JP2500365B2 - Superconducting converter - Google Patents
Superconducting converterInfo
- Publication number
- JP2500365B2 JP2500365B2 JP5230831A JP23083193A JP2500365B2 JP 2500365 B2 JP2500365 B2 JP 2500365B2 JP 5230831 A JP5230831 A JP 5230831A JP 23083193 A JP23083193 A JP 23083193A JP 2500365 B2 JP2500365 B2 JP 2500365B2
- Authority
- JP
- Japan
- Prior art keywords
- magnetic flux
- magnetic
- coil
- superconducting
- current
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 230000005291 magnetic effect Effects 0.000 claims description 86
- 230000004907 flux Effects 0.000 claims description 55
- 239000002887 superconductor Substances 0.000 claims description 15
- 238000006243 chemical reaction Methods 0.000 claims description 4
- 230000035699 permeability Effects 0.000 claims description 4
- 230000003247 decreasing effect Effects 0.000 claims description 2
- 230000008859 change Effects 0.000 description 4
- 239000002889 diamagnetic material Substances 0.000 description 4
- 239000000696 magnetic material Substances 0.000 description 4
- 230000005292 diamagnetic effect Effects 0.000 description 3
- 238000010586 diagram Methods 0.000 description 2
- 238000011156 evaluation Methods 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 238000003801 milling Methods 0.000 description 2
- 238000005245 sintering Methods 0.000 description 2
- 230000007704 transition Effects 0.000 description 2
- 230000009471 action Effects 0.000 description 1
- 239000012141 concentrate Substances 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 239000003822 epoxy resin Substances 0.000 description 1
- 238000010884 ion-beam technique Methods 0.000 description 1
- 238000003754 machining Methods 0.000 description 1
- 229920000647 polyepoxide Polymers 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E40/00—Technologies for an efficient electrical power generation, transmission or distribution
- Y02E40/60—Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment
Landscapes
- Inverter Devices (AREA)
- Superconductor Devices And Manufacturing Methods Thereof (AREA)
Description
【0001】[0001]
【産業上の利用分野】本発明は、臨界電流密度の非常に
大きい超電導体を用いた超電導変換器に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a superconducting converter using a superconductor having a very high critical current density.
【0002】[0002]
【従来の技術】従来、超電導インバータとして、クライ
オトロンと呼ばれている超電導体に磁場を加えることで
超電導と常電導とを交互に相転移して直流・交流変換を
行うもの、さらに、過飽和リアクトルをクライオトロン
回路中に挿入して特性を高めた変換器が知られている。2. Description of the Related Art Conventionally, as a superconducting inverter, a superconducting inverter called a cryotron, in which a magnetic field is applied to alternate phase transition between superconducting and normal conducting, to perform DC / AC conversion, and a supersaturated reactor. There is known a converter in which is inserted into a cryotron circuit to improve the characteristics.
【0003】[0003]
【発明が解決しようとする課題】従来の超電導インバー
タでは、超電導体の相転移速度が遅いため、交番周波数
を高くできないこと、常電導時の抵抗が高くないため、
無動作時に超電導体に電流が流れ大きな損失をもたらす
欠点がある。In the conventional superconducting inverter, since the phase transition speed of the superconductor is slow, the alternating frequency cannot be increased and the resistance during normal conduction is not high.
There is a drawback that a current flows through the superconductor at the time of non-operation and causes a large loss.
【0004】本発明はこのような従来の問題を解決し、
高い交番周波数を得ることができ、かつ動作の安定な超
電導変換器を提供することを目的とする。The present invention solves these conventional problems,
It is an object of the present invention to provide a superconducting converter which can obtain a high alternating frequency and is stable in operation.
【0005】[0005]
【課題を解決するための手段】上記目的を達成するため
に、本発明では臨界電流密度が非常に大きく完全反磁性
体とほぼ同様な作用をする超電導体で空間を囲んで磁束
のパス(空間磁路)とし、その空間磁路中に一次コイ
ル,二次コイルおよび高透磁率磁性体のコアにコイルを
捲回した電磁コイルからなる別個の磁気回路を設ける。
一次コイルに直流電流を流すことによって発生した磁束
は、超電導体内に侵入することなく、空間磁路中を通過
する磁気回路を形成する。この時、空間磁路中にある電
磁コイルに交番電流を流して一次コイルで発生した磁束
を制御すなわち空間磁路中の磁束を制御することにより
二次側に磁束の変化に対応した電流が誘起される。すな
わち、本発明は、磁束が実質的に侵入しない超電導体に
囲まれた空間領域からなる磁束パスと、それぞれ該磁束
パス内に設けられた一次コイル,二次コイルおよび前記
磁束パス内の磁束を増減させる磁気回路とを具えたこと
を特徴とする。In order to achieve the above object, in the present invention, a magnetic flux path (space) is surrounded by a superconductor having a very large critical current density and having almost the same action as a perfect diamagnetic material. A separate magnetic circuit including a primary coil, a secondary coil, and an electromagnetic coil in which a coil is wound around the core of a high-permeability magnetic material is provided in the space magnetic path.
The magnetic flux generated by passing a direct current through the primary coil forms a magnetic circuit that passes through the space magnetic path without entering the superconductor. At this time, an alternating current is passed through the electromagnetic coil in the space magnetic path to control the magnetic flux generated in the primary coil, that is, by controlling the magnetic flux in the space magnetic path, a current corresponding to the change in the magnetic flux is induced on the secondary side. To be done. That is, the present invention provides a magnetic flux path consisting of a space region surrounded by a superconductor in which magnetic flux does not substantially enter, a primary coil, a secondary coil and a magnetic flux in the magnetic flux path provided in the magnetic flux path, respectively. It has a magnetic circuit for increasing and decreasing.
【0006】[0006]
【作用】以上の構成によれば、一次コイルの大電流によ
って発生する磁束を少ない電流で制御して直流・交流変
換を行うことができる。特にコアがほぼ完全反磁性体で
囲まれた空間であるため交番磁界による損失が発生せ
ず、また、磁束を直接制御するため交番周波数を高くと
ることができる。According to the above construction, the magnetic flux generated by the large current of the primary coil can be controlled with a small current to perform the DC / AC conversion. In particular, since the core is a space surrounded by a nearly perfect diamagnetic material, loss due to an alternating magnetic field does not occur, and since the magnetic flux is directly controlled, the alternating frequency can be increased.
【0007】[0007]
【実施例】以下、図面を参照して本発明の実施例を詳細
に説明する。Embodiments of the present invention will be described below in detail with reference to the drawings.
【0008】図1は、本発明の一実施例を示す超電導イ
ンバータを示したものである。図1(A)はインバータ
の中央部を通る断面図、図1(B),(C)および
(D)は、それぞれ図1(A)のA−A′線,B−B′
線およびC−C′線に沿った断面図である。図中、1の
ハッチングされた部分は超電導バルク体、2および2′
は一次側コイル、3は二次側コイル、4は高透磁率磁性
体のコア4Bに捲回したコイルからなる制御用電磁コイ
ル、4Cは電磁コイルの磁気回路を形成している空間領
域、5および6,6′は磁束の通る空間パスである。各
コイルはコイルでの損失を最小限に抑えるため超電導線
を使用する。FIG. 1 shows a superconducting inverter showing an embodiment of the present invention. 1A is a cross-sectional view passing through the central portion of the inverter, and FIGS. 1B, 1C and 1D are lines AA 'and BB' in FIG. 1A, respectively.
FIG. 6 is a cross-sectional view taken along a line C-C ′ of FIG. In the figure, the hatched portion 1 is a superconducting bulk body, and 2 and 2 '.
Is a primary side coil, 3 is a secondary side coil, 4 is a control electromagnetic coil formed of a coil wound around a core 4B of a high magnetic permeability magnetic material, 4C is a spatial region forming a magnetic circuit of the electromagnetic coil, 5 And 6,6 'are spatial paths through which the magnetic flux passes. Each coil uses superconducting wire to minimize losses in the coil.
【0009】超電導バルク体1は完全反磁性領域(マイ
スナー領域=下部臨界磁場Hc1 以下)の高い材料を用
いるのが良いが、現状では、金属系超電導材料のNb
が、温度4.2KにおいてHc1 =0.14Tで最高で
ある。従って、さらに、高い磁束密度での動作は、酸化
物超電導体の極低温での高臨界電流密度による反磁性領
域を利用するとよい。YBa2 Cu3 O7-d のバルク超
電導体の臨界電流密度は77Kで約104 A/cm2 、
4.2Kで106 〜107 A/cm2 程度であり、磁場
の大きさによって異なる。この反磁性領域では磁束は超
電導体にマイスナー領域よりわずかに深く侵入するが、
ほとんどヒステリシスもなく完全反磁性体として振る舞
う。For the superconducting bulk body 1, it is preferable to use a material having a high complete diamagnetic region (Meissner region = lower critical magnetic field Hc 1 or less), but at present, Nb which is a metallic superconducting material is used.
Is highest at Hc 1 = 0.14T at a temperature of 4.2K. Therefore, for operation at higher magnetic flux density, it is preferable to utilize the diamagnetic region due to the high critical current density of the oxide superconductor at extremely low temperatures. The critical current density of the YBa 2 Cu 3 O 7-d bulk superconductor is 77 K, about 10 4 A / cm 2 ,
It is about 10 6 to 10 7 A / cm 2 at 4.2 K, and depends on the magnitude of the magnetic field. In this diamagnetic region, the magnetic flux penetrates the superconductor slightly deeper than the Meissner region,
It behaves as a perfect diamagnetic material with almost no hysteresis.
【0010】空間パス5,6および6′は超電導バルク
体1に形成された溝であり、磁束の方向と垂直な断面形
状は円形であることが望ましい。このような溝は超電導
体のブロックにフライスなどの機械加工,イオンビーム
ミリングなどの加工により形成でき、あるいは酸化物超
電導体の焼結時に、型を用いてプレス成形して焼結する
ことによって形成することができる。一次コイル2,
2′、二次コイル3およびコア4B、コイル4Aからな
る制御用電磁コイル4を収容すべき部位にも同様に溝を
形成する。このような溝を有する超電導体を2個作り、
所定部に一次コイル2,2′、二次コイル3および制御
用電磁コイル4を設置して2個の超電導体を貼り合わせ
ることによって、図1に示した超電導インバータを作成
することができる。The space paths 5, 6 and 6'are grooves formed in the superconducting bulk body 1, and it is desirable that the cross-sectional shape perpendicular to the direction of the magnetic flux is circular. Such grooves can be formed in the block of the superconductor by machining such as milling, processing by ion beam milling, or by pressing and sintering with a mold when sintering the oxide superconductor. can do. Primary coil 2,
Similarly, a groove is formed in a portion where the control electromagnetic coil 4 including the secondary coil 3, the secondary coil 3, the core 4B, and the coil 4A is to be housed. Make two superconductors with such grooves,
By installing the primary coils 2 and 2 ', the secondary coil 3 and the control electromagnetic coil 4 in a predetermined part and bonding two superconductors together, the superconducting inverter shown in FIG. 1 can be produced.
【0011】次に図2および図3を用いて本実施例の動
作原理を説明する。矢印は磁束の方向を示している。Next, the operating principle of this embodiment will be described with reference to FIGS. The arrow indicates the direction of the magnetic flux.
【0012】まず、図2に示すように、同一方向に巻い
た2個の一次コイル2および2′に直流電流を流した
時、発生する磁束は、制御用電磁コイルで発生する磁束
がコアの中心部で逆向きの場合、制御電流を増加させて
いくと、最終的にそれぞれ空間の磁束パス5,6および
5,6′を通る磁気回路を形成する。従って、このとき
二次コイルを通過する磁束はわずかになる。次に、制御
用電磁コイル4に一次コイル2,2′と同方向の磁束を
発生させると、制御用電磁コイル4のaおよびbで示す
部分での磁束が、互いに逆方向になるため、制御電流を
増加させていくと最終的にその部分を磁束が通過しなく
なり、磁束は二次コイルのある空間の磁束パス5に集中
する。従って、二次コイル3では、その磁束の変化に伴
う電圧が誘起されることになる。また、交流電圧は、磁
束の方向が同一でも磁束変化の増加,減少によって発生
する。First, as shown in FIG. 2, when a direct current is passed through two primary coils 2 and 2'wound in the same direction, the magnetic flux generated is the magnetic flux generated by the control electromagnetic coil of the core. In the case of the opposite direction at the central portion, as the control current is increased, finally a magnetic circuit passing through the magnetic flux paths 5, 6 and 5, 6'of the space is formed. Therefore, at this time, the magnetic flux passing through the secondary coil becomes small. Next, when magnetic flux is generated in the control electromagnetic coil 4 in the same direction as that of the primary coils 2 and 2 ', the magnetic flux in the portions indicated by a and b of the control electromagnetic coil 4 are in opposite directions to each other. When the current is increased, finally the magnetic flux does not pass through that portion, and the magnetic flux concentrates on the magnetic flux path 5 in the space where the secondary coil is located. Therefore, in the secondary coil 3, a voltage associated with the change in the magnetic flux is induced. Further, the AC voltage is generated by the increase and decrease of the magnetic flux change even if the magnetic flux direction is the same.
【0013】制御用コイル4Aに流す最大電流imax
は、aおよびb部における一次コイル2,2′で発生し
た磁束を打ち消すだけの磁束を発生すればよい。従っ
て、次のようにして求められる。Maximum current i max flowing through the control coil 4A
Need only generate a magnetic flux that cancels the magnetic flux generated in the primary coils 2, 2'in the portions a and b. Therefore, it is obtained as follows.
【0014】一次コイルの電流をI1 、空間の磁束パス
の磁気抵抗(図2においてφ1 の磁束が通過する磁束パ
スの磁気抵抗)をR1 の2つの一次コイル2および2′
は同一の巻き数で、それをn1 、制御コイル4Aの巻き
数をnf 、制御用電磁コイル4における磁気抵抗をRf
とするとそれぞれの磁気回路で発生する磁束φ1 および
φf は、次式で与えられる。Two primary coils 2 and 2'of which primary current is I 1 and magnetic resistance of magnetic flux path in space (magnetic resistance of magnetic flux path through which magnetic flux of φ 1 passes in FIG. 2) are R 1
Identical in number of turns, it n 1, the number of turns the n f of the control coil 4A, a magnetic resistance in the control solenoid coil 4 R f
Then, the magnetic fluxes φ 1 and φ f generated in each magnetic circuit are given by the following equations.
【0015】[0015]
【数1】 [Equation 1]
【0016】ここに、磁気抵抗R1 は、制御用電磁コイ
ル4の磁性体コア4Bにおける抵抗は、極めて小さいの
で無視すると次式で得られる。Here, the magnetic resistance R 1 is obtained by the following equation if the resistance in the magnetic core 4B of the control electromagnetic coil 4 is extremely small and neglected.
【0017】[0017]
【数2】 [Equation 2]
【0018】ここに、Sは空間の磁束パスの断面積で、
回路中一定とする。1は磁束パスの長さ、μ0 は真空の
透磁率である。Where S is the cross-sectional area of the magnetic flux path in space,
It is fixed in the circuit. 1 is the length of the magnetic flux path, and μ 0 is the magnetic permeability of the vacuum.
【0019】次に、制御用電磁コイル4の磁気抵抗Rf
が、磁性体コア4Bの磁気抵抗を無視し、空間領域の長
さをIf 、その部分の面積をSf (一定)とすると次式
で与えられる。Next, the magnetic resistance R f of the control electromagnetic coil 4
However, ignoring the magnetic resistance of the magnetic core 4B, if the length of the space region is I f and the area of that portion is S f (constant), then it is given by the following equation.
【0020】[0020]
【数3】 (Equation 3)
【0021】従って、制御用電磁コイル4で発生する磁
束φf は、制御用コイル4Aに流す電流をiとすると、
次式で与えられる。Therefore, the magnetic flux φ f generated in the control electromagnetic coil 4 is expressed as follows: i is the current flowing in the control coil 4A.
It is given by the following formula.
【0022】[0022]
【数4】 [Equation 4]
【0023】磁性体コア4Bのaおよびb部における磁
束φ1 を打ち消すためには、電磁コイル4でφ1 の磁束
を発生すれば良いことになる。In order to cancel the magnetic flux φ 1 in the portions a and b of the magnetic core 4B, it is sufficient to generate the magnetic flux φ 1 in the electromagnetic coil 4.
【0024】従って、Therefore,
【0025】[0025]
【数5】 (Equation 5)
【0026】これから制御用コイル4Aに流す電流iの
オーダ評価を行う。Next, order evaluation of the current i flowing through the control coil 4A will be performed.
【0027】評価するに当って、S≒Sf ,n1 =nf
/10,If =1/20とすると、i=I/200とな
り、コイル4Aには、一次コイル2,2′の電流の最大
1/200の電流を流すことにより磁束φ1 を打ち消
し、一次コイル2,2′の磁気回路を二次コイル3の存
在する空間磁束パスに導くことができる。In the evaluation, S≈S f , n 1 = n f
/ 10, If = 1/20, i = I / 200, and a maximum of 1/200 of the current of the primary coils 2 and 2'is passed through the coil 4A to cancel the magnetic flux φ 1 and The magnetic circuit of the coils 2, 2'can be guided in the spatial flux path in which the secondary coil 3 is present.
【0028】すなわち、一次コイル2,2′の最大1/
200の電流で空間の磁束パス中の磁束を制御でき、二
次コイル3に制御された磁束の変化に応じた電圧が誘起
される。That is, the maximum of the primary coils 2, 2'is 1 /
The current of 200 can control the magnetic flux in the magnetic flux path in the space, and the secondary coil 3 can induce a voltage corresponding to the change of the controlled magnetic flux.
【0029】なお、空間磁束パスは空洞状であってもよ
く、エポキシ樹脂等の非磁性で充填されていてもよい。The spatial magnetic flux path may be hollow or may be filled with non-magnetic material such as epoxy resin.
【0030】図4に本発明の第2の実施例の断面図を示
す。この実施例は図1に示した実施例におけるA−A′
線を軸として軸対称に一次コイル2,2′、二次コイル
3および制御用電磁コイル4を配置した例である。この
実施例の動作は図1の実施例と同様である。FIG. 4 shows a sectional view of the second embodiment of the present invention. This embodiment is AA 'in the embodiment shown in FIG.
This is an example in which the primary coils 2 and 2 ', the secondary coil 3, and the control electromagnetic coil 4 are arranged symmetrically about a line. The operation of this embodiment is similar to that of the embodiment of FIG.
【0031】[0031]
【発明の効果】以上説明したように、本発明によれば、
一次コイルの大電流によって発生する磁束を少ない電流
で制御して直流・交流変換を行うことができる。特にコ
アがほぼ完全反磁性体で囲まれた空間であるため交番磁
界による損失が発生せず、また、磁束を直接制御するた
め交番周波数を高くとることができる。As described above, according to the present invention,
The magnetic flux generated by the large current of the primary coil can be controlled with a small current to perform DC / AC conversion. In particular, since the core is a space surrounded by a nearly perfect diamagnetic material, loss due to an alternating magnetic field does not occur, and since the magnetic flux is directly controlled, the alternating frequency can be increased.
【図1】本発明の一実施例の断面図である。FIG. 1 is a sectional view of an embodiment of the present invention.
【図2】図1に示した実施例の動作を説明する図であ
る。FIG. 2 is a diagram for explaining the operation of the embodiment shown in FIG.
【図3】図1に示した実施例の動作を説明する図であ
る。FIG. 3 is a diagram for explaining the operation of the embodiment shown in FIG.
【図4】本発明の他の実施例の断面図である。FIG. 4 is a sectional view of another embodiment of the present invention.
1 超電導体 2,2′ 一次コイル 3 二次コイル 4 制御用電磁コイル 4A 制御コイル 4B 高透磁率磁性体コア 4C 空間領域 5,6,6′ 空間磁束パス 1 Superconductor 2, 2'Primary coil 3 Secondary coil 4 Control electromagnetic coil 4A Control coil 4B High permeability magnetic material core 4C Spatial region 5, 6, 6'Spatial magnetic flux path
Claims (2)
まれた空間領域からなる磁束パスと、それぞれ該磁束パ
ス内に設けられた一次コイル,二次コイルおよび前記磁
束パス内の磁束を増減させる磁気回路とを具えたことを
特徴とする超電導変換器。1. A magnetic flux path consisting of a space region surrounded by a superconductor in which magnetic flux does not substantially enter, and a primary coil, a secondary coil and a magnetic flux in the magnetic flux path respectively provided in the magnetic flux path are increased or decreased. A superconducting converter characterized by comprising a magnetic circuit for making it.
をコアとした電磁コイルであって、該電磁コイルで前記
閉磁路内の磁束を制御して直流・交流変換を行うことを
特徴とする請求項1に記載の超電導変換器。2. The magnetic circuit is an electromagnetic coil having a magnetic body having a high magnetic permeability as a core, and the magnetic flux in the closed magnetic circuit is controlled by the electromagnetic coil to perform DC / AC conversion. The superconducting converter according to claim 1.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5230831A JP2500365B2 (en) | 1993-08-24 | 1993-08-24 | Superconducting converter |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5230831A JP2500365B2 (en) | 1993-08-24 | 1993-08-24 | Superconducting converter |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0766459A JPH0766459A (en) | 1995-03-10 |
JP2500365B2 true JP2500365B2 (en) | 1996-05-29 |
Family
ID=16913965
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP5230831A Expired - Lifetime JP2500365B2 (en) | 1993-08-24 | 1993-08-24 | Superconducting converter |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2500365B2 (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4528958B2 (en) * | 2003-10-10 | 2010-08-25 | 独立行政法人産業技術総合研究所 | Superconducting inverter |
CN100368821C (en) * | 2004-12-09 | 2008-02-13 | 中国科学院物理研究所 | Superconductive conversion magnetic signal detecting system for high-voltage experiment |
JP5066715B2 (en) * | 2007-08-23 | 2012-11-07 | 株式会社前川製作所 | High-frequency current-controlled cryotron element and inverter using the same |
JP5158799B2 (en) * | 2007-11-09 | 2013-03-06 | 独立行政法人物質・材料研究機構 | Magnetic flux concentrator |
US8464854B2 (en) | 2011-04-26 | 2013-06-18 | Glory Ltd. | Money handling system and money handling method |
-
1993
- 1993-08-24 JP JP5230831A patent/JP2500365B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPH0766459A (en) | 1995-03-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1883082B1 (en) | Magnetic element | |
EP0645641B1 (en) | Improvements in or relating to MRI magnets | |
US6114939A (en) | Planar stacked layer inductors and transformers | |
JP2500365B2 (en) | Superconducting converter | |
Hoshino et al. | Design of 6.6 kV, 100 A saturated DC reactor type superconducting fault current limiter | |
JPH04312345A (en) | Voice coil motor | |
US4564564A (en) | Superconducting magnet wire | |
JPH0238018B2 (en) | ||
JPH0812829B2 (en) | Superconducting transformer | |
JPH01281510A (en) | High magnetic field generating device | |
JP2600413B2 (en) | Hybrid superconducting coil | |
JP2000182850A (en) | Thin-film transformer | |
JPH01209705A (en) | Electromagnetic coil | |
EP0136809B1 (en) | Polyphase assembly for controlling a.c. devices | |
JP2001245430A (en) | Superconducting current-limiting device of magnetic- shielding type | |
JPH06260335A (en) | High temperature superconducting magnet | |
JPS59182514A (en) | Magnetic core for choke coil | |
JPH03123005A (en) | Superconducting magnet device | |
JPS562605A (en) | Superconductive split magnet | |
JPS61170010A (en) | Transformer iron core | |
JPH06267698A (en) | Superconductive wiggler | |
JPH02106004A (en) | Superconducting magnet | |
JPH0729722A (en) | Superconducting magnet equipment | |
JPH01137610A (en) | Variable inductor | |
WO2007004109A1 (en) | Asymmetric magnet for mri |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
EXPY | Cancellation because of completion of term |