, an electrical insulating material is fixed around a composite superconducting conductor, and a lubricant is applied to the outside of the insulating material or a low-friction spacer is placed. It is characterized in that it is wound so that no frictional heat is generated on the surface of the conductor due to the displacement of the conductor.

以下本発明の超電導マグネットの一実施例を第1図に示
す。超電導導体1は主として多数の細い超電導素線から
なシ、周囲に銅またはアルiニウハ 合超電導導体を形成している。このような複合超電導導
体を巻設してなる眉間には安定化材2の層間側の適当個
所に層間絶縁材3が埋め込んで固着されそれら層間絶縁
材3.3の対向する間にスペーサ4が挿入配置されてい
る。層間に働く電磁力はこの層間絶縁材3およびスペー
サ4を介して導体に伝達される。絶縁材のない層間部分
には冷媒として液体ヘリウムが満たされている。一方、
導体ターン間には安定イビ材2のターン内側にターン間
絶縁材5が固着され、ターン関絶縁材5,5の中間にス
ペーサ6が挿入配置されている。層間絶縁材3やターン
間絶縁材5としてはガラス繊維入ジェポキシ樹脂、布入
ジフェノール樹脂、ボリイ電ド樹脂などの電気絶縁材料
が適している。これらは、接着あるいは埋め込み等の手
段で安定化材に固着される。また、スペーサ6としては
、摩擦係数の低い四弗化エチレンなどが適しているが、
上記エポキシ樹脂などの表面に潤滑性の四弗化エチレン
や二硫化モリブデンを塗布したものでもよい。
An embodiment of the superconducting magnet of the present invention is shown in FIG. 1 below. The superconducting conductor 1 mainly consists of a large number of thin superconducting wires, and a copper or aluminum alloy superconducting conductor is formed around the superconducting conductor 1. In the glabella formed by winding such a composite superconducting conductor, an interlayer insulating material 3 is embedded and fixed at an appropriate location on the interlayer side of the stabilizing material 2, and a spacer 4 is placed between the interlayer insulating materials 3.3 facing each other. Insert is placed. The electromagnetic force acting between the layers is transmitted to the conductor via the interlayer insulating material 3 and the spacer 4. The interlayer portions where there is no insulating material are filled with liquid helium as a coolant. on the other hand,
Between the conductor turns, an inter-turn insulating material 5 is fixed to the inside of the turn of the stable conductor material 2, and a spacer 6 is inserted between the turn-related insulating materials 5,5. As the interlayer insulation material 3 and the interturn insulation material 5, electrical insulation materials such as glass fiber-containing epoxy resin, cloth-containing diphenol resin, and polyelectrode resin are suitable. These are fixed to the stabilizing material by means such as adhesion or embedding. In addition, as the spacer 6, tetrafluoroethylene, etc., which has a low coefficient of friction, is suitable.
The surface of the above-mentioned epoxy resin or the like may be coated with lubricating ethylene tetrafluoride or molybdenum disulfide.

このような構成では、仮シに複合超電導導体が電磁力等
の外力を受けて変移しても、安定化材2と絶縁材3およ
び5の界面でょシも絶縁材3および5とスペーサ4およ
び6の界面の方で滑シをおこす。その結果発生した熱は
、絶縁材3および5を通して安定化材2に伝えられるの
であるが、絶縁材3および5の熱伝導率は銅などに比べ
てl/1000以下であり、熱の伝播速度はきわめて遅
い。
In such a configuration, even if the composite superconducting conductor is displaced due to external force such as electromagnetic force, the interface between the stabilizing material 2 and the insulating materials 3 and 5 will also be affected by the insulating materials 3 and 5 and the spacer 4. Slippage occurs at the interfaces of 6 and 6. The heat generated as a result is transferred to the stabilizing material 2 through the insulating materials 3 and 5, but the thermal conductivity of the insulating materials 3 and 5 is less than 1/1000 compared to copper etc., so the heat propagation rate is is extremely slow.

もし、安定化材2の表面で発熱があるとすれば、熱はほ
ぼ瞬時に安定化材2全体に拡がシ温度も短時間のうちに
上昇する。これに対し、絶縁材3および5を経由して安
定化材2に熱が伝わる場合、上述の如く熱の伝播速度が
遅いので安定化材2をゆつ〈シ加熱することとなシ、そ
の間に安定化材2に接している冷却剤が熱を除去するの
で、安定化材2の温度上昇は十分低くおさえられ、臨界
温度を越えるに至らない、また、絶縁材3および5トス
ヘーサ4:Thよび6間の摩擦係数が低いので、発熱量
も小さい。
If heat is generated on the surface of the stabilizing material 2, the heat will spread throughout the stabilizing material 2 almost instantaneously, and the temperature will also rise within a short period of time. On the other hand, when heat is transmitted to the stabilizing material 2 via the insulating materials 3 and 5, the speed of heat propagation is slow as described above, so it is not necessary to heat the stabilizing material 2. Since the coolant in contact with the stabilizing material 2 removes heat, the temperature rise of the stabilizing material 2 is suppressed sufficiently low and does not exceed the critical temperature. Since the coefficient of friction between and 6 is low, the amount of heat generated is also small.

第2図は本発明の他の実施例である。安定化材2の内部
に冷却流路7が設けられ、その中を超臨界圧ヘリウムや
二相ヘリウムが流れる強制冷却の例である。したがって
、複合超電導導体の周囲に完全に絶縁材8で巻かれてい
る。そして、層間にスペーサ4.ターン間スペーサ6が
配置されている。この場合も第1図に述べたのと同様の
作用をする。
FIG. 2 shows another embodiment of the invention. This is an example of forced cooling in which a cooling channel 7 is provided inside the stabilizing material 2, and supercritical pressure helium or two-phase helium flows therein. Therefore, the insulating material 8 is completely wrapped around the composite superconducting conductor. And spacer 4 between the layers. Inter-turn spacers 6 are arranged. In this case as well, the same effect as described in FIG. 1 is obtained.

また、上記実施例に述べたスペーサを省いて、絶縁材の
外側に四弗化エチレンや二硫化モリブデンを塗布しても
よい。
Furthermore, the spacer described in the above embodiment may be omitted and ethylene tetrafluoride or molybdenum disulfide may be applied to the outside of the insulating material.

以上述べた如く本発明によれば、熱の伝播が遅く導体の
温度上昇をかなシ低くおさえることができるので導体が
臨界温度を越えた場合を想定して安定化材を多量に付け
る必要がなく、小形コンパクトな超電導マグネットを得
ることができる。
As described above, according to the present invention, heat propagation is slow and the temperature rise of the conductor can be suppressed to a very low level, so there is no need to apply a large amount of stabilizing material in case the conductor exceeds the critical temperature. , a small and compact superconducting magnet can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の超電導マグネットの一実施例を示す要
部斜視図、第2図は本発明の超電導マグネットの他の実
施例を示す要部断面図である。 1・・・超電導導体、2・・・安定化材、3・・・層間
絶縁材、4.6・・・スペーサ、5・・・タンク間絶縁
材、7・・・冷却流路。
FIG. 1 is a perspective view of a main part showing one embodiment of a superconducting magnet of the present invention, and FIG. 2 is a sectional view of a main part showing another embodiment of a superconducting magnet of the present invention. DESCRIPTION OF SYMBOLS 1... Superconducting conductor, 2... Stabilizing material, 3... Interlayer insulation material, 4.6... Spacer, 5... Inter-tank insulation material, 7... Cooling channel.

Claims (1)

【特許請求の範囲】[Claims] 超電導導体および安定化材を主構成物とする複合超電導
導体の周囲に電気絶縁材を固着し、前記電気絶縁材の外
側に潤滑剤を被覆するかまたは低摩擦性のスペーサを配
置して巻線したことを特徴とする超電導マグネット。
An electrical insulating material is fixed around a composite superconducting conductor mainly composed of a superconducting conductor and a stabilizing material, and a lubricant is coated on the outside of the electrical insulating material or a low-friction spacer is arranged to wind the wire. A superconducting magnet that is characterized by:
JP17149381A 1981-10-28 1981-10-28 Superconductive magnet Granted JPS5873104A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17149381A JPS5873104A (en) 1981-10-28 1981-10-28 Superconductive magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17149381A JPS5873104A (en) 1981-10-28 1981-10-28 Superconductive magnet

Publications (2)

Publication Number Publication Date
JPS5873104A true JPS5873104A (en) 1983-05-02
JPH0250608B2 JPH0250608B2 (en) 1990-11-02

Family

ID=15924113

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17149381A Granted JPS5873104A (en) 1981-10-28 1981-10-28 Superconductive magnet

Country Status (1)

Country Link
JP (1) JPS5873104A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS607708A (en) * 1983-06-28 1985-01-16 Toshiba Corp Installation of insulating spacer for superconductive magnet
EP0487352A2 (en) * 1990-11-21 1992-05-27 Kabushiki Kaisha Toshiba Superconducting coil apparatus and method of manufacturing the same
GB2471326A (en) * 2009-06-26 2010-12-29 Siemens Magnet Technology Ltd Frusto-conical superconducting magnet formers

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54137599A (en) * 1978-04-18 1979-10-25 Mitsubishi Electric Corp Nuclear fusion coil

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54137599A (en) * 1978-04-18 1979-10-25 Mitsubishi Electric Corp Nuclear fusion coil

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS607708A (en) * 1983-06-28 1985-01-16 Toshiba Corp Installation of insulating spacer for superconductive magnet
JPH0554243B2 (en) * 1983-06-28 1993-08-12 Tokyo Shibaura Electric Co
EP0487352A2 (en) * 1990-11-21 1992-05-27 Kabushiki Kaisha Toshiba Superconducting coil apparatus and method of manufacturing the same
US5325080A (en) * 1990-11-21 1994-06-28 Kabushiki Kaisha Toshiba Superconducting coil apparatus and method of manufacturing the same
GB2471326A (en) * 2009-06-26 2010-12-29 Siemens Magnet Technology Ltd Frusto-conical superconducting magnet formers
GB2471326B (en) * 2009-06-26 2011-05-18 Siemens Magnet Technology Ltd Improved magnetic formers

Also Published As

Publication number Publication date
JPH0250608B2 (en) 1990-11-02

Similar Documents

Publication Publication Date Title
JP5512175B2 (en) Reinforced high-temperature superconducting wire and high-temperature superconducting coil wound around it
US3332047A (en) Composite superconductor
JPH02253517A (en) Superconducting wire
JPH0371518A (en) Superconductor
JPS5873104A (en) Superconductive magnet
JPS6350844B2 (en)
US3466581A (en) Winding for a magnet coil of high field strength and method of manufacturing the same
US3486146A (en) Superconductor magnet and method
US3613006A (en) Stable superconducting magnet
JPS6328328B2 (en)
JPS60100487A (en) Permanent current switch
JP2002140943A (en) Superconductive cable
JPS5948488B2 (en) Composite superconducting wire
JPH01204313A (en) Manufacture of superconductive hollow cable made of oxide
JP3120625B2 (en) Oxide superconducting conductor
JP3120626B2 (en) Oxide superconducting conductor
JPH048885B2 (en)
JPH1097918A (en) Superconducting device
JP2883071B1 (en) Superconducting field winding conductor
JPS61265881A (en) Thermal type superconductive switch
JPH04320304A (en) Superconductive magnet
JPH09106908A (en) Superconducting coil and manufacture thereof
Yan et al. Stability test of the superconductor for large saddle magnet for MHD experimental generator no. 1
JPH0287423A (en) Ac superconductor wire
WOLLAN et al. Evaluation of a cryostable low-loss conductor for pulsed field applications(for tokamak devices)