JPS6165407A - Superconductive device - Google Patents

Superconductive device

Info

Publication number
JPS6165407A
JPS6165407A JP18840784A JP18840784A JPS6165407A JP S6165407 A JPS6165407 A JP S6165407A JP 18840784 A JP18840784 A JP 18840784A JP 18840784 A JP18840784 A JP 18840784A JP S6165407 A JPS6165407 A JP S6165407A
Authority
JP
Japan
Prior art keywords
superconducting
cross
solenoid coil
superconductor
sectional area
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18840784A
Other languages
Japanese (ja)
Inventor
Toshizo Kawamura
河村 寿三
Masao Morita
正夫 守田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP18840784A priority Critical patent/JPS6165407A/en
Priority to DE19853531322 priority patent/DE3531322A1/en
Priority to FR8513276A priority patent/FR2570215B1/en
Publication of JPS6165407A publication Critical patent/JPS6165407A/en
Priority to US08/013,667 priority patent/US5247271A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F6/00Superconducting magnets; Superconducting coils
    • H01F6/06Coils, e.g. winding, insulating, terminating or casing arrangements therefor

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)
  • Containers, Films, And Cooling For Superconductive Devices (AREA)

Abstract

PURPOSE:To obtain the high stability of superconductive characteristics by decreasing a current density to prevent a rise of a magnetic field by composing a cross-sectional area of superconductive wire on the side of end part of a superconductive solenoid coil more widely than that of the side of central part. CONSTITUTION:A superconductive solenoid coil 11 is wound on a winding frame 5. A superconductive wire 41a is wound 2 on the terminal side, for example, 2 turns of winding and it is composed of a superconductor 21a buried in a stabilizing member 31. The cross-sectional area of a superconductive member 21a on the side of end part is composed more widely than that of the superconductor 21b on the side of central part thereby decreasing a current density of the superconductive wire 41a on the side of end part.

Description

【発明の詳細な説明】 〔発明の技術分野〕 この発明は薄肉の断面形状の超電導線を巻枠に巻回して
構成した超電導ツレ′ノイドコイルを備え′た超電導装
置に関し、特に超1[:4ソレノイドコイルの端部(こ
おける局部的な磁界の上昇を抑制する手段に関するもの
である。
[Detailed Description of the Invention] [Technical Field of the Invention] The present invention relates to a superconducting device equipped with a superconducting tornoid coil constructed by winding a superconducting wire with a thin cross-sectional shape around a winding frame, and particularly relates to a superconducting device equipped with a superconducting coil having a thin cross-sectional shape and wound around a winding frame. This relates to means for suppressing the local increase in magnetic field at the end of a solenoid coil.

〔従来の技術〕[Conventional technology]

従来この種の装置として一般的なものを第1図及び第2
図に示す0図において(1)は超電導ソレノイドコイル
であり、゛超電導体(2)を安定化材(3)に埋設して
形成した比較的薄肉のi面形状を有する超電導線(4)
を巻枠【6)に巻回して円筒状に構成している。
Conventionally common devices of this type are shown in Figures 1 and 2.
In Figure 0, (1) is a superconducting solenoid coil, which is a superconducting wire (4) having a relatively thin i-plane shape formed by embedding a superconductor (2) in a stabilizing material (3).
is wound around a winding frame [6] to form a cylindrical shape.

(6)はこの超電導ソレノイド(1)を収容するクライ
オスタットである。
(6) is a cryostat that accommodates this superconducting solenoid (1).

次に動作について説明する0円筒状の直径に対してコイ
ル厚みの少ない薄肉の超電導ソレノイドコイル(1)は
、近年例えばC0N8TRUCTION ANDTES
T  OF  THE  CELLOTHIN−WAL
L  5OLENOID(1980年、 Acl v、
 Cryog 、Eng 、 25 ) P175〜P
184に見ろように、高エネルギー物理学分野で高運動
量素粒子を相互に衝突させることにより素粒子を解明す
る、いわゆる粒子衝突装置に用いられるもので、粒子の
透過のよいように極室薄肉に構成されている。更にその
構成材料も超電導体(2)以外は、アルミニウムやカー
ボンなどを主成分とするものが用いられ粒子の透過がよ
いように考慮か われている。また超電導体(2)も必
要以上に断面積を大きくしないように極めて高電流密度
となっていることは当然である。この超電導ソレノイド
コイ/l’ (1) 全運転するときは、電流は超電導
線(4)の超電導体(2)だけに流れ、通常は安定化材
(3)には流れていない。
Next, the operation of the thin superconducting solenoid coil (1), which has a small coil thickness relative to the 0 cylindrical diameter, has been developed in recent years, for example, by C0N8TRUCTION ANDTES.
T OF THE CELLOTHIN-WAL
L 5 OLENOID (1980, Acl v,
Cryog, Eng, 25) P175~P
As shown in 184, it is used in the field of high-energy physics to elucidate elementary particles by colliding high-momentum elementary particles with each other, so-called particle collision devices. It is configured. Moreover, its constituent materials, except for the superconductor (2), are designed to have aluminum, carbon, etc. as their main components, and are designed to allow good particle penetration. Further, it is natural that the superconductor (2) also has an extremely high current density so as not to increase its cross-sectional area more than necessary. When this superconducting solenoid coil /l' (1) is in full operation, current flows only through the superconductor (2) of the superconducting wire (4), and normally does not flow through the stabilizing material (3).

安定化材(3)に流れるのは、何らかの擾乱のために超
電導が破れたときに電流がバイパスし、例えば電気学会
大学講座;超電導工学(昭和49年、電気学会)P60
〜P65に見るように再び超電導に復帰を促すためのも
のである。このように超電導体(2)は、その直径に比
して極めて小さな断面を有するために、特にその端部:
こおいて高い磁界を発生する。これは一種の端部効果で
、これと類似の現象は例えば電磁気宇現象理論(昭和1
9年、竹山説三著、丸善出版) P2S5 tこ見られ
る。即ち、半無限平のときσ−−ψを与えて電界が無限
大となる。肉厚が無限小ならば超電導ソレノイドコイ/
l/ (1)の端部磁界は無限大となり、一般には有限
の厚みのために有限の値に留まるが、かなり高くなるこ
とは否めない。
The current that flows through the stabilizing material (3) is bypassed when the superconductor is broken due to some kind of disturbance.
This is to encourage the return to superconductivity as shown on page 65. In this way, since the superconductor (2) has an extremely small cross section compared to its diameter, especially its ends:
This generates a high magnetic field. This is a kind of edge effect, and similar phenomena can be found, for example, in the theory of electromagnetic phenomena (Showa 1).
(1999, Takeyama Seizo, Maruzen Publishing) P2S5 You can see this. That is, when it is a semi-infinite plane, σ--ψ is given and the electric field becomes infinite. If the wall thickness is infinitesimal, it is a superconducting solenoid carp/
The end magnetic field of l/(1) becomes infinite and generally remains at a finite value due to the finite thickness, but it cannot be denied that it becomes quite high.

従来の超電導装置では以上のように構成されているので
、超電導ソレノイドコイルの端部における磁界の上昇は
不可避で、このことは特に電流限界が経験している磁界
の強さに依存する超電導の場合には、時として致命的な
こととなる。即ち超電導の保持に関して十分に安定化し
てあっても一部に超電導破壊が起これば、これは連鎖反
応的に波及する可能性は高く、例示した高エネルギー物
理学実験装置のような大形の装置ではこれに対する対策
は十分に必要である。
In conventional superconducting devices constructed as described above, a rise in the magnetic field at the end of the superconducting solenoid coil is inevitable, and this is especially true in the case of superconducting where the current limit depends on the strength of the magnetic field being experienced. can sometimes be fatal. In other words, even if the maintenance of superconductivity is sufficiently stabilized, if superconductivity breaks down in some areas, there is a high possibility that this will spread as a chain reaction. It is necessary for the equipment to take sufficient measures against this.

〔発明の概要〕[Summary of the invention]

この発明は上記のような従来のものの欠点を除去するた
めになされたもので、超電導ソレノイドコイルの端部側
の超電導線の断面積を中央部側よりも大きな断面積に購
成し電流密度を下げること)ζより、磁界の上昇を防ぎ
1超電導特性の高安定性が得られる超電導装置を提供す
ることを目的としている。
This invention was made in order to eliminate the drawbacks of the conventional ones as described above, and it is possible to increase the current density by making the cross-sectional area of the superconducting wire on the end side of the superconducting solenoid coil larger than that on the central side. The purpose of the present invention is to provide a superconducting device that can prevent the rise of the magnetic field and obtain the high stability of superconducting characteristics.

〔発明の実施例〕[Embodiments of the invention]

以下、この発明の一実施例を図Iζついて説明する。第
8図において、(2)は巻枠(5)に巻回された超電導
ソレノイドコイ/l/、(txa)、(ttb)は超電
導ソレノイドコイル(1)の端部側、中央部側、(41
a)は端部側の例えば2ターンの超電導線であり、安定
化材6旧ζ埋設された超電導体(21a)lこより構成
されている。(41b)は中央部側の超電導線であり、
安定化材0りに埋設された超電導体(21b)により構
成されている。ところで、端部側の超電導体(21a)
の断面積は中央部側の超電導体(21b)の断面積より
も大きく構成されており、端部側の超電導線(41a)
の電流密度を下げるようにしている。
An embodiment of the present invention will be described below with reference to FIG. Iζ. In Fig. 8, (2) is the superconducting solenoid coil /l/ wound around the winding frame (5), (txa), (ttb) is the end side of the superconducting solenoid coil (1), the center side, ( 41
A) is a superconducting wire with, for example, two turns on the end side, and is composed of a superconductor (21a) and a stabilizing material (6 and ζ) embedded therein. (41b) is the superconducting wire on the center side,
It is composed of a superconductor (21b) embedded in a stabilizing material. By the way, the superconductor (21a) on the end side
The cross-sectional area of the superconducting wire (41a) is larger than that of the superconducting wire (21b) on the center side, and the superconducting wire (41a) on the end side
The current density is lowered.

このように断面積を増大することにより、これに反比例
して電流密度は下がるので、同一特性の超電導体特性を
有量るものとすると、その分だけ超電導限界(こ対して
余裕が確保されることとなる。
By increasing the cross-sectional area in this way, the current density decreases in inverse proportion to this, so if we assume that the same superconductor properties are abundant, the superconductivity limit (a margin is secured for this) That will happen.

更に、電流密度が低いということは、ビオ・サバ−〜の
法則が示すように、その超電導体の経験する磁界そのも
のが低下することを意味し、この現象も超電導限界に対
してより良い効果を斎らす。
Furthermore, a lower current density means that the magnetic field itself experienced by the superconductor decreases, as shown by the Biot-Saber law, and this phenomenon also has a better effect on the superconducting limit. Sairasu.

従って、超電導運転の安定性の確保が容易にでき、また
、超電導ソレノイドコイルの中央部側の超電導体の断面
積を十分に低減することもでき、全体として超電導ソレ
ノイドコイルの安定性と経済性、更に超電導ソレノイド
コイルの冷凍手段も容易になるものが得られる。
Therefore, the stability of superconducting operation can be easily ensured, and the cross-sectional area of the superconductor on the central part side of the superconducting solenoid coil can be sufficiently reduced, which improves the stability and economy of the superconducting solenoid coil as a whole. Furthermore, a method for freezing the superconducting solenoid coil can be obtained.

上記の超電導線(41a)の断面積を増加させる他の手
段としては、第4図に示すように2ターンあるいはそれ
以上の超電導線(41a)を並列に用いることによって
超電導体(21a)の断面積を等価的に大きくすること
も可能であり、第5図に示すように超電導線(41a)
を半径方向(こ積み重ねあるいはそれらをさらに並列に
用いて超電導体(2ta)の断面積を等価的に大きくす
ることも可能であり、上記実施例と同様の効果を奏する
Another way to increase the cross-sectional area of the superconducting wire (41a) is to use two or more turns of the superconducting wire (41a) in parallel, as shown in FIG. It is also possible to equivalently increase the area, and as shown in Fig. 5, the superconducting wire (41a)
It is also possible to equivalently increase the cross-sectional area of the superconductor (2ta) by stacking them in the radial direction or by using them in parallel, and the same effect as in the above embodiment is achieved.

〔発明の効果〕〔Effect of the invention〕

以上のように、この発明によれば超電導ソレノイドコイ
ルの端部側の超電導線の断面積を中央部側よりも大きく
構成し、電流密度が下がるようにしたので、磁界の温度
上昇を防ぐことができ、超電導特性の高安定性を得るこ
とができる。
As described above, according to the present invention, the cross-sectional area of the superconducting wire on the end side of the superconducting solenoid coil is configured to be larger than that on the center side, so that the current density is lowered, so that it is possible to prevent the temperature of the magnetic field from rising. It is possible to obtain high stability of superconducting properties.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の超電導装置を示す断面側面図、第2図は
第1図A部の拡大断面側面図、第3図はこの発明の一実
施例による超電導装置を示す要部拡大断面側面図、第4
図及び第5図はそれぞれこの発明の他の実施例に超電導
装置を示す要部拡大断面側面図である。 図において、C5)は巻枠、(6)は超電導ソレノイド
コイル、(1]a)、(ub)は超電導ソレノイドコイ
ルの端部側、中央部側、(21a)、(21b)は超電
導体、0])は安定化材、(41a)、(41b)は超
電導線である。 なお、図中、同一符号は同一、又は相当部分を示す。
FIG. 1 is a sectional side view showing a conventional superconducting device, FIG. 2 is an enlarged sectional side view of section A in FIG. , 4th
5 and 5 are enlarged cross-sectional side views of essential parts showing superconducting devices according to other embodiments of the present invention. In the figure, C5) is a winding frame, (6) is a superconducting solenoid coil, (1] a) and (ub) are the end side and center side of the superconducting solenoid coil, (21a) and (21b) are superconductors, 0]) is a stabilizing material, and (41a) and (41b) are superconducting wires. In addition, in the figures, the same reference numerals indicate the same or equivalent parts.

Claims (4)

【特許請求の範囲】[Claims] (1)薄肉の断面形状の超電導線を巻枠に巻回して構成
した超電導ソレノイドコイルを備えた超電導装置におい
て、上記超電導ソレノイドコイルの端部側の上記超電導
線の断面積を中央部側よりも大きな断面積に構成したこ
とを特徴とする超電導装置。
(1) In a superconducting device equipped with a superconducting solenoid coil configured by winding a superconducting wire with a thin cross-sectional shape around a winding frame, the cross-sectional area of the superconducting wire on the end side of the superconducting solenoid coil is larger than that on the center side. A superconducting device characterized by having a large cross-sectional area.
(2)超電導ソレノイドコイルの端部側の超電導線は複
数の超電導線であり、その超電導線の超電導体の断面積
を大きくしたことを特徴とする特許請求の範囲第1項記
載の超電導装置。
(2) The superconducting device according to claim 1, wherein the superconducting wire on the end side of the superconducting solenoid coil is a plurality of superconducting wires, and the cross-sectional area of the superconductor of the superconducting wire is increased.
(3)超電導ソレノイドコイルの端部側の超電導線は複
数の超電導線を並列に構成し、等価的に超電導線の超電
導体の断面積を大きくしたことを特徴とする特許請求の
範囲第1項記載の超電導装置。
(3) The superconducting wire on the end side of the superconducting solenoid coil is composed of a plurality of superconducting wires in parallel, and the cross-sectional area of the superconductor of the superconducting wire is equivalently increased as claimed in claim 1. The superconducting device described.
(4)超電導ソレノイドコイルの端部側の超電導線は複
数の超電導線を半径方向に積み重ね、等価的に超電導線
の超電導体の断面積を大きくしたことを特徴とする特許
請求の範囲第1項記載の超電導装置。
(4) Claim 1, characterized in that the superconducting wire on the end side of the superconducting solenoid coil is made by stacking a plurality of superconducting wires in the radial direction to equivalently increase the cross-sectional area of the superconductor of the superconducting wire. The superconducting device described.
JP18840784A 1984-09-07 1984-09-07 Superconductive device Pending JPS6165407A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP18840784A JPS6165407A (en) 1984-09-07 1984-09-07 Superconductive device
DE19853531322 DE3531322A1 (en) 1984-09-07 1985-09-02 Superconductive arrangement
FR8513276A FR2570215B1 (en) 1984-09-07 1985-09-06 SUPERCONDUCTING APPARATUS
US08/013,667 US5247271A (en) 1984-09-07 1993-01-28 Superconducting solenoid coil

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18840784A JPS6165407A (en) 1984-09-07 1984-09-07 Superconductive device

Publications (1)

Publication Number Publication Date
JPS6165407A true JPS6165407A (en) 1986-04-04

Family

ID=16223107

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18840784A Pending JPS6165407A (en) 1984-09-07 1984-09-07 Superconductive device

Country Status (3)

Country Link
JP (1) JPS6165407A (en)
DE (1) DE3531322A1 (en)
FR (1) FR2570215B1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5319333A (en) * 1989-07-15 1994-06-07 Bruker Analytische Messtechnik Gmbh Superconducting homogeneous high field magnetic coil
JP2006313923A (en) * 2006-06-26 2006-11-16 Toshiba Corp High temperature superconducting coil and high temperature superconducting magnet using the same
JP2020198373A (en) * 2019-06-03 2020-12-10 株式会社日立製作所 Superconducting magnet

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2560561B2 (en) * 1991-04-26 1996-12-04 株式会社日立製作所 Superconducting coil device

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1209196A (en) * 1958-05-31 1960-02-29 Centre Nat Rech Scient New ironless coils for the production of permanent or transient magnetic fields
BE656743A (en) * 1964-01-06
JPS6059726B2 (en) * 1979-05-31 1985-12-26 株式会社東芝 Superconducting coil device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5319333A (en) * 1989-07-15 1994-06-07 Bruker Analytische Messtechnik Gmbh Superconducting homogeneous high field magnetic coil
JP2006313923A (en) * 2006-06-26 2006-11-16 Toshiba Corp High temperature superconducting coil and high temperature superconducting magnet using the same
JP4719090B2 (en) * 2006-06-26 2011-07-06 株式会社東芝 High temperature superconducting coil and high temperature superconducting magnet using the same
JP2020198373A (en) * 2019-06-03 2020-12-10 株式会社日立製作所 Superconducting magnet

Also Published As

Publication number Publication date
DE3531322C2 (en) 1990-08-30
DE3531322A1 (en) 1986-03-20
FR2570215B1 (en) 1988-01-15
FR2570215A1 (en) 1986-03-14

Similar Documents

Publication Publication Date Title
US6420952B1 (en) Faraday shield and method
JPS6165407A (en) Superconductive device
US3919677A (en) Support structure for a superconducting magnet
US3766502A (en) Cooling device for superconducting coils
US5929385A (en) AC oxide superconductor wire and cable
JP6895897B2 (en) Superconducting wire and superconducting coil
US4623862A (en) Thermally stabilized superconductors
US5247271A (en) Superconducting solenoid coil
WO2015033768A2 (en) Superconducting cable
JPS60100487A (en) Permanent current switch
JPH0224004B2 (en)
JPH0399408A (en) Manufacture of superconducting magnet
KR100302500B1 (en) Pancake-type high-temperature superconducting coils with widths over each floor and manufacturing method thereof
JPS60250506A (en) Compound superconductive wire blank
Guéraud et al. Thermo-electromagnetic stability of ultrafine multifilamentary superconducting cables for industrial frequency use
WO2022070803A1 (en) Superconducting wire material and superconducting cable
JP2001245430A (en) Superconducting current-limiting device of magnetic- shielding type
Yamada et al. SHORT SAMPLE TEST DATA V
Kwasnitza Flux jumps in composite superconductors in a time dependent magnetic field
JPH10321058A (en) Superconducting conductor for alternating current
CN106229957B (en) A kind of resistor-type DC superconducting current limiter
JP2003007150A (en) Minimizing method of alternating current loss of high- temperature superconductive wire
JPS6165412A (en) Superconductive device
Georges et al. Performances of Industrial Superconducting Wires for 50–60 Hz Applications
US7078991B1 (en) Superconducting coil