JP5158799B2 - Magnetic flux concentrator - Google Patents

Magnetic flux concentrator Download PDF

Info

Publication number
JP5158799B2
JP5158799B2 JP2008287163A JP2008287163A JP5158799B2 JP 5158799 B2 JP5158799 B2 JP 5158799B2 JP 2008287163 A JP2008287163 A JP 2008287163A JP 2008287163 A JP2008287163 A JP 2008287163A JP 5158799 B2 JP5158799 B2 JP 5158799B2
Authority
JP
Japan
Prior art keywords
magnetic flux
guiding member
magnetic
internal space
guide member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008287163A
Other languages
Japanese (ja)
Other versions
JP2009135487A (en
Inventor
司 木吉
真治 松本
郁夫 伊藤
広明 大塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute for Materials Science
Original Assignee
National Institute for Materials Science
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute for Materials Science filed Critical National Institute for Materials Science
Priority to JP2008287163A priority Critical patent/JP5158799B2/en
Publication of JP2009135487A publication Critical patent/JP2009135487A/en
Application granted granted Critical
Publication of JP5158799B2 publication Critical patent/JP5158799B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、超伝導体を用いた磁束集中化装置に関するものである。   The present invention relates to a magnetic flux concentrator using a superconductor.

核磁気共鳴断層診断装置(MRI)をはじめとする医療機器と産業用機器等における磁場の利用の進展にともなって、磁場の制御の高度化への要請が高まっている。このような磁場制御の高度化は、超伝導マグネットの実用化と超高磁場の実現とともに、さらに重要な課題となっている。   With the progress in the use of magnetic fields in medical equipment such as nuclear magnetic resonance tomography (MRI) and industrial equipment, there is an increasing demand for higher control of the magnetic field. Such advancement of magnetic field control has become a more important issue along with the practical application of superconducting magnets and the realization of ultrahigh magnetic fields.

たとえば、MRI等における高均一磁場を形成するための手段として、磁石と超伝導体からなる軸方向にスリットを有する円筒とを備え、磁石の軸とこの円筒の軸とを平行となるようにすることで、円筒内部に円筒軸方向に強度可変の均一平行磁場を発生するようにした強度可変均一平行磁場発生装置が提案されている(特許文献1)。   For example, as means for forming a highly uniform magnetic field in MRI or the like, a magnet and a cylinder having a slit in the axial direction made of a superconductor are provided, and the axis of the magnet and the axis of this cylinder are made parallel to each other. Thus, there has been proposed a variable intensity uniform parallel magnetic field generator that generates a uniform parallel magnetic field with variable intensity in the cylinder axis direction inside the cylinder (Patent Document 1).

この装置においては、円筒型磁石の内側に、前記の超伝導円筒体を配置する形態(たとえば図1、図5を参照)とともに、円筒型磁石の外側に同軸となるように超伝導円筒体を配置する形態(たとえば図6参照)等において、超伝導円筒体に、磁束の拡散を抑えた均一平行磁場の形成を可能としている。   In this apparatus, the superconducting cylindrical body is arranged so as to be coaxial with the outer side of the cylindrical magnet, together with the form in which the superconducting cylindrical body is disposed inside the cylindrical magnet (see, for example, FIGS. In the arrangement form (see, for example, FIG. 6), it is possible to form a uniform parallel magnetic field with suppressed diffusion of magnetic flux in the superconducting cylinder.

一方、以上のような均一平行磁場の形成とは異なって、磁束の拡散を抑えて、磁束を遠方まで維持し、あるいは磁束を局部的に集中可能とすることも重要な技術的課題になっている。このような課題に対しては、従来では、鉄等の強磁性体を用いて磁気回路を形成する手法が一般的に採用されてきている。   On the other hand, unlike the formation of the uniform parallel magnetic field as described above, it is also an important technical problem to suppress the diffusion of the magnetic flux and maintain the magnetic flux far away or to concentrate the magnetic flux locally. Yes. Conventionally, a method of forming a magnetic circuit using a ferromagnetic material such as iron has been generally adopted for such a problem.

しかしながら、このような従来の手法では、近年特に重要となっている2T(テスラ)以上の高磁場に対しては効果的でないことが明らかになってきている。このため、超高磁場を利用するためにも、磁束の拡散を抑えて、これを遠方まで維持可能とすることも、磁束を局部に集中可能とするための、新しい磁場制御手段として、実現が望まれていた。
特許第3184678号公報
However, it has become clear that such a conventional method is not effective for a high magnetic field of 2T (Tesla) or more which has been particularly important in recent years. For this reason, in order to use an ultra-high magnetic field, it is possible to suppress the diffusion of magnetic flux and maintain it far away, or as a new magnetic field control means that can concentrate the magnetic flux locally. It was desired.
Japanese Patent No. 3184678

本発明は、以上のとおりの背景から、たとえば2T以上の超高磁場においても、磁束の拡散を抑えて、磁束を遠方まで維持可能とし、また、磁束を局部に集中可能とすることのできる新しい技術手段を提供することを課題としている。   From the background as described above, the present invention is capable of suppressing the diffusion of magnetic flux even in an ultra-high magnetic field of 2T or more, for example, and can maintain the magnetic flux far away, and can concentrate the magnetic flux locally. The challenge is to provide technical means.

本発明は、上記の課題を解決するものとして、以下の特徴を有する磁束集中化装置を提供する。   The present invention provides a magnetic flux concentrator having the following characteristics as a solution to the above-described problems.

第1:少なくとも磁束発生源と、磁束発生源より発生される磁束が導入され誘導される内部空間を有する磁束誘導部材とを備え、磁束誘導部材は、超伝導体で構成されると共に、磁束の誘導方向に垂直な内部空間の断面積が前記磁束発生源から離れるに従って漸減する漸減部を有し、かつ、磁束の周りを周回する電流が生じない構成とされていて、磁束発生源により発生された磁束が磁束誘導部材に導入され、漸減部内を誘導されて、漸減部の内部空間断面積の最小部近傍で局所的に収束され、磁束誘導部材の形状が、円筒状または中空円錐状であって軸方向に対称であり、当該軸面で縦方向に2分割してスリット部を設けて、磁束の周りを周回する電流が生じない構成とされており、前記スリット部には電気絶縁を行うスペーサを有することを特徴とする磁束集中化装置。
First, it comprises at least a magnetic flux generating source and a magnetic flux guiding member having an internal space into which a magnetic flux generated by the magnetic flux generating source is introduced and guided, and the magnetic flux guiding member is made of a superconductor, The cross-sectional area of the internal space perpendicular to the induction direction has a gradually decreasing portion that gradually decreases as the distance from the magnetic flux generation source is increased, and no current that circulates around the magnetic flux is generated, and is generated by the magnetic flux generation source. The magnetic flux is introduced into the magnetic flux guiding member, guided in the gradually decreasing portion, and locally converged in the vicinity of the minimum portion of the internal space cross-sectional area of the gradually decreasing portion, and the shape of the magnetic flux guiding member is cylindrical or hollow conical. The slit portion is divided into two in the longitudinal direction on the axial surface, and a slit portion is provided so that no current circulating around the magnetic flux is generated. The slit portion is electrically insulated. this with a spacer Flux concentration apparatus according to claim.

:磁束誘導部材は、絶縁したテープ状超伝導体を隙間無く螺旋状に巻いて形成されていることを特徴とする上記の磁束集中化装置。

Second : The magnetic flux concentrator as described above, wherein the magnetic flux guiding member is formed by spirally winding an insulated tape-shaped superconductor without a gap.

:磁束誘導部材は、絶縁したテープ状超伝導体を少なくとも1本含むテープ状超伝導体を隙間無く貼付して形成されていることを特徴とする上記の磁束集中化装置。

Third : The magnetic flux concentrator as described above, wherein the magnetic flux guiding member is formed by pasting a tape-shaped superconductor including at least one insulated tape-shaped superconductor without any gap.

:磁束誘導部材は、筒状または中空円錐状で両端が開口されており、内部空間の断面積がより大きな開口に近い位置で、磁束誘導部材の外側もしくは内側に磁束発生源が配置されていることを特徴とする上記の磁束集中化装置。

4: flux induction member, both ends a circular cylindrical or hollow conical shape has an opening, at a position close to the larger opening cross-sectional area of the internal space, a magnetic flux generating source is placed outside or inside of the flux guide elements The magnetic flux concentrator as described above .

:磁束誘導部材は、形状が筒状であって、磁束発生源の形成する磁場の中心が内部空間に含まれるよう配置され、磁束の誘導方向に垂直な内部空間の断面積は前記磁束発生源から両端部に離れるに従って各々漸減部を有していることを特徴とする上記の磁束集中化装置。

Fifth: flux induction member, the shape is a circular cylindrical, is arranged such that the center of the magnetic field formed by the magnetic flux generator is included in the inner space, the cross-sectional area perpendicular inner space guidance direction of the magnetic flux is the The magnetic flux concentrating device as described above, wherein each of the magnetic flux concentrating devices has a gradually decreasing portion as the distance from the magnetic flux generation source increases.

:磁束誘導部材の形状が筒状または中空円錐状であって、磁束発生源と磁束誘導部材は、磁束誘導部材の軸と磁束発生源が発生する磁束の軸が同軸となるよう配置されていることを特徴とする上記の磁束集中化装置。

6: a flux guide member is a circular cylindrical or hollow conical shape, magnetic flux generator and the flux guide member is arranged such that the axis of the magnetic flux axis and the magnetic flux generating source of the magnetic flux induction member is generated is coaxial The magnetic flux concentrator as described above .

:磁束発生源と磁束誘導部材は、磁束誘導部材の軸と磁束発生源が発生する磁束の軸が異なるよう配置されていることを特徴とする上記の磁束集中化装置。

Seventh : The above-described magnetic flux concentrating device, wherein the magnetic flux generating source and the magnetic flux guiding member are arranged such that the axis of the magnetic flux guiding member and the axis of the magnetic flux generated by the magnetic flux generating source are different.

:磁束誘導部材の形状が、筒状体または中空円錐状体を任意の縦断面で切断した形状であって、磁束発生源と磁束誘導部材は、磁束誘導部材の軸と磁束発生源が発生する磁束の軸が異なるよう配置されていて、磁束発生源により発生された磁束が磁束誘導部材に導入され、漸減部内を誘導されて、導入方向とは異なる方向の内空間断面積の最小部近傍で局所的に収束されることを特徴とする上記の磁束集中化装置。

8: the shapes of the flux guide elements, a circular cylindrical body or hollow conical body a shape obtained by cutting at any longitudinal section, magnetic flux generator and the flux guide member, shaft and magnetic flux generator flux guide member The magnetic flux generated by the magnetic flux generation source is introduced into the magnetic flux guide member and guided in the gradual reduction portion, so that the inner space cross-sectional area in the direction different from the introduction direction is minimized. The magnetic flux concentrator as described above, wherein the magnetic flux concentrator is converged locally in the vicinity of the portion.

:磁束誘導部材が、漸減部よりも先に内部空間を有していることを特徴とする上記の磁束集中化装置。

Ninth : The magnetic flux concentrator as described above, wherein the magnetic flux guiding member has an internal space before the gradually decreasing portion.

前記のとおりの本発明の磁束集中化装置によれば、磁束誘導部材の内部空間断面積の漸減にともなって、超伝導体からなる磁束誘導部材には、磁束誘導部材の表面に対して垂直な成分の磁場を遮蔽(制御)するように電流が流れ、結果として、磁束が磁束誘導部材の内表面に対して平行な成分のみとなる。これにより、磁束の拡散を抑えて、その内部空間が収束する内部空間断面積の最小側に磁束を集束することができる。   According to the magnetic flux concentrator of the present invention as described above, the magnetic flux guiding member made of superconductor is perpendicular to the surface of the magnetic flux guiding member as the internal space cross-sectional area of the magnetic flux guiding member gradually decreases. A current flows so as to shield (control) the magnetic field of the component, and as a result, the magnetic flux is only a component parallel to the inner surface of the magnetic flux guiding member. Thereby, spreading | diffusion of magnetic flux can be suppressed and a magnetic flux can be converged on the minimum side of the internal space cross-sectional area where the internal space converges.

また、本発明の磁束集中化装置によれば、磁束発生源と磁束誘導部材との配置関係や、該磁束誘導部材の形状等の、多様な構造の変更に伴い、例えば進行方向の変更など、磁束収束の多様な形態の実現も可能とされる。   Further, according to the magnetic flux concentrating device of the present invention, along with various structural changes such as the arrangement relationship between the magnetic flux generating source and the magnetic flux guiding member, the shape of the magnetic flux guiding member, etc. Realization of various forms of magnetic flux convergence is also possible.

本発明の磁束集中化装置では、前記のとおり、
<A>少なくとも磁束発生源と内部空間を有する磁束誘導部材とが備えられ、これらは、磁束発生源から発生される磁束が内部空間に導入されるような位置に配置されていること、
<B>前記磁束誘導部材は、超伝導体で構成されると共に、その内空間面積が前記磁束発生源から離れるに連れ漸減する漸減部を有すること、
<C>前記磁束誘導部材は、前記磁束の回りを周回する電流が生じないようにしてあること、
を必須の構成とするものである。
In the magnetic flux concentrator of the present invention, as described above,
<A> At least a magnetic flux generation source and a magnetic flux guide member having an internal space are provided, and these are arranged at positions where the magnetic flux generated from the magnetic flux generation source is introduced into the internal space,
<B> The magnetic flux guide member includes a superconductor, and has a gradually decreasing portion that gradually decreases as the inner space area moves away from the magnetic flux generation source.
<C> The magnetic flux guiding member is configured not to generate a current that circulates around the magnetic flux.
Is an essential component.

ここで、磁束誘導部材は超伝導体からなり完全反磁性を示すため、その内表面に対して垂直な磁束成分を遮蔽(制御)するように電流(マイスナー電流)が流れる。その結果として、磁束が磁束誘導部材の内表面に対して平行な成分のみとなることで、前記構成<B>における断面積の漸減にともなう磁束の集中化を可能としている。   Here, since the magnetic flux guiding member is made of a superconductor and exhibits complete diamagnetism, a current (Meissner current) flows so as to shield (control) a magnetic flux component perpendicular to the inner surface thereof. As a result, since the magnetic flux is only a component parallel to the inner surface of the magnetic flux guiding member, the magnetic flux can be concentrated along with the gradual reduction of the cross-sectional area in the configuration <B>.

また、前記構成<C>によって、磁束誘導部材の表面に対して平行な磁束成分が遮蔽(制御)されることがないようにしている。   Further, the configuration <C> prevents the magnetic flux component parallel to the surface of the magnetic flux guiding member from being shielded (controlled).

たとえば、図1は、本発明の磁束集中化装置の代表的な一実施形態を模式的に示した斜視図である。この図1の場合、磁束発生源1は磁石であり、磁束誘導部材2は超伝導体をもって構成されている。   For example, FIG. 1 is a perspective view schematically showing a typical embodiment of the magnetic flux concentrator of the present invention. In the case of FIG. 1, the magnetic flux generating source 1 is a magnet, and the magnetic flux guiding member 2 is composed of a superconductor.

本発明において、磁束発生源1としては、磁束を発生できるものであれば特に制限されず、超伝導マグネット及び常伝導マグネット等からなる電磁石、永久磁石などの各種のものから、所望の磁場を得るのに適したものを用いることができる。   In the present invention, the magnetic flux generating source 1 is not particularly limited as long as it can generate a magnetic flux, and a desired magnetic field is obtained from various types of magnets such as a superconducting magnet and a normal conducting magnet, and a permanent magnet. Those suitable for the above can be used.

この磁束発生源1については、単数であっても良いし、複数のものから構成されていても良い。磁束発生源1が複数のものから構成される場合には、各々を磁束発生源1と考えても良いし、それらの磁束発生源が発生する磁束密度の最も大きい点を磁場中心として、この磁場中心を磁束発生源1と見なしても良い。   The magnetic flux generation source 1 may be singular or may be composed of a plurality. When the magnetic flux generation source 1 is composed of a plurality of sources, each of the magnetic flux generation sources 1 may be considered as the magnetic flux generation source 1. The center may be regarded as the magnetic flux generation source 1.

磁束誘導部材2を構成する超伝導体の素材、組成についても特に限定されるものではなく、前記の特徴を有する磁束誘導部材2を構成できるものであれば公知の各種の超伝導体を用いることができる。図1では、中空円錐状のシート状超伝導体からなる磁束誘導部材2を例示しているが、磁束誘導部材2はこのような例に限られることはない。例えば、超伝導体としては、平面上に抵抗なく電流が流れるものとして、NbTi合金/Cu多層材、薄膜系超伝導体等であってよく、さらには、図5に例示したように、超伝導物質が網目状や格子状に形成されたものや、平面の一部に空隙、欠陥等が存在したものでもよく、いずれも同様の効果が期待される。   The material and composition of the superconductor constituting the magnetic flux guide member 2 are not particularly limited, and various known superconductors can be used as long as the magnetic flux guide member 2 having the above characteristics can be formed. Can do. Although FIG. 1 illustrates the magnetic flux guiding member 2 made of a hollow conical sheet-like superconductor, the magnetic flux guiding member 2 is not limited to such an example. For example, the superconductor may be an NbTi alloy / Cu multilayer material, a thin film superconductor, or the like as a current flows without resistance on a plane, and further, as illustrated in FIG. The material may be formed in a mesh shape or a lattice shape, or may have voids, defects or the like in a part of a plane, and the same effect is expected in each case.

磁束誘導部材2については、前記のとおり、磁束が導入され誘導される内部空間を有しており、この内部空間は磁束の誘導方向に垂直な断面積の漸減が必要とされる。この点において、最も本質的に、均一平行磁場の形成を図ろうとする従来公知の技術(特許文献1)等とは相違している。この公知技術においては、磁束の集中化については何ら示唆することがない。また、磁束収束の多様な形態についても同様である。   As described above, the magnetic flux guiding member 2 has an internal space into which the magnetic flux is introduced and guided, and this internal space needs to be gradually reduced in cross-sectional area perpendicular to the magnetic flux guiding direction. In this respect, it is essentially different from a conventionally known technique (Patent Document 1) that attempts to form a uniform parallel magnetic field. In this known technique, there is no suggestion about the concentration of magnetic flux. The same applies to various forms of magnetic flux convergence.

内部空間の断面積の漸減、すなわち断面径または断面長が漸減する構成については、たとえば図1に示した漸減部の長さ(L)、最大内径(長)(D)、最小内径(長)(d)、さらには磁束発生源1の種類と配置、磁場中心からの距離(図中では、最大内径(長)部である下方開口2Aとの距離(l)を示す)等との関係から、所要の磁束集中度および磁束誘導方向とするための選択と設計が行われてよい。   For the configuration in which the sectional area of the internal space is gradually reduced, that is, the sectional diameter or the sectional length is gradually reduced, for example, the length (L), the maximum inner diameter (length) (D), and the minimum inner diameter (length) of the gradually decreasing portion shown in FIG. (D) Furthermore, from the relationship between the type and arrangement of the magnetic flux generation source 1, the distance from the center of the magnetic field (in the figure, the distance (l) from the lower opening 2A, which is the maximum inner diameter (long) portion), and the like. Selection and design may be made to achieve the required magnetic flux concentration and magnetic flux induction direction.

磁束誘導部材2の厚みについても特段の制限はなく、コスト面や、使用環境における下部臨界磁場、臨界電流密度などの値を考慮して決定することができる。   The thickness of the magnetic flux guiding member 2 is not particularly limited, and can be determined in consideration of the cost, the lower critical magnetic field, the critical current density, and the like in the usage environment.

このような磁束誘導部材2としての形状としては、筒状体(図10)または中空円錐状体(図1、図13、図14、図16)、漏斗状体(図6、図7)、つぼ状体(図8)など多様な各種の形状を例示することができ、また、これらを任意の縦断面で切断したり切欠いた、例えば樋のような形状(図15)とすることもできる。   As such a shape as the magnetic flux guiding member 2, a cylindrical body (FIG. 10) or a hollow conical body (FIGS. 1, 13, 14, and 16), a funnel body (FIGS. 6 and 7), Various various shapes such as a vase (FIG. 8) can be exemplified, and these can be cut or cut in any longitudinal section, for example, a shape like a ridge (FIG. 15). .

内部空間の漸減については、例えば図1、図10、図13、図14、図18などに例示されているように漸減の割合が一定であっても、図6〜8に例示されたように様々に変化していても差し支えない。   Regarding the gradual decrease of the internal space, as illustrated in FIGS. 6 to 8, even if the rate of gradual decrease is constant as illustrated in FIG. 1, FIG. 10, FIG. 13, FIG. It can be changed in various ways.

なお、例えば図15に例示されているように、磁束誘導部材2が筒状体または中空円錐状体を任意の断面で切断したような形状の場合、内部空間についてもこの断面で切断された形状と考えることができる。この場合は切断された部分から磁束が拡散されるため、図14の場合に比較して磁束の集中化の効率は低下してしまう。   For example, as illustrated in FIG. 15, when the magnetic flux guiding member 2 has a shape obtained by cutting a cylindrical body or a hollow conical body in an arbitrary cross section, the internal space is also cut in this cross section. Can be considered. In this case, since the magnetic flux is diffused from the cut portion, the concentration efficiency of the magnetic flux is reduced as compared with the case of FIG.

なお、この内部空間に関して、本発明において「空間」とは、固体物質が何も存在しないことを意味するのではなく、磁束の進行に何らの影響をあたえない場として理解することが出来る。すなわち、例えば優れた透磁性を有する物質が充填されていても、本願発明では「空間」とすることが出来る。このような優れた透磁性を有する物質としては、例えば、弱磁性物質を考慮することができ、具体的には、銅、アルミニウムなどを例示することができる。また、おおよその目安として、磁化率χがχ<±1×10-5emu/gの物質などを考慮することができる。 With regard to this internal space, the term “space” in the present invention does not mean that there is no solid substance, but can be understood as a place that does not have any influence on the progress of magnetic flux. That is, for example, even if a material having excellent magnetic permeability is filled, it can be defined as a “space” in the present invention. As such a material having excellent magnetic permeability, for example, a weak magnetic material can be considered, and specifically, copper, aluminum and the like can be exemplified. As an approximate guide, a substance having a magnetic susceptibility χ of χ <± 1 × 10 −5 emu / g can be considered.

また、磁束誘導部材や内部空間の形状を表現するために用いた「円錐」状、「筒」状とは、幾何学的に厳密に「円錐」および「円筒」を示すものではなく、磁束誘導部材とその内部空間の形状の特徴からこれらをより分かりやすく表現する文言として用いている。従って、例えば図1、図13、図14に示した磁束誘導部材の形状は、厳密には、略中空円錐台形状と表現すべきであるが「中空円錐状体」のように表現している。   In addition, the “cone” and “cylinder” shapes used to express the shape of the magnetic flux induction member and the internal space do not strictly indicate “cone” and “cylinder” geometrically. It is used as a word to express these more easily from the features of the shape of the member and its internal space. Accordingly, for example, the shape of the magnetic flux guiding member shown in FIGS. 1, 13 and 14 should be expressed as a substantially hollow truncated cone shape, but it is expressed as a “hollow cone”. .

そして、磁束誘導部材2を超伝導状態とするために適宜冷却手段(図示せず)等が用いられて良いことは言うまでもない。また、磁束の集中化を行う際には、磁束発生源1の発生する磁場が、磁束誘導部材2が例えば第1種超伝導体からなる場合にはその臨界磁場Hcを、第2種超伝導体からなる場合にはその臨界磁場Hcを超えてはならない。 Needless to say, a cooling means (not shown) or the like may be appropriately used to bring the magnetic flux guiding member 2 into a superconducting state. When the magnetic flux is concentrated, the magnetic field generated by the magnetic flux generation source 1 is changed to the critical magnetic field Hc when the magnetic flux guiding member 2 is made of, for example, a first type superconductor. If made of the body must not exceed the critical magnetic field Hc 2.

なお、磁束誘導部材2において、磁束の周りを周回する電流が生じない構成とするには、図1の円錐形の磁束誘導部材2を例にして説明すると、例えば軸(Z軸)に沿って、スリット2Cを設けることで実現することができる。スリット2Cを設ける場合は、磁束の周りを周回する電流が生じない限り、その幅の下限に制限はない。その他、スリット2Cを絶縁部等で代替することなどでも実現できる。このスリット2Cについても同様の観点から、さらには磁束誘導部材2の形成上の観点も加味して、その幅や配設される個数や位置が選択されてよい。図1の例においては、90°の平面角度間隔を置いて配置しているがこれに限られることはない。スリットに代えて絶縁体を用いる場合も同様である。   In the magnetic flux guiding member 2, in order to make a configuration in which a current that circulates around the magnetic flux is not generated, the conical magnetic flux guiding member 2 of FIG. 1 will be described as an example. For example, along the axis (Z axis) This can be realized by providing the slit 2C. In the case where the slit 2C is provided, there is no limit to the lower limit of the width thereof unless a current that circulates around the magnetic flux is generated. In addition, it can be realized by replacing the slit 2C with an insulating portion or the like. With respect to the slit 2C, the width, the number and position of the slit 2C may be selected in consideration of the formation of the magnetic flux guide member 2 from the same viewpoint. In the example of FIG. 1, the plane angle intervals of 90 ° are arranged, but the present invention is not limited to this. The same applies when an insulator is used instead of the slit.

図1の例では、スリット2Cを入れることで磁束のZ軸方向の成分に対する遮蔽電流を抑制したが、一方で、スリット2Cからの磁束の漏洩を抑えるために、スリット2C外表面に磁束誘導部材としての役割を果たす超伝導体をさらに配置するとより一層効果的である。   In the example of FIG. 1, the slit 2C is inserted to suppress the shielding current for the component in the Z-axis direction of the magnetic flux. It is more effective to further dispose a superconductor that plays the role of.

つまり図1のような円錐形の磁束誘導部材2の場合、Z軸を周回する電流を抑制する方法としては、図4に例示したように、
(a)バルク状超伝導体からなる磁束誘導部材2にZ軸方向にスリット2Cを入れる、
(b)そのスリットの上(外表面)に絶縁シート2Dおよび超伝導体片2Eを重ね、漏洩磁束を低減する、または、
(c)テープ状超伝導体2FをZ軸方向にオーバーラップしながら配列(テープの少なくとも1本は他のテープと絶縁)する、
(d)絶縁したテープ状超伝導体2Gを隙間ができないように螺旋状に巻く(両端はオープン)、
等の各種の形態を考慮することができる。
That is, in the case of the conical magnetic flux guiding member 2 as shown in FIG. 1, as a method of suppressing the current that circulates around the Z axis, as illustrated in FIG.
(A) A slit 2C is inserted in the magnetic flux guiding member 2 made of a bulk superconductor in the Z-axis direction.
(B) Overlaying the insulating sheet 2D and the superconductor piece 2E on the slit (outer surface) to reduce the leakage magnetic flux, or
(C) The tape-shaped superconductor 2F is arranged while being overlapped in the Z-axis direction (at least one of the tapes is insulated from other tapes).
(D) The insulated tape-shaped superconductor 2G is spirally wound so that there is no gap (both ends are open),
Various forms such as can be considered.

さらに、本発明においては、図9に示したように、たとえば絶縁したテープ状の超伝導体を用いて螺旋状に巻く等により、磁束誘導部材2の超伝導体が磁束発生源1を兼ねるようにすることもできる。   Furthermore, in the present invention, as shown in FIG. 9, the superconductor of the magnetic flux guiding member 2 also serves as the magnetic flux generation source 1 by, for example, spirally winding using an insulated tape-shaped superconductor. It can also be.

磁束発生源1と磁束誘導部材2の配置については、磁束集中効率や集中位置を所望のものとするための選択と設計が行われてよい。例えば、<1>磁束発生源1から発生される磁場の向きと、磁束誘導部材2の軸とを同軸にすることができる。この場合には、磁束はその軸上で、内部空間に導入され、誘導されて、漸減部の断面積の最小部近傍で局所的に収束されることになる。すなわち、磁束の導入方向=磁束の誘導方向である。一方で、<2>磁束発生源1から発生される磁場の向きと、磁束誘導部材2の軸とを異なるよう配置することもできる。この場合、内部空間に導入された磁束は、漸減部入口において導入された方向とは異なる方向に誘導されて、漸減部の断面積の最小部近傍で局所的に収束される。すなわち、磁束の導入方向≠磁束の誘導方向である。ここで、<2>の場合は、磁束誘導部材2の設計により、磁束の誘導方向とは異なる任意の方向に磁束を誘導することが可能となる。   About arrangement | positioning of the magnetic flux generation source 1 and the magnetic flux induction | guidance | derivation member 2, selection and design for making magnetic flux concentration efficiency and a concentration position into a desired thing may be performed. For example, <1> the direction of the magnetic field generated from the magnetic flux generation source 1 and the axis of the magnetic flux guiding member 2 can be coaxial. In this case, the magnetic flux is introduced into the internal space on the axis, guided, and converged locally in the vicinity of the minimum portion of the cross-sectional area of the gradually decreasing portion. That is, the introduction direction of magnetic flux = the induction direction of magnetic flux. On the other hand, <2> the direction of the magnetic field generated from the magnetic flux generation source 1 and the axis of the magnetic flux guiding member 2 can be arranged differently. In this case, the magnetic flux introduced into the internal space is guided in a direction different from the direction introduced at the entrance of the gradually decreasing portion and is locally converged in the vicinity of the minimum portion of the sectional area of the gradually decreasing portion. That is, the introduction direction of magnetic flux ≠ the induction direction of magnetic flux. Here, in the case of <2>, the magnetic flux can be induced in an arbitrary direction different from the magnetic flux induction direction by the design of the magnetic flux induction member 2.

この図1の例示は上記<1>の場合であって、磁束発生源1と磁束誘導部材2とは、例えば、実質的に、設計上許容される誤差の範囲内で、図中のZ軸において同軸上に配置されている。またこの磁束誘導部材2は略中空円錐状であって、この中空部分が、磁束発生源1より発生される磁束が導入されて誘導される内部空間となっており、磁束の誘導方向(Z軸)に垂直な内部空間の断面積が磁束発生源1から離れるにつれて漸減する漸減部を有している。磁束誘導部材2は超伝導状態にあるため、内部空間に磁束が導入されると磁束誘導部材2の内表面に対して垂直な成分の磁束を遮蔽(抑制)するように電流が流れ、結果として磁束が、磁束誘導部材2の内表面に対して平行な成分のみとなる。そして内部空間の断面積の漸減、換言すれば内部空間の収束にともなって、上方開口2Bに向かって、磁束発生源1からの磁束の拡散が抑えられてその集中化が図られる。   The illustration of FIG. 1 is the case of <1> above, and the magnetic flux generation source 1 and the magnetic flux guiding member 2 are, for example, substantially within the allowable range in design, within the Z axis in the figure. Are arranged on the same axis. The magnetic flux guiding member 2 has a substantially hollow conical shape, and this hollow portion is an internal space that is guided by the magnetic flux generated from the magnetic flux generating source 1 and is guided in the direction of guiding the magnetic flux (Z-axis). ) Has a gradually decreasing portion that gradually decreases as the cross-sectional area of the internal space that is perpendicular to) moves away from the magnetic flux generation source 1. Since the magnetic flux guiding member 2 is in a superconducting state, when a magnetic flux is introduced into the internal space, a current flows so as to shield (suppress) the magnetic flux having a component perpendicular to the inner surface of the magnetic flux guiding member 2. The magnetic flux is only a component parallel to the inner surface of the magnetic flux guide member 2. Then, as the cross-sectional area of the internal space is gradually reduced, in other words, with the convergence of the internal space, diffusion of magnetic flux from the magnetic flux generation source 1 is suppressed toward the upper opening 2B and concentration thereof is achieved.

そして、このことを効果的とするために、磁束誘導部材2には、例えば軸(Z軸)に沿って、スリット2Cが設けられている。このスリット2Cは、磁束誘導部材2において、内表面に対して平行な成分の磁束を遮蔽(抑制)する電流、すなわち磁束の周りを周回する方向の電流が生じないようにするための構成である。   In order to make this effective, the magnetic flux guiding member 2 is provided with a slit 2C along, for example, an axis (Z axis). The slit 2C is configured to prevent a current that shields (suppresses) a magnetic flux having a component parallel to the inner surface in the magnetic flux guiding member 2, that is, a current that circulates around the magnetic flux. .

また、磁束誘導部材2の内部空間と磁束の集中については、たとえば、磁石1およびその磁場中心が磁束誘導部材2の外部にある場合には、図6(a)(b)に示したように、磁石1側の下方開口2AのZ軸に直交する断面の面積S2が、上方開口2Bに向って漸減し、その断面積S1と、S1<S2の関係にあれば、上方開口2Bに向って磁束の濃縮、集中化の効果が得られる。   Further, regarding the concentration of the inner space and the magnetic flux of the magnetic flux guiding member 2, for example, when the magnet 1 and the magnetic field center thereof are outside the magnetic flux guiding member 2, as shown in FIGS. If the area S2 of the cross section perpendicular to the Z-axis of the lower opening 2A on the magnet 1 side gradually decreases toward the upper opening 2B, and the cross-sectional area S1 is in a relationship of S1 <S2, the area S2 is directed toward the upper opening 2B. The effect of concentration and concentration of magnetic flux can be obtained.

さらに、図7にも示したように(a)磁石1が磁束誘導部材2の外部にある場合だけでなく、(d)磁石1が磁束誘導部材2の内部にあるようにしてもよい。後者(b)の場合には、図8(a)に示したように、開口断面積はS1<S2の関係にある必要はなく、また図8(b)のように、開口を一つとすることも可能である。   Further, as shown in FIG. 7, (a) the magnet 1 may be located inside the magnetic flux guiding member 2 as well as (a) the magnet 1 located outside the magnetic flux guiding member 2. In the latter case (b), as shown in FIG. 8 (a), the opening cross-sectional area does not need to be in the relationship of S1 <S2, and as shown in FIG. 8 (b), there is one opening. It is also possible.

加えて、図11、図18、図19に例示したように、磁束誘導部材2の外周方向に磁石1が配置される場合などには、磁束誘導部材2の中心付近に磁場中心が位置するため、磁束誘導部材2の内空間の断面積は、例えば中心部が最も小さく、端部に向かうにしたがって大きくすることができる。これらの場合、磁束誘導部材が、漸減部の内部空間断面積の最小部よりも先に内部空間を有しており、最小部よりも先に内部空間がない場合に比べて、磁束の拡散を抑制してより磁束を集中させることができる。   In addition, as illustrated in FIGS. 11, 18, and 19, when the magnet 1 is disposed in the outer circumferential direction of the magnetic flux guiding member 2, the magnetic field center is located near the center of the magnetic flux guiding member 2. The cross-sectional area of the inner space of the magnetic flux guiding member 2 is, for example, the smallest at the center and can be increased toward the end. In these cases, the magnetic flux guiding member has an internal space before the minimum portion of the internal space cross-sectional area of the gradually decreasing portion, and the magnetic flux is diffused compared to the case where there is no internal space before the minimum portion. The magnetic flux can be concentrated by suppressing the magnetic flux.

一方で、上記<2>の磁束発生源1から発生される磁束の向きと、磁束誘導部材2の磁束の誘導方向とが異なる場合については、例えば、図13および図14により説明される。図13および図14において、図中の上方に向かう矢印は磁束の進行方向を示しており、磁束発生源1から発生された磁束が磁束誘導部材2の内部空間に図中下方から上方に導入されている。図13では、内部空間の漸減部の最大径部断面と最小径部断面とが相互に変心した位置に存在する例である。図14は、漸減部の最大径部断面と最小径部断面とが同心状に存在するものではあるが、その中心軸は、導入される磁束に対して傾斜して配置されている例である。この場合においても、磁束誘導部材2は超伝導状態にあるため、内部空間に磁束が導入されると磁束誘導部材2の内表面に対して垂直な成分の磁束を遮蔽(抑制)するように電流が流れ、結果として磁束が、磁束誘導部材2の内表面に対して平行な成分のみとなる。ここで、磁束誘導部材2における内部空間の断面積の漸減の方向は、磁束の導入方向とは異なるため、磁束は内表面に平行な成分になるとともに導入方向とは異なる方向に誘導され、上部開口に向かって磁束発生源1からの磁束の拡散が抑えられてその集中化が図られる。このように、磁束の向きと、磁束の誘導方向とが異なる場合には、磁束は、漸減部において内部空間に導入された方向とは異なる方向に誘導されて、漸減部の断面積の最小部近傍で局所的に収束される。   On the other hand, the case where the direction of the magnetic flux generated from the magnetic flux generation source 1 of <2> is different from the direction of induction of the magnetic flux of the magnetic flux guide member 2 will be described with reference to FIGS. 13 and 14, for example. 13 and 14, the upward arrows in the drawings indicate the direction of travel of the magnetic flux, and the magnetic flux generated from the magnetic flux generation source 1 is introduced into the internal space of the magnetic flux guiding member 2 from the lower side to the upper side in the figure. ing. FIG. 13 shows an example in which the maximum diameter section and the minimum diameter section of the gradually decreasing portion of the internal space exist at positions shifted from each other. FIG. 14 is an example in which the maximum diameter section and the minimum diameter section of the gradually decreasing portion are concentrically arranged, but the central axis thereof is inclined with respect to the introduced magnetic flux. . Even in this case, since the magnetic flux guiding member 2 is in a superconducting state, when the magnetic flux is introduced into the internal space, a current is applied so as to shield (suppress) the magnetic flux having a component perpendicular to the inner surface of the magnetic flux guiding member 2. As a result, the magnetic flux becomes only a component parallel to the inner surface of the magnetic flux guiding member 2. Here, the direction in which the cross-sectional area of the internal space in the magnetic flux guiding member 2 gradually decreases is different from the direction in which the magnetic flux is introduced, so that the magnetic flux becomes a component parallel to the inner surface and is induced in a direction different from the direction of introduction. The diffusion of the magnetic flux from the magnetic flux generation source 1 toward the opening is suppressed, and the concentration is achieved. Thus, when the direction of the magnetic flux is different from the induction direction of the magnetic flux, the magnetic flux is induced in a direction different from the direction introduced into the internal space in the gradual reduction portion, and the minimum portion of the cross-sectional area of the gradual reduction portion. Converge locally in the neighborhood.

磁束の向きを変えるという観点からは、例えば図15に示したように、磁束誘導部材2は筒状または中空円錐状に限定されることなく、例えば、これらを任意の縦断面で切断したような形状であってよい。図15は、図14に示した磁束誘導部材を中心軸で切断除去した樋状の形状の場合を例示している。このような樋状の場合、開放された部分がスリットの役目も兼ねて周方向での電流の発生を抑制するため、スリット等を設ける必要はない。そして、内部空間に磁束が導入されると、磁束は漸減部において磁束誘導部材2の内表面に対して平行な成分のみとなり、内部空間に導入された方向とは異なる方向に誘導されて、漸減部の断面積の最小部近傍で局所的に収束される。磁束誘導部材が筒状または中空円錐状を任意の縦断面で切断したような形状である場合は、磁束の集中効率が低下することが考慮されるものの、スペースに制約がある場合でも磁束誘導部材2を設置できる可能性が高まること、また、磁束誘導部材2の開放部側から磁束密度の高い場所にアクセス(操作、計測など)しやすいこと等の利点がある。   From the viewpoint of changing the direction of the magnetic flux, the magnetic flux guiding member 2 is not limited to a cylindrical shape or a hollow conical shape, for example, as shown in FIG. It may be a shape. FIG. 15 illustrates a case of a bowl shape obtained by cutting and removing the magnetic flux guiding member shown in FIG. 14 along the central axis. In the case of such a bowl shape, it is not necessary to provide a slit or the like because the opened portion also serves as a slit and suppresses the generation of current in the circumferential direction. When the magnetic flux is introduced into the internal space, the magnetic flux becomes only a component parallel to the inner surface of the magnetic flux guiding member 2 in the gradually decreasing portion, and is induced in a direction different from the direction introduced into the internal space and gradually decreases. It is converged locally in the vicinity of the minimum part of the sectional area of the part. If the magnetic flux guiding member has a shape that is obtained by cutting a cylindrical shape or a hollow conical shape with an arbitrary longitudinal section, it is considered that the magnetic flux concentration efficiency is reduced, but even if there is a space limitation, the magnetic flux guiding member There is an advantage that the possibility that the magnetic flux guide member 2 can be installed is increased, and that a place where the magnetic flux density is high can be easily accessed (operated, measured, etc.) from the open side of the magnetic flux guiding member 2.

さらに、磁束の向きを変える場合に、磁束誘導部材2の漸減部以外を利用することもできる。というのは、例えば、磁束誘導部材2において内部空間断面積に漸減のない管状の部分を設け、この管状の部分を例えば160°曲げて磁束が160°曲がるよう誘導した場合、管状内部で磁束密度がほぼ保存されることが計算で予測されている。曲げ角が180°以上であっても同様の結果が得られると考えられる。したがって、磁束誘導部材2の内部空間に、断面積の漸減のない管状部と漸減部とを適宜組み合わせることなどでも、磁束の向きを変え、さらにその磁束の濃縮を図ることが可能とされる。   Furthermore, when changing the direction of the magnetic flux, other than the gradually decreasing portion of the magnetic flux guiding member 2 can be used. This is because, for example, when the magnetic flux guide member 2 is provided with a tubular portion that does not gradually decrease in the internal space cross-sectional area, and the tubular portion is bent by, for example, 160 ° to induce a magnetic flux to be bent by 160 °, the magnetic flux density inside the tubular portion Is predicted to be almost conserved. It is considered that the same result can be obtained even when the bending angle is 180 ° or more. Therefore, it is possible to change the direction of the magnetic flux and further concentrate the magnetic flux by appropriately combining a tubular portion without a gradual decrease in cross-sectional area and a gradual decrease portion in the internal space of the magnetic flux guiding member 2.

なお、磁束誘導部材の内表面への磁束の導入角度についても考慮することができる。図19は、円筒内部を円錐形状にくりぬいて漸減部とし、内径部に若干の高さがある形状の磁束誘導部材に、図上方から磁場を印加した場合の磁束線の分布を示した断面模式図である。図から分かるように、磁束の誘導方向には、磁束誘導部材の内表面に対する磁束の入射角が大きく影響し、磁束の入射角が鋭角か鈍角かで磁束の誘導される方向が決まることがわかる。これは漸減部の断面形状が曲面の場合でも同様である。   Note that the introduction angle of the magnetic flux to the inner surface of the magnetic flux guiding member can also be considered. FIG. 19 is a schematic cross-sectional view showing the distribution of magnetic flux lines when a magnetic field is applied from above to a magnetic flux guiding member having a gradually increasing portion by hollowing out the inside of the cylinder into a conical shape and having a slight height on the inner diameter portion. FIG. As can be seen from the figure, the direction of magnetic flux induction is greatly affected by the incident angle of the magnetic flux with respect to the inner surface of the magnetic flux guiding member, and the direction in which the magnetic flux is induced is determined by the acute angle or the obtuse angle of the magnetic flux. . This is the same even when the cross-sectional shape of the gradually decreasing portion is a curved surface.

以上のように、本発明では、磁束集中効果を発揮しつつ、磁束の進行方向を強制的に変更することも可能とされる。本発明においては、磁束を所要の磁束集中効率および収束位置で収束させるために、磁束発生源1と磁束誘導部材2との配置および磁束の導入および誘導方向等の選択と設計が行われてよい。   As described above, in the present invention, it is possible to forcibly change the traveling direction of the magnetic flux while exhibiting the magnetic flux concentration effect. In the present invention, in order to converge the magnetic flux at the required magnetic flux concentration efficiency and the convergence position, the arrangement of the magnetic flux generation source 1 and the magnetic flux guiding member 2 and the selection and design of the magnetic flux introduction and guidance directions may be performed. .

さらに、磁束誘導部材2の内部空間の形態については、磁束の集中化の様子に様々な影響を与えるため、所望の磁束の収束形態に応じて磁束誘導部材2の内部空間の形態を適切に設計することができる。   Furthermore, the form of the internal space of the magnetic flux guiding member 2 has various influences on the state of concentration of the magnetic flux, so that the form of the internal space of the magnetic flux guiding member 2 is appropriately designed according to the desired magnetic flux convergence form. can do.

例えば、図20(a)に示すような断面形状で、漸減部よりも先に大きく内部空間を有する磁束誘導部材2と、その下半分がない磁束誘導部材2とに磁束を導入した場合の、磁束誘導部材2の中心軸上の磁束密度の分布を(b)に示した。下半分がない場合(片側)は、磁束誘導部材の端部(軸方向位置0mm)よりも上の部分で磁束密度が収束し、磁束密度の減少が生じている。漸減部よりも先に大きく内部空間を有する場合(両側)は、そのような磁束の減少が抑制され、軸方向位置0mmで磁束密度がさらに高められるのがわかる。なお、この図20(a)に示したように、磁束誘導部材2の形状を軸方向に対称とすることで、磁束誘導部材と磁束発生源の間に生じる電磁力を抑制することが可能となる。   For example, when the magnetic flux is introduced into the magnetic flux guiding member 2 having a cross-sectional shape as shown in FIG. The distribution of the magnetic flux density on the central axis of the magnetic flux guiding member 2 is shown in (b). When there is no lower half (one side), the magnetic flux density converges at a portion above the end portion (axial position 0 mm) of the magnetic flux guiding member, and the magnetic flux density is reduced. It can be seen that when the internal space is larger than the gradually decreasing portion (both sides), such a decrease in magnetic flux is suppressed and the magnetic flux density is further increased at the axial position of 0 mm. As shown in FIG. 20A, the electromagnetic force generated between the magnetic flux guide member and the magnetic flux generation source can be suppressed by making the shape of the magnetic flux guide member 2 symmetrical in the axial direction. Become.

また、図20(c)は、(a)の磁束誘導部材の内径部の高さ20mmを6mmに変化させたものである。赤道面(軸方向位置0mm)の磁束密度を比較すると、内径部の高さが小さい場合(c)は、磁束密度が最も高くなる磁束誘導部材の内表面近傍の磁束密度が21T以上と高いものの、磁場の径方向の磁束密度分布は極めて不均一となる。一方、内径部の高さが大きい場合(a)は、内表面近傍の磁束密度は若干低くなるものの、中心部の磁束密度分布はより均一となることがわかる。このように、ほぼ似た形状の磁束誘導部材であっても磁束密度の分布は異なってくるため、用途によって磁束誘導部材の内部空間を設計することができる。   FIG. 20 (c) shows a case where the height 20mm of the inner diameter portion of the magnetic flux guiding member (a) is changed to 6mm. When the magnetic flux density on the equator plane (0 mm in the axial direction) is compared, when the height of the inner diameter portion is small (c), the magnetic flux density near the inner surface of the magnetic flux guiding member where the magnetic flux density is highest is as high as 21 T or higher. The magnetic flux density distribution in the radial direction of the magnetic field is extremely non-uniform. On the other hand, when the height of the inner diameter portion is large (a), the magnetic flux density in the vicinity of the inner surface is slightly reduced, but the magnetic flux density distribution in the central portion is more uniform. As described above, the distribution of the magnetic flux density is different even if the magnetic flux guiding member has a substantially similar shape. Therefore, the internal space of the magnetic flux guiding member can be designed depending on the application.

たとえば以上のように例示説明される本発明の磁束集中化装置については、これを医療用、産業用等の用途に応じて機器全体の構成の一部として組入れてもよい。また、装置としての形態については、磁束誘導部材2とともに、磁束発生源1についても、様々な形態のバリエーションと、配置の態様があってよい。すなわち、本発明の磁束集中化装置においては、磁場を使用する各種装置の部材配置の自由度を高めることが期待でき、その用途により適合した構成配置が可能とされる。   For example, the magnetic flux concentrator of the present invention illustrated and described as described above may be incorporated as a part of the overall configuration of the apparatus according to medical use, industrial use, or the like. Moreover, about the form as an apparatus, about the magnetic flux generation | occurrence | production source 1 with the magnetic flux induction | guidance | derivation member 2, there may be a variation of various forms and the aspect of arrangement | positioning. That is, in the magnetic flux concentrator of the present invention, it can be expected to increase the degree of freedom of member arrangement of various devices using a magnetic field, and a configuration arrangement adapted to the application is possible.

<実施例1>
表1および表2に、図1における磁束発生源1と円錐形の磁束誘導部材2についての諸元を例示した。
<Example 1>
Tables 1 and 2 exemplify specifications of the magnetic flux generation source 1 and the conical magnetic flux guiding member 2 in FIG.

このような図1の例について、磁束誘導部材2を構成する超伝導体を電気抵抗零の完全導体と仮定して有限要素法により数値解析し、Z軸に沿った磁束密度の分布を計算した結果を図2に示した。比較のために示した磁石のみの場合(超伝導体無)、さらには、スリット2Cのない場合に比べても、本発明では、遠距離まで磁束が保存されていることがわかる。   In the example of FIG. 1, the superconductor constituting the magnetic flux guiding member 2 is assumed to be a perfect conductor with zero electrical resistance, and numerical analysis is performed by the finite element method to calculate the magnetic flux density distribution along the Z axis. The results are shown in FIG. It can be seen that the magnetic flux is preserved up to a long distance in the present invention in the case of only the magnet shown for comparison (no superconductor), and even in the case of no slit 2C.

また、図3は、磁束誘導部材2の先端(Z=100mm)でのZ軸方向成分の磁束密度の分布を示したものである。スリット2Cを通して磁束が漏れているが、強い磁束密度が円錐形の磁束誘導部材2内に集中していることがわかる。
<実施例2>
(1)超伝導体部の作製
磁束誘導部材2は、新日本製鐵(株)製の円筒形状のGd−Ba−Cu−O系バルク超伝導体を2個用いて作製した。まず、それぞれの円筒形状のバルク超伝導体について、中空部分を円錐面状にくり抜いて断面積を漸減させ、さらに円筒軸面で縦方向に2分割してスリット2Cを設けるよう加工した。図10にバルク超伝導体の加工仕様の(a)上面図、(b)断面図と、加工後の図面(c)(d)を示した。また、その仕様と仕上がり寸法を表3に示した。
FIG. 3 shows the distribution of the magnetic flux density of the Z-axis direction component at the tip (Z = 100 mm) of the magnetic flux guiding member 2. Although the magnetic flux leaks through the slit 2C, it can be seen that a strong magnetic flux density is concentrated in the conical magnetic flux guiding member 2.
<Example 2>
(1) Production of Superconductor Part The magnetic flux guiding member 2 was produced using two cylindrical Gd—Ba—Cu—O bulk superconductors manufactured by Nippon Steel Corporation. First, each cylindrical bulk superconductor was processed so that the hollow portion was cut into a conical surface to gradually reduce the cross-sectional area and further divided into two in the longitudinal direction on the cylindrical shaft surface to provide slits 2C. FIG. 10 shows (a) a top view, (b) a cross-sectional view, and (c) and (d) after processing of the processing specifications of the bulk superconductor. The specifications and finished dimensions are shown in Table 3.

そして本実施例における磁束誘導部材2は、この2組のバルク超伝導体を、図11に示したように、同軸上で底部同士を対面させるように組み合わせて用いた。なおこの磁束誘導部材2は、本来一体的に製作する方が合理的であるが、素材の入手性、加工性を考慮して上記のように2組のパーツを組み合わせるようにした。   And the magnetic flux guide member 2 in the present embodiment used these two sets of bulk superconductors in combination so that the bottoms face each other on the same axis as shown in FIG. The magnetic flux guide member 2 is originally more reasonable to be manufactured integrally, but in consideration of the availability and workability of the material, the two sets of parts are combined as described above.

本実施例では図10(b)における円錐面のなす断面角度θを約20°としている。
(2)磁束誘導部材の組み立て
作製した2組の超伝導バルク体からなる磁束誘導部材2を用いて、磁束集中化装置を組み立てた。図11に磁束誘導部材2の(a)上面と(b)縦断面の模式図を示した。
In this embodiment, the sectional angle θ formed by the conical surface in FIG. 10B is about 20 °.
(2) Assembly of magnetic flux guide member A magnetic flux concentrator was assembled using the magnetic flux guide member 2 made of two sets of superconducting bulk bodies. FIG. 11 shows a schematic diagram of (a) the upper surface and (b) a longitudinal section of the magnetic flux guiding member 2.

まず、図10(a)のバルク超伝導体は、スリット2C部に、断面の三角形状にカットしたガラス繊維強化複合材料(GFRP)製のスペーサ(厚さ0.3mm)と厚さ調節用のカプトンテープを挟んで周方向に電流が流れないように電気絶縁を行うとともに、外径が29mmとなるように調整して真円性を確保した。このバルク超伝導体2組の間に断面のドーナツ形状にカットしたGFRP製のスペーサ(厚さ0.3mm)を挟み、同軸上で底部同士を対面させ、開口部が外側になるように配置した。このように2組を軸方向で対称に配置することで、軸方向の磁束の対称性の向上と、外部磁場によって磁束集中化装置に作用する電磁力の抑制が可能となる。なお、間に挟み込んだドーナツ形状のスペーサは本来必要なく、磁束の漏洩を生じる欠点があるが、2組のバルク超伝導体間で電位差が生じる可能性があることから、最低減の厚さのスペーサを挟んだ。   First, the bulk superconductor of FIG. 10 (a) is a glass fiber reinforced composite material (GFRP) spacer (thickness 0.3 mm) cut into a triangular shape in the cross section of the slit 2C and a thickness adjusting conductor. Electrical insulation was performed so that no current flowed in the circumferential direction across the Kapton tape, and the outer diameter was adjusted to 29 mm to ensure roundness. A GFRP spacer (thickness 0.3 mm) cut into a donut shape in cross section is sandwiched between the two sets of bulk superconductors, and the bottoms are concentrically arranged so that the openings are on the outside. . Thus, by arranging two sets symmetrically in the axial direction, it is possible to improve the symmetry of the magnetic flux in the axial direction and to suppress the electromagnetic force acting on the magnetic flux concentrator by the external magnetic field. The doughnut-shaped spacer sandwiched between them is not necessary and has the disadvantage of leaking magnetic flux, but there is a possibility of potential difference between the two sets of bulk superconductors. A spacer was inserted.

また、径方向にも電磁力が作用するため、組み合わせたバルク超伝導体をSUS304のパイプ(内径30mm、外径34mm)中に挿入した。隙間には、カプトンテープを貼って厚さを約0.4mmに調整したGFRPを挟み、固定およびバルク超伝導体−パイプ間の電気絶縁を行った。なお、スリット2C部も磁束の漏洩が生じる。そのため、この箇所については、上記のGFRPではなく、テープ状の超伝導体であるSuperPower社のY−Ba−Cu−O線材(幅4mm、厚さ約0.1mm)の両側にカプトンテープを貼り電気絶縁したものを配置して、磁束漏洩の低減を図った。   Further, since electromagnetic force acts also in the radial direction, the combined bulk superconductor was inserted into a SUS304 pipe (inner diameter 30 mm, outer diameter 34 mm). A GFRP whose thickness was adjusted to about 0.4 mm by applying a Kapton tape was sandwiched in the gap, and fixed and electrical insulation between the bulk superconductor and the pipe was performed. Note that magnetic flux leakage also occurs in the slit 2C. For this reason, Kapton tape is attached to both sides of the SuperPower Y-Ba-Cu-O wire (width 4 mm, thickness 0.1 mm), which is a tape-shaped superconductor, instead of the above GFRP. Electric insulation was placed to reduce magnetic flux leakage.

そして、実施例においては、磁束密度計測用ホール素子(F.W.Bell製BH921)の計測部が超伝導体の磁束誘導部材2の中心に一致するように配置するとともに、SUS304のパイプの中にエポキシ樹脂(ニトフィックス)を含浸し、全体を一体化した。
(3) 磁束集中化の検証
磁石1としては、市販の超伝導磁石(ジャパンスーパーコンダクタテクノロジー製JSD−18T52)を用いた。製作した磁束誘導部材2を、図12に示したように挿入用SUS304パイプに取り付け、磁束密度計測用ホール素子および磁束誘導部材2の中心が磁場中心に一致するように磁石1の内側に設置し、磁束集中化装置とした。磁束誘導部材2の漸増減部を構成する超伝導体は、超伝導磁石1ごと液体ヘリウムで冷却され超伝導状態となる。なお、磁束誘導部材2の底部に取り付けた抵抗温度計(Lake Shore製Cernox Resister CX−1050−AA−4L)は、測定中4.22〜4.23 Kの温度を示していた。
In the embodiment, the measurement unit of the magnetic flux density measurement Hall element (BH921 manufactured by FW Bell) is arranged so as to coincide with the center of the magnetic flux guiding member 2 of the superconductor, and in the pipe of the SUS304. The resin was impregnated with epoxy resin (Nitofix), and the whole was integrated.
(3) Verification of magnetic flux concentration As the magnet 1, a commercially available superconducting magnet (JSD-18T52 manufactured by Japan Superconductor Technology) was used. The manufactured magnetic flux guide member 2 is attached to the SUS304 pipe for insertion as shown in FIG. 12, and is installed inside the magnet 1 so that the center of the magnetic flux density measurement hall element and the magnetic flux guide member 2 coincide with the magnetic field center. The magnetic flux concentrator is used. The superconductor constituting the gradually increasing / decreasing portion of the magnetic flux guiding member 2 is cooled with liquid helium together with the superconducting magnet 1 to be in a superconducting state. Note that a resistance thermometer (Cernox Resister CX-1050-AA-4L manufactured by Lake Shore) attached to the bottom of the magnetic flux guiding member 2 showed a temperature of 4.22 to 4.23 K during the measurement.

超伝導磁石1で外部磁場を形成し、その磁場を変化させたときの、磁束誘導部材2中心部の磁場を調べ、その結果を表4に示した。超伝導磁石1の磁場は、各磁場で30分以上の保持時間を設けながら、0、1、1.5、2、0Tの順に変化させた。   When an external magnetic field was formed with the superconducting magnet 1 and the magnetic field was changed, the magnetic field at the center of the magnetic flux guiding member 2 was examined, and the results are shown in Table 4. The magnetic field of the superconducting magnet 1 was changed in the order of 0, 1, 1.5, 2 and 0T while providing a holding time of 30 minutes or more in each magnetic field.

なお、表中の(1)超伝導磁石の電流値は、励磁電源からの電圧(300A/10V)をデジタルボルトメーター(KEITHLEY 2000 MULTIMETER)で計測し、電流に換算した。(2)超伝導磁石により形成した外部磁場は、18 T/265.64 Aであることから比例計算して算出した。(3)ホール素子電圧は、100mAを通電し、電圧をデジタルボルトメーター(KEITHLEY 2182 NANOVOLTMETER)で計測した値とした。(4)中心部磁場は、ホール素子電圧から0.730mV/0.1Tとして換算した。   In addition, the current value of (1) superconducting magnet in the table was measured by measuring the voltage (300A / 10V) from the excitation power source with a digital voltmeter (KEITHLEY 2000 MULTIMETER) and converting it to a current. (2) Since the external magnetic field formed by the superconducting magnet is 18 T / 265.64 A, it was calculated by proportional calculation. (3) The Hall element voltage was a value obtained by energizing 100 mA and measuring the voltage with a digital voltmeter (KEITHLEY 2182 NANOVOLTMETER). (4) The central magnetic field was converted as 0.730 mV / 0.1 T from the Hall element voltage.

中心部磁場と外部磁場の比(濃縮比)は、外部磁場が約1Tの場合で3を超えるものであった。保持時間および外部磁場の増加によって濃縮比が減少する傾向が見られるが、この出願の発明の磁束集中化装置により、磁束が濃縮、集中化が実現できることが実証された。
(4) 磁束集中化のシミュレーション
本願の磁束集中化装置の磁束集中に関するコンピュータシミュレーションについて検討した。
The ratio (concentration ratio) between the central magnetic field and the external magnetic field was more than 3 when the external magnetic field was about 1T. Although the concentration ratio tends to decrease as the holding time and the external magnetic field increase, it has been demonstrated that the magnetic flux concentrating device of the invention of this application can concentrate and concentrate the magnetic flux.
(4) Simulation of magnetic flux concentration The computer simulation related to the magnetic flux concentration of the magnetic flux concentrator of the present application was examined.

超伝導体からなる磁束誘導部材の解析結果で問題となるのは、円周方向の電流をどう扱うかという点である。例えば、バルク超伝導体の中空円筒に一様な外部磁場を加えた場合、比透磁率を零に近い値(1×10-100とするが、実際には1×10-4でも問題はない)として定常問題として取り扱うと、磁束が円筒内部に入り若干の磁束濃縮効果が得られるという結果になる。しかし、実際の実験では、円筒内部の磁束を保存するように周方向に電流が流れて、中空円筒内部に磁束が入らないため、このようなシミュレーション結果は正しくない。 A problem in the analysis result of the magnetic flux induction member made of a superconductor is how to handle the current in the circumferential direction. For example, when a uniform external magnetic field is applied to a hollow cylinder of a bulk superconductor, the relative permeability is set to a value close to zero (1 × 10 -100 , but in practice, there is no problem with 1 × 10 -4. ) As a stationary problem, the magnetic flux enters the inside of the cylinder, resulting in a slight magnetic flux concentration effect. However, in an actual experiment, a current flows in the circumferential direction so as to preserve the magnetic flux inside the cylinder, and the magnetic flux does not enter the hollow cylinder. Therefore, such a simulation result is not correct.

そこで、実験結果を模擬するために、中空円筒の導電率を1×10100 S/mとし外部磁場を0から1Tに変化させた直後の磁束分布を過渡応答解析から求めると、中空円筒内部に磁束が入らないという、実験結果に即したシミュレーション結果が得られる。 Therefore, to simulate the experimental results, the magnetic flux distribution immediately after changing the external magnetic field from 0 to 1 T with the conductivity of the hollow cylinder set to 1 × 10 100 S / m is obtained from the transient response analysis. A simulation result based on the experimental result that the magnetic flux does not enter is obtained.

そこで更に、上記実験に関連して、4種類の条件で磁束集中化効果についてコンピュータシミュレーションした例を図21に示した。解析条件は、磁束誘導部材にスリット(2個としたのは対称性を利用して計算を単純化するため)がある場合とない場合、磁束誘導部材をほぼ完全導体(1×10100 S/m)として過渡応答解析する場合と磁束誘導部材を反磁性(比透磁率1×10-4)として定常解析する場合の4種類とした。なお、過渡応答解析には、OPERA-3D Ver. 11に含まれるELEKTRA-TRを使用し、定常解析にはOPERA-3D Ver. 11に含まれるTOSKAを使用した。 Therefore, in addition to the above experiment, FIG. 21 shows an example in which a computer simulation is performed on the magnetic flux concentration effect under four kinds of conditions. The analysis condition is that the magnetic flux guiding member is made of a perfect conductor (1 × 10 100 S /) when there are slits in the magnetic flux guiding member (in order to simplify the calculation using symmetry). m), and 4 types, ie, a case where a transient response analysis is performed and a case where a magnetic flux induction member is diamagnetic (a relative permeability of 1 × 10 −4 ) and a stationary analysis is performed. In addition, ELEKTRA-TR included in OPERA-3D Ver. 11 was used for transient response analysis, and TOSKA included in OPERA-3D Ver. 11 was used for steady-state analysis.

超伝導体が完全導体でスリットがないとした場合は、周方向電流のため磁束が磁束誘導部材の内部に侵入しておらず、中心部の磁束密度はほぼ零となった。完全導体でスリットがある場合と反磁性でスリットがある場合は、多少の値の違いはあるものの、ほぼ同じ結果が得られた。反磁性でスリットがない場合に中心での磁束密度が最も高くなる結果が得られたが、これは厚さ無限小のスリットにより周方向に電流が流れない理想的な場合を示した結果であると考えることができる。   When the superconductor was a perfect conductor and had no slit, the magnetic flux did not penetrate into the magnetic flux induction member due to the circumferential current, and the magnetic flux density at the center was almost zero. Although there was a slight difference in the value when there was a slit with a perfect conductor and when there was a slit with diamagnetism, almost the same results were obtained. The result that the magnetic flux density at the center is the highest when there is no slit due to diamagnetism is the result, which shows the ideal case where current does not flow in the circumferential direction due to an infinitely small slit. Can be considered.

以上のことから、本発明の磁束集中化装置の磁束集中化についてコンピュータシミュレーションする場合には、周方向電流の流れない上記3通りの条件で計算することで、良好な結果が得られることがわかった。
<実施例3>
磁束発生源としての磁石と中空円錐状の超伝導体からなる磁束誘導部材より構成される磁束集中化装置の断面外略図を図16に示した。磁束発生源Aは、その軸(軸a)が磁束発生源の発生する磁束の軸と同軸上に配置されている。また、磁束誘導部材Bは、軸aから45°傾斜した軸bの方向に配置されている。表5および表6に、磁石と円錐形の磁束誘導部材についての諸元を示した。
From the above, it can be seen that when a computer simulation is performed on the magnetic flux concentration of the magnetic flux concentrator of the present invention, a favorable result can be obtained by calculating under the above three conditions in which no circumferential current flows. It was.
<Example 3>
FIG. 16 shows a schematic cross-sectional view of a magnetic flux concentrating device composed of a magnetic flux generating member composed of a magnet as a magnetic flux generation source and a hollow conical superconductor. The magnetic flux generation source A is arranged such that its axis (axis a) is coaxial with the axis of the magnetic flux generated by the magnetic flux generation source. Further, the magnetic flux guiding member B is arranged in the direction of the axis b inclined by 45 ° from the axis a. Tables 5 and 6 show the specifications for the magnet and the conical magnetic flux guide member.

なお、磁束誘導部材には、スリット(図示せず)が設けられていて、磁束の周りを周回する電流が生じない構成とされている。 Note that the magnetic flux guiding member is provided with a slit (not shown) so that a current that circulates around the magnetic flux does not occur.

磁束誘導部材を構成する超伝導体を反磁性(比透磁率1×10-4)でスリット無限小と仮定して数値解析し、軸aおよび軸bに沿った磁束密度の分布を計算した結果を図17に示した。 Results of numerical analysis of the superconductor constituting the magnetic flux guiding member assuming that the slit is infinitely small with diamagnetism (relative permeability 1 × 10 −4 ), and calculating the distribution of magnetic flux density along the axes a and b This is shown in FIG.

磁束誘導部材を磁石と同一軸上に配置した磁束集中化装置の場合、磁束誘導部材の軸a上で、漸減部の内部空間断面積の最小部部分で、磁束が局所的に収束されることがわかった。   In the case of the magnetic flux concentrating device in which the magnetic flux guiding member is arranged on the same axis as the magnet, the magnetic flux is locally converged on the axis a of the magnetic flux guiding member at the minimum portion of the internal space cross-sectional area of the gradually decreasing portion. I understood.

また、磁束誘導部材を磁石と異なる軸上に配置した磁束集中化装置の場合にも、磁束が、磁束誘導部材の軸b上で、漸減部の内部空間断面積の最小部部分で局所的に収束されることがわかった。   Also, in the case of a magnetic flux concentrating device in which the magnetic flux guiding member is arranged on a different axis from the magnet, the magnetic flux is locally on the axis b of the magnetic flux guiding member at the minimum portion of the internal space cross-sectional area of the gradually decreasing portion. It was found that it converged.

このことから、磁束誘導部材を磁石と同一軸上に配置することで、高効率で磁束の集中化を実現することができることがわかった。   From this, it was found that the magnetic flux concentration member can be concentrated with high efficiency by arranging the magnetic flux guiding member on the same axis as the magnet.

また、磁束誘導部材を磁石と同一軸上に配置しなくても、磁束を磁束誘導部材に導入すれば、磁束は漸減部内を誘導されて、漸減部の内部空間断面積の最小部近傍で局所的に収束されることがわかった。
<実施例4>
磁束誘導部材の形状を図18に示したように実施例2に類似したものとし、その内径、外径、高さを変化させた場合の磁束の増幅率を計算し、併せて図18に示した。なお、磁束の増幅率は、外部磁場に対する磁束誘導部材の中心Aにおける磁束密度の比と定義した。
Further, even if the magnetic flux guiding member is not arranged on the same axis as the magnet, if the magnetic flux is introduced into the magnetic flux guiding member, the magnetic flux is guided in the gradually decreasing portion, and is locally near the minimum portion of the internal space cross-sectional area of the gradually decreasing portion. It was found that it converged.
<Example 4>
As shown in FIG. 18, the shape of the magnetic flux guiding member is similar to that of the second embodiment, and the gain of the magnetic flux is calculated when the inner diameter, outer diameter, and height thereof are changed. It was. The magnetic flux amplification factor was defined as the ratio of the magnetic flux density at the center A of the magnetic flux guiding member to the external magnetic field.

Aにおける磁束密度は、磁束誘導部材が反磁性でスリットがない(スリット無限小)場合として定常解析を行い求めた。有限要素法の計算でスリットを入れるとメッシュの作成が非常に難しくなるため、このパラメータサーベイでは反磁性でスリットがないと仮定した。   The magnetic flux density in A was obtained by performing steady state analysis assuming that the magnetic flux guiding member is diamagnetic and has no slit (the slit is infinitely small). In the parameter survey, it was assumed that there was no slit due to diamagnetism, because it would be very difficult to create a mesh if a slit was inserted in the finite element method.

図中の黒塗り四角は、磁束誘導部材の外径を80mm、高さを126mmに固定して、内径を変化させた場合の増幅率を示したものである。また、内径と外径の比が0.5の場合については、外径を40mmに、さらに高さを63mmに変化させた場合についても計算し、それぞれ丸、三角の記号で示した。   The black squares in the figure indicate the amplification factor when the outer diameter of the magnetic flux guiding member is fixed to 80 mm and the height is fixed to 126 mm, and the inner diameter is changed. Further, when the ratio of the inner diameter to the outer diameter was 0.5, the calculation was performed for the case where the outer diameter was changed to 40 mm and the height was further changed to 63 mm.

その結果、増幅率は、磁束誘導部材の外径と内径の比に大きく依存することがわかった。また、内径と外径の比が同じであれば、磁束誘導部材の大きさにより結果に大きな違いは見られないことがわかった。
<実施例5>
図22の(a)に示した中空円錐形状の磁束誘導部材を、一様な外部磁場1Tの中に、軸を磁場の方向に対して30°時計回りに回転させて配置させた場合の、磁束の様子を計算して(b)に示した。計算を簡便化するため、超伝導体は反磁性で無限小のスリットがあると仮定した。
As a result, it has been found that the amplification factor greatly depends on the ratio between the outer diameter and the inner diameter of the magnetic flux guiding member. Further, it was found that if the ratio between the inner diameter and the outer diameter is the same, there is no significant difference in the results depending on the size of the magnetic flux guiding member.
<Example 5>
When the hollow cone-shaped magnetic flux guiding member shown in FIG. 22A is arranged in a uniform external magnetic field 1T with its axis rotated 30 ° clockwise with respect to the direction of the magnetic field, The state of magnetic flux was calculated and shown in (b). To simplify the calculations, it was assumed that the superconductor is diamagnetic and has an infinitesimal slit.

また、樋型の磁束誘導部材を模擬するため、(a)の中空円錐を90°、180°切り欠いた樋型の磁束誘導部材についても計算し、その結果をそれぞれ(c)(d)に示した。   In addition, in order to simulate a saddle-shaped magnetic flux guiding member, calculation was also performed for a saddle-shaped magnetic flux guiding member obtained by notching the hollow cone of (a) by 90 ° and 180 °, and the results are shown in (c) and (d), respectively. Indicated.

何れもX−Z平面に対称なため片側だけの計算結果を示した。樋型の磁束誘導部材については、その磁束の集中化の値は小さくなっているものの、磁束集中の効果があることが確認できた。   Since both are symmetric with respect to the XZ plane, only one side of the calculation results are shown. It was confirmed that the saddle-shaped magnetic flux guiding member has an effect of magnetic flux concentration although the value of the magnetic flux concentration is small.

本発明装置の一例として円錐形の磁束誘導部材を備えた場合の模式図である。It is a schematic diagram at the time of providing a conical magnetic flux guide member as an example of the device of the present invention. 図1の場合についてZ軸方向での距離による磁束密度の関係を例示した図である。It is the figure which illustrated the relationship of the magnetic flux density by the distance in a Z-axis direction about the case of FIG. 図1の場合についてZ=100mmでの、上方開口2Bでの磁束密度の分布を例示した図である。It is the figure which illustrated distribution of magnetic flux density in upper opening 2B at Z = 100mm about the case of FIG. Z軸を周回する電流の抑制方法について例示した図である。It is the figure illustrated about the suppression method of the electric current which circulates around a Z-axis. 磁束誘導部材の超伝導体構成例について示した図である。It is the figure shown about the superconductor structural example of the magnetic flux induction member. 磁束誘導部材の形態について例示した図である。It is the figure illustrated about the form of the magnetic flux induction member. 磁束誘導部材と磁石との関係について示した図である。It is the figure shown about the relationship between a magnetic flux induction member and a magnet. 磁石が磁束誘導部材の内側にある別の例を示した図である。It is the figure which showed another example with a magnet inside a magnetic flux guide member. 磁束誘導部材超伝導体が磁石を兼ねる例を示した図である。It is the figure which showed the example in which the magnetic flux guide member superconductor also serves as a magnet. バルク超伝導体の加工仕様の(a)上面図、(b)断面図と、加工後の写真(c)(d)の一例を示した図である。It is the figure which showed an example of (a) top view of the process specification of a bulk superconductor, (b) sectional drawing, and the photograph (c) (d) after a process. 磁束誘導部材の構成の一例を示した(a)上面と(b)縦断面の模式図である。It is the schematic diagram of (a) upper surface and (b) longitudinal cross-section which showed an example of the structure of the magnetic flux guidance member. 磁束集中化装置における磁束誘導部材と超伝導体磁石の配置の一例を示した図である。It is the figure which showed an example of arrangement | positioning of the magnetic flux induction member and superconductor magnet in a magnetic flux concentration apparatus. 磁束誘導部材の筒状漸増減部の別形状の例を示す縦断正面模式図である。It is a vertical front schematic diagram which shows the example of another shape of the cylindrical gradual increase / decrease part of a magnetic flux guidance member. 磁束誘導部材の筒状漸増減部の別形状の例を示す縦断正面模式図である。It is a vertical front schematic diagram which shows the example of another shape of the cylindrical gradual increase / decrease part of a magnetic flux guidance member. 磁束誘導部材の樋状漸増減部の例を示す模式図である。It is a schematic diagram which shows the example of the bowl-like gradual increase / decrease part of a magnetic flux guidance member. 本発明装置における磁束誘導部材A,Bと磁束発生源との配置関係を例示した断面模式図である。It is the cross-sectional schematic diagram which illustrated the arrangement | positioning relationship between the magnetic flux guide members A and B and the magnetic flux generation source in this invention apparatus. 図16の場合について軸a,b方向での距離による磁束密度の関係を例示した図である。It is the figure which illustrated the relationship of the magnetic flux density by the distance in the axis | shaft a and b direction about the case of FIG. 磁束集中化装置における磁束誘導部材の形状と導入磁束との関係の一例と、その場合の磁束の集中化の関係を示した図である。It is the figure which showed an example of the relationship between the shape of the magnetic flux guide member in a magnetic flux concentration apparatus, and an introduction magnetic flux, and the relationship of concentration of the magnetic flux in that case. 磁束誘導部材の表面近傍での磁束線を例示した図である。It is the figure which illustrated the magnetic flux line near the surface of a magnetic flux guidance member. (a)(b)(c)は磁束誘導部材の形状による磁束密度分布の違いについて例示した図である。(A) (b) (c) is the figure illustrated about the difference in magnetic flux density distribution by the shape of a magnetic flux guide member. 本発明に関する磁束集中化のコンピュータシミュレーションの計算手法について説明した図である。It is the figure explaining the calculation method of the computer simulation of magnetic flux concentration regarding the present invention. (a)は中空円錐形状の磁束誘導部材の形状を、(b)〜(d)はそれぞれ中空円錐形状の磁束誘導部材と、これを90°、180°切り欠いた樋型の磁束誘導部材について、磁束の集中化の様子を計算した結果を例示した図である。(A) is the shape of a hollow cone-shaped magnetic flux guide member, (b) to (d) are each a hollow cone-shaped magnetic flux guide member, and a saddle-shaped magnetic flux guide member that is cut by 90 ° and 180 °. It is the figure which illustrated the result of having calculated the mode of concentration of magnetic flux.

符号の説明Explanation of symbols

1 磁束発生源
2 磁束誘導部材
2A 下方開口
2B 上方開口
2C スリット
2D 絶縁シート
2E 超伝導体片
2F テープ状超伝導体
2G テープ状超伝導体
DESCRIPTION OF SYMBOLS 1 Magnetic flux generation source 2 Magnetic flux guide member 2A Lower opening 2B Upper opening 2C Slit 2D Insulation sheet 2E Superconductor piece 2F Tape-shaped superconductor 2G Tape-shaped superconductor

Claims (9)

少なくとも磁束発生源と、磁束発生源より発生される磁束が導入され誘導される内部空間を有する磁束誘導部材とを備え、
磁束誘導部材は、超伝導体で構成されると共に、磁束の誘導方向に垂直な内部空間の断面積が前記磁束発生源から離れるに従って漸減する漸減部を有し、かつ、磁束の周りを周回する電流が生じない構成とされていて、
磁束発生源により発生された磁束が磁束誘導部材に導入され、漸減部内を誘導されて、漸減部の内部空間断面積の最小部近傍で局所的に収束され
磁束誘導部材の形状が、円筒状または中空円錐状であって軸方向に対称であり、当該軸面で縦方向に2分割してスリット部を設けて、磁束の周りを周回する電流が生じない構成とされており、前記スリット部には電気絶縁を行うスペーサを有し、
前記スリット部の外表面に、テープ状超伝導体が貼付されていることを特徴とする磁束集中化装置。
Comprising at least a magnetic flux generating source and a magnetic flux guiding member having an internal space into which a magnetic flux generated from the magnetic flux generating source is introduced and guided;
The magnetic flux guiding member is made of a superconductor, has a gradually decreasing portion in which the cross-sectional area of the internal space perpendicular to the magnetic flux guiding direction gradually decreases as it moves away from the magnetic flux generation source, and circulates around the magnetic flux It is configured so that no current is generated,
The magnetic flux generated by the magnetic flux generation source is introduced into the magnetic flux guide member, guided in the gradually decreasing portion, and locally converged in the vicinity of the minimum portion of the internal space cross-sectional area of the gradually decreasing portion ,
The shape of the magnetic flux guiding member is cylindrical or hollow conical, and is symmetrical in the axial direction, and is divided into two in the vertical direction on the axial surface to provide a slit portion, so that no current circulating around the magnetic flux is generated. The slit portion has a spacer for electrical insulation,
A magnetic flux concentrator, wherein a tape-shaped superconductor is attached to the outer surface of the slit portion .
磁束誘導部材は、絶縁したテープ状超伝導体を隙間無く螺旋状に巻いて形成されていることを特徴とする請求項に記載の磁束集中化装置。 2. The magnetic flux concentrator according to claim 1 , wherein the magnetic flux guiding member is formed by spirally winding an insulated tape-shaped superconductor without a gap. 磁束誘導部材は、絶縁したテープ状超伝導体を少なくとも1本含むテープ状超伝導体を隙間無く貼付して形成されていることを特徴とする請求項に記載の磁束集中化装置。 2. The magnetic flux concentrator according to claim 1 , wherein the magnetic flux guiding member is formed by pasting a tape-shaped superconductor including at least one insulated tape-shaped superconductor without any gap. 磁束誘導部材は、筒状または中空円錐状で両端が開口されており、内部空間の断面積がより大きな開口に近い位置で、磁束誘導部材の外側もしくは内側に磁束発生源が配置されていることを特徴とする請求項ないしのいずれかに記載の磁束集中化装置。 Flux guide member, both ends a circular cylindrical or hollow conical shape has an opening, at a position close to the larger opening cross-sectional area of the internal space, a magnetic flux generating source is disposed outside or inside of the flux guide elements The magnetic flux concentrator according to any one of claims 1 to 3 , wherein 磁束誘導部材は、形状が筒状であって、磁束発生源の形成する磁場の中心が内部空間に含まれるよう配置され、磁束の誘導方向に垂直な内部空間の断面積は前記磁束発生源から両端部に離れるに従って各々漸減部を有していることを特徴とする請求項ないしのいずれかに記載の磁束集中化装置。 Flux guide member, the shape is a circular cylindrical, is arranged such that the center of the magnetic field formed by the magnetic flux generator is included in the inner space, the cross-sectional area perpendicular inner space guidance direction of the magnetic flux is the magnetic flux generator flux concentration apparatus according to any claims 1, characterized in that each have a gradually decreasing portion of the 3 farther at both ends from. 磁束誘導部材の形状が筒状または中空円錐状であって、磁束発生源と磁束誘導部材は、磁束誘導部材の軸と磁束発生源が発生する磁束の軸が同軸となるよう配置されていることを特徴とする請求項ないしに記載の磁束集中化装置。 A magnetic flux induction member circular cylindrical or hollow conical shape, magnetic flux generator and the flux guide member, the magnetic flux of the shaft axis and the magnetic flux generating source of the magnetic flux induction member is generated is arranged to be coaxial flux concentration apparatus according to claim 1 to 5, characterized in that. 磁束発生源と磁束誘導部材は、磁束誘導部材の軸と磁束発生源が発生する磁束の軸が異なるよう配置されていることを特徴とする請求項ないしに記載の磁束集中化装置。 Magnetic flux generator and the flux guide member, the magnetic flux concentrating apparatus according to any one of claims 1 to 5, characterized in that the magnetic flux of the shaft axis and the magnetic flux source of flux guide elements are generated are arranged differently. 磁束誘導部材の形状が、筒状体または中空円錐状体を任意の縦断面で切断した形状であって、磁束発生源と磁束誘導部材は、磁束誘導部材の軸と磁束発生源が発生する磁束の軸が異なるよう配置されていて、
磁束発生源により発生された磁束が磁束誘導部材に導入され、漸減部内を誘導されて、導入方向とは異なる方向の内空間断面積の最小部近傍で局所的に収束されることを特徴とする請求項1に記載の磁束集中化装置。
The shape of the magnetic flux induction member, the circular cylindrical body or hollow conical body a shape obtained by cutting at any longitudinal section, magnetic flux generator and the flux guide member, shaft and magnetic flux generator flux guide member is generated It is arranged so that the axis of magnetic flux is different,
The magnetic flux generated by the magnetic flux generation source is introduced into the magnetic flux guide member, guided in the gradually decreasing portion, and converged locally near the minimum portion of the inner space cross-sectional area in a direction different from the introduction direction. The magnetic flux concentrator according to claim 1.
磁束誘導部材が、漸減部よりも先に内部空間を有していることを特徴とする請求項1ないしのいずれかに記載の磁束集中化装置。
The magnetic flux concentrating device according to any one of claims 1 to 8 , wherein the magnetic flux guiding member has an internal space before the gradually decreasing portion.
JP2008287163A 2007-11-09 2008-11-07 Magnetic flux concentrator Expired - Fee Related JP5158799B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008287163A JP5158799B2 (en) 2007-11-09 2008-11-07 Magnetic flux concentrator

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2007292598 2007-11-09
JP2007292598 2007-11-09
JP2008287163A JP5158799B2 (en) 2007-11-09 2008-11-07 Magnetic flux concentrator

Publications (2)

Publication Number Publication Date
JP2009135487A JP2009135487A (en) 2009-06-18
JP5158799B2 true JP5158799B2 (en) 2013-03-06

Family

ID=40867015

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008287163A Expired - Fee Related JP5158799B2 (en) 2007-11-09 2008-11-07 Magnetic flux concentrator

Country Status (1)

Country Link
JP (1) JP5158799B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11357094B2 (en) 2017-03-13 2022-06-07 Hitachi, Ltd. Deflection electromagnet device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7006291B2 (en) * 2018-01-17 2022-01-24 国立大学法人岩手大学 Hybrid superconducting bulk magnet device

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6450349A (en) * 1987-08-21 1989-02-27 Hitachi Ltd Superconductive lens for charged particle beam
JPH01103809A (en) * 1987-10-16 1989-04-20 Matsushita Electric Ind Co Ltd Device for producing magnetic field
JPH065646B2 (en) * 1987-12-14 1994-01-19 シャープ株式会社 Superconductor magnetic device
JPH065645B2 (en) * 1988-01-13 1994-01-19 シャープ株式会社 Superconductor magnetic device
JPH01207908A (en) * 1988-02-16 1989-08-21 Sumitomo Electric Ind Ltd Magnetic field guiding pipe of superconductor
JPH03180786A (en) * 1989-12-11 1991-08-06 Nippon Telegr & Teleph Corp <Ntt> Magnetic field detector
JP3184678B2 (en) * 1992-09-11 2001-07-09 新日本製鐵株式会社 Variable intensity uniform parallel magnetic field generator
JP2500365B2 (en) * 1993-08-24 1996-05-29 工業技術院長 Superconducting converter

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11357094B2 (en) 2017-03-13 2022-06-07 Hitachi, Ltd. Deflection electromagnet device

Also Published As

Publication number Publication date
JP2009135487A (en) 2009-06-18

Similar Documents

Publication Publication Date Title
US11209509B2 (en) Resistive electromagnet systems and methods
JP6205572B2 (en) Vector potential generator, vector potential transformer, shield transmission device, non-contact space electric field generator, null circuit, and structure for vector potential generator
Caspi et al. Design, fabrication, and test of a superconducting dipole magnet based on tilted solenoids
JPH03501076A (en) Electromagnet and its manufacturing method
JP4787033B2 (en) Nuclear magnetic resonance signal solenoid coil and nuclear magnetic resonance signal acquisition apparatus
Kashikhin et al. Superconducting splittable quadrupole magnet for linear accelerators
JP5158799B2 (en) Magnetic flux concentrator
US7427908B1 (en) Magnetic shimming configuration with optimized turn geometry and electrical circuitry
JP6668350B2 (en) Superconducting wire, superconducting coil, MRI and NMR
Takayama et al. Design and test results of superconducting magnet for heavy-ion rotating gantry
Pepitone et al. Design and fabrication of a canted-cosine-theta double aperture orbit corrector dipole for the LHC
US9530549B2 (en) Superconducting coil device with switchable conductor section and method for switching
Hechtfischer Generation of homogeneous magnetic fields within closed superconductive shields
US10006977B2 (en) Open magnetic resonance imaging
JP2014157939A (en) Superconductive magnetic shield equipment
Kirby Next generation materials for future magnet development at CERN
González-Parada et al. Development of axial flux HTS induction motors
Barzi et al. Commissioning of 14 T/16 T Rutherford cable test facility with bifilar sample and superconducting transformer
Kim et al. Shape optimization of the stacked HTS double pancake coils for compact NMR relaxometry operated in persistent current mode
JP2014099440A (en) Permanent current switch, and superconducting magnet device with permanent current switch
Sanchez et al. Shaping magnetic fields with zero-magnetic-permeability media
Chen et al. Design, Fabrication, and Test of a 2-T Superconducting Dipole Prototype by Using Tilted Solenoids
JP2014042685A5 (en)
JP2013036840A (en) Critical current measuring method
JP2020078362A (en) Superconducting magnet device or magnetic resonance imaging apparatus using the same

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20110616

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110621

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20110616

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120911

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120918

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20121005

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121109

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121204

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121206

R150 Certificate of patent or registration of utility model

Ref document number: 5158799

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151221

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151221

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees