JPS6165412A - Superconductive device - Google Patents

Superconductive device

Info

Publication number
JPS6165412A
JPS6165412A JP18840684A JP18840684A JPS6165412A JP S6165412 A JPS6165412 A JP S6165412A JP 18840684 A JP18840684 A JP 18840684A JP 18840684 A JP18840684 A JP 18840684A JP S6165412 A JPS6165412 A JP S6165412A
Authority
JP
Japan
Prior art keywords
solenoid coil
magnetic field
superconducting
magnetic
circuit member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18840684A
Other languages
Japanese (ja)
Inventor
Toshizo Kawamura
河村 寿三
Takashi Sato
隆 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP18840684A priority Critical patent/JPS6165412A/en
Publication of JPS6165412A publication Critical patent/JPS6165412A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F6/00Superconducting magnets; Superconducting coils
    • H01F6/06Coils, e.g. winding, insulating, terminating or casing arrangements therefor

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)

Abstract

PURPOSE:To restrain a local rise of a magnetic field in the end part of a superconductive solenoid coil by arranging a magnetic circuit member in the end part of a superconductive solenoid coil in the shortest distance within a permissible limit. CONSTITUTION:The superconductive wire 4 having a thin cross-sectional shape which is formed by burying a superconductor 2 in a stabilizing material 3 is wound on a wiring frame 5 to obtain a cylindrical solenoid coil 1. Then the coil 1 is contained in a cryostat 6 and it is arranged near a magnetic circuit member 8 for magnetic shielding in the shortest distance within a permissible limit. Consequently a strength of a magnetic field becomes as shown by a line (a) and a local rise of a magnetic field in the end part can be restrained.

Description

【発明の詳細な説明】 〔発明の技術分野〕 この発明は、薄肉の断面形状の超で導線を巻枠に巻回し
て構成した超7導ソレノイドコイルを備えた超電導装置
に関し、特(ζ超電導ソレノイドコイルの端部における
局部的な磁界の上昇を抑制する手段に関するものである
[Detailed Description of the Invention] [Technical Field of the Invention] The present invention relates to a superconducting device equipped with a super 7-conducting solenoid coil constructed by winding a super conducting wire around a winding frame with a thin-walled cross-sectional shape, The present invention relates to means for suppressing a local increase in magnetic field at the end of a solenoid coil.

〔従来の技術〕[Conventional technology]

従来この餌の2置として一般的なものを第1図及び第2
図に示す。図において、(1)は超電導ソレノイドコイ
ルでゐり、超で導体(2)ヲ安定化U (3) ニ埋設
して形成した比較的薄肉の断面形状を有する超電導線(
4)を巻枠(5)に巻回して円筒状に構成している。(
6)はこの超1導ソレノイドコイル(1)を収容するク
ライオスタット、(7)は全体を磁気シールドしている
磁気回路部材であり、主として鉄製で構成さnる。
Figures 1 and 2 show two common baits for this type of bait.
As shown in the figure. In the figure, (1) is a superconducting solenoid coil, which is a superconducting solenoid coil (U) that stabilizes the conductor (2).
4) is wound around a winding frame (5) to form a cylindrical shape. (
6) is a cryostat that accommodates this super single-conducting solenoid coil (1), and (7) is a magnetic circuit member that magnetically shields the whole, and is mainly made of iron.

次にζ作について説明する。円筒状の直径に対してコイ
ル厚みの少ない薄肉のm[導ソレノイドコイル(1) 
if 、近年例えばC0N5TRUCTION AND
 TESTOF THE CELLOTHIN−WAL
L 5OLENOID (1980年。
Next, I will explain about ζ creation. Thin-walled solenoid coil (1) with a small coil thickness compared to the cylindrical diameter
If, in recent years, for example, C0N5TRUCTION AND
TEST OF THE CELLOTHIN-WAL
L 5OLENOID (1980.

Adv、 Cryog、 Eng、25 )P175〜
P184  に見ルヨうに、高エネルギー物理学分野で
高運動量素粒子を相互に衝突させること【ζより素粒子
を解明する、イワゆる粒子衝突装置に用いらするもので
、粒子の透過のよいよう番で極力薄肉に構成さ1ている
。更にその構成材料も超電導体(2)及び磁気回路部材
(7)以外は、アルミニウムやカーボンなどを主成分さ
するものが用いらn粒子の透過がよいように考慮がわ1
ている。また超電導体(2)も必要以上に断面曹を太き
くしないように極めて高電流密度となりていることは当
然である。この超電導ソレノイドコイル(1)を運転す
るときは、回流は超電導線(4)の超電導体(2)だけ
に淀n、通常は安定化材(3)には流rていない。安定
化材(3)に流れるのは、何らかの擾乱のために超電導
が破またときに電流がバイパスし、例えば電気学会大学
講座:超電導工学(昭和49年、電気学会)P60〜P
65に見るように再び超電導に復帰を促すためのもので
ある。
Adv, Cryog, Eng, 25) P175~
As seen on page 184, in the field of high-energy physics, high-momentum elementary particles collide with each other. The walls are made as thin as possible. Furthermore, except for the superconductor (2) and the magnetic circuit member (7), its constituent materials are mainly composed of aluminum, carbon, etc., and consideration has been given to ensuring good penetration of n-particles.
ing. Further, it is natural that the superconductor (2) also has an extremely high current density so as not to make the cross section thicker than necessary. When this superconducting solenoid coil (1) is operated, the circulating current remains only in the superconductor (2) of the superconducting wire (4), and usually does not flow in the stabilizing material (3). The current that flows through the stabilizing material (3) is bypassed when the superconductor breaks due to some kind of disturbance, for example, the IEEJ University Lecture: Superconductivity Engineering (1971, Institute of Electrical Engineers of Japan) P60-P
This is to encourage the return to superconductivity as shown in Figure 65.

このように超電導体(2)は、その直径に比して極めて
小さな断面を有するために、特にその端部において高い
磁界を発生する。これは一種の端部効果で、こnと類似
の現象は例えば電磁気宇現象理論で磁界が無限大となる
。肉厚が無限小ならば超電導ソレノイドコイル(1)の
端部磁界は無限大となり、一般には有限の厚みのために
有限の値に留まるが、かなり高くなることは否めない。
Since the superconductor (2) has an extremely small cross section compared to its diameter, it generates a high magnetic field, especially at its ends. This is a kind of edge effect, and a phenomenon similar to this n is, for example, in the electromagnetic phenomenon theory, where the magnetic field becomes infinite. If the wall thickness is infinitely small, the end magnetic field of the superconducting solenoid coil (1) will be infinite, and although it generally remains at a finite value due to the finite thickness, it cannot be denied that it becomes quite high.

なお、超電導ソレノイドコイル(1)内磁束は、その回
りに置かまた士気シールドのための磁気回路部材(7り
5−通って閉じた回路を構成し、外部には余り漏f1な
いようになっている。
In addition, the magnetic flux inside the superconducting solenoid coil (1) is passed through a magnetic circuit member (7 and 5) placed around it and a magnetic circuit member for morale shielding (7 and 5) to form a closed circuit, so that there is not much leakage to the outside. There is.

従来の超電導機器は以上のように構成さねているので、
超電導ソレノイドコイル(1)の端部における磁界の上
昇は不可避で、このことは特に下流限界が経験している
磁界の強さに依存する超電導の場合には、時として致命
的なこととなる。即ち超電導の保持に関して十分に安定
化してあっても、一部に超電導破壊が起こ1ば、こnは
連鎖反応的に波及する可能性は高く、例示した高二木ル
ギー物理学実験装置のような大形の装置では、こnに対
する対策は十分に必要である。
Conventional superconducting equipment is configured as described above, so
An increase in the magnetic field at the end of the superconducting solenoid coil (1) is unavoidable, and this is sometimes fatal, especially in the case of superconductors where the downstream limit depends on the strength of the magnetic field being experienced. In other words, even if the maintenance of superconductivity is sufficiently stabilized, if some part of the superconductivity breaks down, there is a high possibility that this will spread like a chain reaction, and the In large-sized devices, sufficient countermeasures against this problem are necessary.

〔発明の概要〕[Summary of the invention]

この発明は上記のような従来のものの欠点を除去するた
めになされたもので、磁気回路部材を超電導ソレノイド
コイルの端部に許容限界の最短距離で配置することによ
り、超電導ソレノイドコイルの端部における局部的磁界
の上昇を抑制できる超電導装置を提供することを目的と
している。
This invention was made in order to eliminate the drawbacks of the conventional ones as described above, and by arranging the magnetic circuit member at the end of the superconducting solenoid coil at the shortest distance within the allowable limit, the magnetic circuit member is placed at the end of the superconducting solenoid coil. The purpose is to provide a superconducting device that can suppress the rise in local magnetic field.

〔発明の実施例〕[Embodiments of the invention]

以下、この発明の一実施例□を図について説明する。m
3図は超電導ソレノイドコイル(1)の端部における超
電導線(4)の配置を示し、(8)は超電導ソレノイド
コイル(1)の端部のできるだけ近くに、即ち、許容限
界の最短距離に配置された士気シールドするための磁気
回路部材であり、主として鉄のような安価で透磁率の嘴
い月利が適している。このように透磁率の高い部材があ
るとこの月利の表面をちょうど鏡面と考えたイメージを
仮想的番ζ考えることが可能となり、そのイメージの超
電導ソレノイドコイルを0℃とする。第4図は、導体に
おける経験磁界の定性的な模様を示し、aはイメージの
超電導ソレノイドコイルdllがないときの磁界の強さ
を軸方向の位置の関数として示したもので、E点が超電
導線(4)の超電導体(2)の最先端に当たる。
Hereinafter, one embodiment □ of this invention will be explained with reference to the drawings. m
Figure 3 shows the placement of the superconducting wire (4) at the end of the superconducting solenoid coil (1), where (8) is placed as close as possible to the end of the superconducting solenoid coil (1), i.e. at the shortest distance within the permissible limit. It is a magnetic circuit member for morale shielding, and materials such as iron, which are inexpensive and have good magnetic permeability, are mainly suitable. If there is a member with high magnetic permeability in this way, it becomes possible to imagine a virtual number ζ in which the surface of the monthly interest rate is just a mirror surface, and the superconducting solenoid coil in that image is set at 0°C. Figure 4 shows the qualitative pattern of the experienced magnetic field in the conductor, and a shows the strength of the magnetic field as a function of the axial position when there is no superconducting solenoid coil dll in the image, and point E is the superconducting It corresponds to the leading edge of the superconductor (2) of the wire (4).

また、alはイメージの超電導ソレノイドコイルαBの
呈する、同じく磁界の強さで、iはaとalの合成さ才
また実母、界である。
Also, al is the strength of the magnetic field produced by the superconducting solenoid coil αB in the image, and i is the composite field of a and al.

このようにしてイメージ及びその効果は定性的に次のよ
うに説明さnる。即ち、まずイメージを考えないときの
磁界の強さはE点において第3図の左側の呈する磁界が
すべて集積されて第4図aのようになるお考えられる。
The image and its effects can thus be explained qualitatively as follows. That is, when no image is considered, the strength of the magnetic field can be considered to be as shown in FIG. 4a, where all the magnetic fields on the left side of FIG. 3 are integrated at point E.

次に、その近傍に透磁率の高い物体を配置すると例えば
電研気宇現象理論(昭和19年、竹山説三著、丸善出版
)P873〜P375  に示すようにその物体面をち
ょうど鏡と考えた鏡像ないしイメージル仮想してよく、
この効果が磁界分布aに及ぶ。この効果はab逆向きに
したようなものでE点の清像Elにおいて逆向愈の分a
−持ったalのようになる。従ってコイル士の実磁界分
布CiiのようCどなり、結果としてE点においてイメ
ージがないときの磁界Bよhも低い磁界Bが得らする。
Next, if an object with high magnetic permeability is placed in the vicinity, for example, a mirror image of the surface of the object, as shown in Denken Kiyu Phenomenon Theory (1945, Takeyama Setsu-san, Maruzen Publishing), pages 873-375, can be obtained. Or imagine it as a virtual image,
This effect extends to the magnetic field distribution a. This effect is like reversing a and b, and in the clear image El at point E, the part of the reverse direction is a.
- Be like the al that you have. Therefore, the actual magnetic field distribution of the coil operator Cii becomes C, and as a result, a magnetic field B is obtained which is lower than the magnetic field Byh when there is no image at point E.

このように端部効果による導体経験磁界を低減でよ、超
電導安定性が上昇する。
By reducing the magnetic field experienced by the conductor due to the edge effect in this way, the stability of the superconductor increases.

〔発明の効果〕〔Effect of the invention〕

以上のように、この発明によn l、t’ Fa気回路
iHを超電導ソレノイドコイルの蝙IMに許容限界の最
短距離で配電したので、超電導ソレノイドコイルの端部
番とおける局部的l界の上昇を抑制でき、従っで超電導
安定性が上昇するため、Vl全体として容易な手段で安
価−ご安定度の高い超電導装置が得らする効果がゐる。
As described above, according to the present invention, the n l, t' Fa air circuit iH is distributed to the IM of the superconducting solenoid coil at the shortest distance within the allowable limit. Since the increase in Vl can be suppressed and therefore the superconducting stability increases, the effect of obtaining a superconducting device that is simple, inexpensive, and highly stable in terms of Vl is obtained as a whole.

【図面の簡単な説明】[Brief explanation of drawings]

第1図Ii従来の超荀導袋′厘を示す断面側面図、第2
図Ii第1図A部の拡大断面側面図、第3図はこの発明
の一実施例による籾電導装置を示す要部拡大断面側面図
、第4図はこの発明に係る超電導ソレノイドコイルの端
部8界低減効果を示す特性図である。 図において、(1)、αl) i、t i ’f4導ソ
シソレノイドコイル4)、(41) Ii超で導線、(
5)は巻枠、(8) l;i磁気シールド部材である。 尚、図中同一符号は同−又は相当部分を示す。
Fig. 1 Ii A cross-sectional side view showing a conventional super-conductor bag, Fig. 2
Figure Ii is an enlarged cross-sectional side view of part A in Figure 1, Figure 3 is an enlarged cross-sectional side view of main parts showing a rice grain conduction device according to an embodiment of the present invention, and Figure 4 is an end portion of a superconducting solenoid coil according to the present invention. FIG. 3 is a characteristic diagram showing the 8-field reduction effect. In the figure, (1), αl) i, t i 'f4 conducting solenoid coil 4), (41) Ii super conducting wire, (
5) is a winding frame, and (8) l; i is a magnetic shielding member. Note that the same reference numerals in the figures indicate the same or corresponding parts.

Claims (1)

【特許請求の範囲】[Claims] 薄肉の断面形状の超電導線を巻枠に巻回して構成した円
筒状の超電導ソレノイドコイルを備えた超電導装置にお
いて、上記超電導ソレノイドコイルの端部に許容限界の
最短距離で磁気回路部材を配置したことを特徴とする超
電導装置。
In a superconducting device equipped with a cylindrical superconducting solenoid coil constructed by winding a superconducting wire with a thin cross-sectional shape around a winding frame, a magnetic circuit member is disposed at the end of the superconducting solenoid coil at the shortest allowable distance. A superconducting device featuring:
JP18840684A 1984-09-07 1984-09-07 Superconductive device Pending JPS6165412A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18840684A JPS6165412A (en) 1984-09-07 1984-09-07 Superconductive device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18840684A JPS6165412A (en) 1984-09-07 1984-09-07 Superconductive device

Publications (1)

Publication Number Publication Date
JPS6165412A true JPS6165412A (en) 1986-04-04

Family

ID=16223087

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18840684A Pending JPS6165412A (en) 1984-09-07 1984-09-07 Superconductive device

Country Status (1)

Country Link
JP (1) JPS6165412A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0334501A (en) * 1989-06-30 1991-02-14 Res Dev Corp Of Japan Generation apparatus of uniform magnetic field

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0334501A (en) * 1989-06-30 1991-02-14 Res Dev Corp Of Japan Generation apparatus of uniform magnetic field
JPH0514403B2 (en) * 1989-06-30 1993-02-25 Shingijutsu Jigyodan

Similar Documents

Publication Publication Date Title
US4740758A (en) Apparatus for generating a magnetic field in a volume having bodies influencing the field pattern
Mess et al. Superconducting accelerator magnets
Miller et al. Critical currents of cross-type superconducting-normal-superconducting junctions in perpendicular magnetic fields
US4595899A (en) Magnetic structure for NMR applications and the like
US11064637B2 (en) Systems and methods for magnetic shielding for a superconducting computing system
JPH0433149B2 (en)
JP3447090B2 (en) Magnetic resonance apparatus having superconducting magnet
Solomon Voltage associated with the coupled motion of flux in Type-I superconductors
US5319333A (en) Superconducting homogeneous high field magnetic coil
Tagirov et al. Superconducting triplet proximity and Josephson spin valves
Wera et al. A comparative study of triaxial and uniaxial magnetic shields made out of YBCO coated conductors
US5355275A (en) Current limiting device for electromagnetic coil employing gap containing superconductive shield
US3461410A (en) 2-n pole electromagnet for focusing charged particles
JPS6165412A (en) Superconductive device
Wolf Persistent currents in LHC magnets
Carr Longitudinal and transverse field losses in multifilament superconductors
US3239725A (en) Superconducting device
KR100367968B1 (en) Space defining structure for magnetic homogenization
JP2500365B2 (en) Superconducting converter
US5247271A (en) Superconducting solenoid coil
JP2864095B2 (en) Magnetic shielding device
JPS6165407A (en) Superconductive device
JPH04112620A (en) Current limiter
JPH03123005A (en) Superconducting magnet device
Danby et al. Magnetic flux shielding for the precision muon g-2 storage ring superconducting inflector