JP2000040426A - Superconducting reactor - Google Patents

Superconducting reactor

Info

Publication number
JP2000040426A
JP2000040426A JP10208292A JP20829298A JP2000040426A JP 2000040426 A JP2000040426 A JP 2000040426A JP 10208292 A JP10208292 A JP 10208292A JP 20829298 A JP20829298 A JP 20829298A JP 2000040426 A JP2000040426 A JP 2000040426A
Authority
JP
Japan
Prior art keywords
reactor
superconducting
reactors
current
carrying capacity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10208292A
Other languages
Japanese (ja)
Inventor
Jun Matsuzaki
順 松崎
Kazuyuki Tsurunaga
和行 鶴永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP10208292A priority Critical patent/JP2000040426A/en
Publication of JP2000040426A publication Critical patent/JP2000040426A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

PROBLEM TO BE SOLVED: To easily obtain desired current-carrying capacity by a superconducting reactor comprising high temperature superconductive wires. SOLUTION: The reactors 1a, 1b formed by winding a silver sheath tape wire as one cold superconductive material, into the shape of a pancake, are coaxially arranged and connected in parallel. The current-carrying capacity of each reactor 1a, 1b is determined on the basis of the current-carrying capacity of one silver sheath tape wire, and the total current-carrying capacity can be increased twice by connecting the reactors 1a, 1b in parallel. That is, by coaxially connecting a plurality of independent reactors in parallel to form the superconducting reactor, the desired current-carrying capacity can be easily obtained.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、送配電系統に用い
られる限流器用の超電導リアクトルに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a superconducting reactor for a current limiting device used in a power transmission and distribution system.

【0002】[0002]

【従来の技術】従来、短絡事故が送配電系統で発生した
際に流れる短絡電流は遮断機によって遮断される。この
短絡電流は極めて大きいので、この短絡電流によって強
い電磁力と多量のジュール熱が発生して、電力機器や電
路に大きな機械的及び熱的損傷を与えるため、このよう
な短絡電流を抑えて、前記遮断機の役割を軽減するよう
に限流器が使用されている。
2. Description of the Related Art Conventionally, a short circuit current flowing when a short circuit accident occurs in a power transmission and distribution system is interrupted by a circuit breaker. Since this short-circuit current is extremely large, strong electromagnetic force and a large amount of Joule heat are generated by this short-circuit current, causing large mechanical and thermal damage to power equipment and electric circuits. Current limiters are used to reduce the role of the circuit breaker.

【0003】このような短絡電流用の限流器として、比
較的広く実用化されているものとして、インダクタンス
により短絡電流を限流するリアクトルがある。このよう
なリアクトルに要求される条件としては、負荷電流通電
時には電気抵抗が低く発熱が少ないこと、短絡事故時に
は応答が早く電気抵抗が高いことなどが挙げられる。こ
の点で、冷却などの容易さからも常温超電導体を用いた
限流用のリアクトルは理想的なものと考えられている。
As a current limiter for such a short-circuit current, a reactor that is relatively widely put into practical use is a reactor that limits a short-circuit current by inductance. Conditions required for such a reactor include low electric resistance when a load current is supplied and low heat generation, and quick response and high electric resistance when a short circuit occurs. In this regard, a current limiting reactor using a normal temperature superconductor is considered to be ideal in view of ease of cooling and the like.

【0004】図4は従来この種の超電導リアクトルの構
成例を示した図であり、図4(A)はその平面図、図4
(B)はその断面図である。高温超電導線材である銀シ
ーステープ線材41を径方向に周回を繰り返し、パンケ
ーキ状超電導リアクトルを構成している。高温超電導体
をテープ状にした銀シーステープ41は1本当たりの通
電容量を向上させることが難しく、通常、図4に示すよ
うにテープを径方向に重ねることにより、超電導リアク
トル4を構成して通電容量を増大している。このような
構成の超電導リアクトル4では、通電の際の磁界分布
が、図5に示すように、端部で径方向成分が強いという
特性がある。
FIG. 4 is a diagram showing a configuration example of a conventional superconducting reactor of this type, and FIG.
(B) is a sectional view thereof. The silver sheath tape wire 41, which is a high-temperature superconducting wire, is repeatedly wrapped around in the radial direction to form a pancake-shaped superconducting reactor. It is difficult to improve the current-carrying capacity per piece of the silver sheath tape 41 in which the high-temperature superconductor is made into a tape shape, and usually, as shown in FIG. The current carrying capacity is increasing. The superconducting reactor 4 having such a configuration has a characteristic that the magnetic field distribution at the time of energization has a strong radial component at the end as shown in FIG.

【0005】[0005]

【発明が解決しようとする課題】ところで、上述のよう
に、径方向に周回を繰り返して巻数を増やすパンケーキ
状の超電導リアクトル4では、通電容量を増大させるた
め、銀シーステープ線材41の並列数を増やすことは製
作面で難しい。また、銀シーステープ線材1本当たりの
断面積を増やしても、断面積増加分の電流容量を得るこ
とは困難であることが知られており、所望の通電容量
(特に大容量)を得ることが困難であった。
As described above, in the pancake-shaped superconducting reactor 4 in which the number of windings is increased by repeating the winding in the radial direction, the number of silver sheath tape wires 41 in parallel is increased in order to increase the current carrying capacity. It is difficult to increase the number in production. Further, it is known that it is difficult to obtain a current capacity corresponding to the increase in the cross-sectional area even if the cross-sectional area per silver sheath tape wire is increased. Was difficult.

【0006】ここで、銀シーステープ線材では磁界の向
きによって、図6に示すように超電導体の臨界電流密度
(Ic)低下の割合が大きく異なる。パンケーキ状の超
電導リアクトルでは径方向の磁界成分によるIc低下の
割合が大きくなる。これに対して、従来のパンケーキ状
の超電導リアクトルでは図6に示すようにリアクトルの
端部において径方向の磁界成分が強いことから、これに
よる電流容量の低下が大きく、所望の通電容量を得るこ
とが難しいという問題があった。
[0006] Here, in the silver sheath tape wire, the rate of decrease in the critical current density (Ic) of the superconductor greatly varies depending on the direction of the magnetic field as shown in FIG. In a pancake-shaped superconducting reactor, the rate of decrease in Ic due to the radial magnetic field component increases. On the other hand, in the conventional pancake-shaped superconducting reactor, the magnetic field component in the radial direction is strong at the end of the reactor as shown in FIG. There was a problem that it was difficult.

【0007】本発明は、上述の如き従来の課題を解決す
るためになされたもので、その目的は、高温超電導線材
を用いて所望の通電容量を容易に得ることができる超電
導リアクトルを提供することである。
The present invention has been made to solve the above-mentioned conventional problems, and an object of the present invention is to provide a superconducting reactor which can easily obtain a desired current-carrying capacity by using a high-temperature superconducting wire. It is.

【0008】[0008]

【課題を解決するための手段】上記目的を達成するため
に、第1の発明の特徴は、超電導線材を用いた超電導リ
アクトルにおいて、1本の超電導線材をパンケーキ状に
巻回して構成したリアクトル複数個を同軸上に配列して
並列接続したことにある。
Means for Solving the Problems To achieve the above object, a first aspect of the present invention is a superconducting reactor using a superconducting wire, in which one superconducting wire is wound in a pancake shape. A plurality is arranged coaxially and connected in parallel.

【0009】この第1の発明によれば、1本の例えば高
温超電導線材である銀シーステープ線材をパンケーキ状
に巻回したリアクトルの通電容量は前記1本の高温超電
導線材の通電容量に限定されるが、このようなリアクト
ルを複数個を同軸上に配列して並列接続すれば、通電容
量を自在に増加させることができ、所望の通電容量を容
易に得ることができる。
According to the first aspect of the invention, the current carrying capacity of the reactor in which one silver sheath tape wire, for example, a high temperature superconducting wire is wound in a pancake shape is limited to the current carrying capacity of the one high temperature superconducting wire. However, if a plurality of such reactors are coaxially arranged and connected in parallel, the current-carrying capacity can be freely increased, and a desired current-carrying capacity can be easily obtained.

【0010】第2の発明の特徴は、前記超電導線材は銀
シーステープ線材であることにある。
A feature of the second invention is that the superconducting wire is a silver sheath tape wire.

【0011】第3の発明の特徴は、前記複数のリアクト
ルのボア部に貫通する鉄心を配したことにある。
A third feature of the present invention resides in that an iron core penetrating through the bores of the plurality of reactors is provided.

【0012】この第3の発明によれば、複数のリアクト
ルを配列して並列接続した超電導リアクトルが空芯のま
までは、長手方向中央部のリアクトルと端部のリアクト
ルとで相互インダクタンスの関係から分流比に差が生じ
る。しかし、リアクトルのボア部に鉄心を入れることに
より並列接続したリアクトル間の相互インダクタンスの
影響を均等化することができ、更に、鉄心を入れること
によりリアクトル端部の磁束密度の径方向成分を低減し
て、銀シーステープ線材の臨界電流密度の低下を防止す
ることができ、通電容量の低下を防いで、通電容量を大
きくすることができる。
According to the third aspect of the present invention, when the superconducting reactor in which a plurality of reactors are arranged and connected in parallel remains an air core, the superconducting reactor is divided from the reactor at the center in the longitudinal direction and the reactor at the end due to the mutual inductance. A difference occurs in the ratio. However, by inserting an iron core into the bore of the reactor, the effect of mutual inductance between the reactors connected in parallel can be equalized, and by inserting an iron core, the radial component of the magnetic flux density at the reactor end can be reduced. Thus, the critical current density of the silver sheath tape wire can be prevented from lowering, and the current carrying capacity can be increased by preventing the current carrying capacity from lowering.

【0013】第4の発明の特徴は、各リアクトルの分流
比を均等とすることにある。
[0013] A feature of the fourth invention is that the flow division ratio of each reactor is equalized.

【0014】この第4の発明によれば、リアクトルの分
流比を均等とすると、磁束密度分布の偏差が更に改善さ
れるため、通電容量をより大きくすることができる。
According to the fourth aspect of the invention, when the distribution ratio of the reactor is made uniform, the deviation of the magnetic flux density distribution is further improved, so that the current carrying capacity can be further increased.

【0015】[0015]

【発明の実施の形態】以下、本発明の実施の形態を図面
に基づいて説明する。図1は本発明の超電導リアクトル
の一実施の形態を示した図であり、図1(A)はその平
面図、図1(B)はその断面図である。図1(A)はリ
アクトルを上部から示したものであり、1本の常温超電
導材の銀シーステープ線材11が径方向にパンケーキ状
に巻回されている。図1(B)は超電導リアクトルの断
面図で、1本の銀シーステープ線材11が巻回されて成
るリアクトル1a、1bが同軸上に配列されて並列接続
されることにより、超電導リアクトルが構成されてい
る。各リアクトル1a、1bは1本の銀シーステープ線
材11で構成され、その通電容量は1本の銀シーステー
プ線材11の通電容量で決定されるため、超電導リアク
トルが必要とする通電容量は、上記のようにリアクトル
1a、1bを同軸上に配置して並列接続することにより
増大させている。これにより、2本の銀シーステープ線
材により構成される従来のリアクトルと同様の通電容量
が得られる。但し、リアクトル1a、1bは超電導リア
クトルであるが、ここでは説明の便宜上単にリアクトル
と称する。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a view showing one embodiment of a superconducting reactor according to the present invention. FIG. 1 (A) is a plan view thereof, and FIG. 1 (B) is a sectional view thereof. FIG. 1A shows the reactor from above, in which a single room temperature superconducting silver sheath tape wire 11 is wound in a pancake shape in the radial direction. FIG. 1B is a cross-sectional view of the superconducting reactor, in which reactors 1a and 1b each formed by winding one silver sheath tape wire 11 are coaxially arranged and connected in parallel to form a superconducting reactor. ing. Each of the reactors 1a and 1b is composed of one silver sheath tape wire 11, and its current carrying capacity is determined by the current carrying capacity of one silver sheath tape wire 11, so that the current carrying capacity required by the superconducting reactor is as described above. The reactors 1a and 1b are arranged coaxially and connected in parallel as shown in FIG. As a result, a current carrying capacity similar to that of a conventional reactor constituted by two silver sheath tape wires can be obtained. Although the reactors 1a and 1b are superconducting reactors, they are simply referred to as reactors here for convenience of explanation.

【0016】本実施の形態によれば、1本の常温超電導
材の銀シーステープ線材11で構成されるリアクトル1
a、1bを同軸上に配列して並列接続することにより超
電導リアクトルを構成しているため、製作が容易で、通
電容量を容易に増大させることができる。
According to the present embodiment, reactor 1 composed of one normal-temperature superconducting silver sheath tape wire 11 is used.
Since the superconducting reactor is configured by arranging a and b coaxially and connecting them in parallel, the production is easy and the current carrying capacity can be easily increased.

【0017】しかも、超電導リアクトルの通電容量を更
に大きくするには、1本の常温超電導材の銀シーステー
プ線材11で構成される1個のリアクトルを必要な個数
同軸上に配列して並列接続すればよく、通電容量の調整
が極めて簡単で、所望の通電容量を容易に得ることがで
きる。
Further, in order to further increase the current carrying capacity of the superconducting reactor, a required number of reactors each composed of a single normal temperature superconducting silver sheath tape wire 11 are coaxially arranged and connected in parallel. Thus, the adjustment of the current carrying capacity is extremely simple, and a desired current carrying capacity can be easily obtained.

【0018】図2は本発明の超電導リアクトルの他の実
施の形態を示した側面図である。1本の常温超電導材の
銀シーステープ線材11で構成されるリアクトル1a〜
1eは超電導リアクトルで、それぞれが同軸上に配列さ
れて並列接続されている。これらリアクトル1a〜1e
のボア部にはリング状の鉄心12が貫通している。但
し、リアクトル1a〜1eは超電導リアクトルである
が、ここでは説明の便宜上単にリアクトルと称する。
FIG. 2 is a side view showing another embodiment of the superconducting reactor of the present invention. Reactors 1a to 1 each composed of one room-temperature superconducting silver sheath tape wire 11
Reference numeral 1e denotes superconducting reactors, which are arranged coaxially and connected in parallel. These reactors 1a to 1e
A ring-shaped iron core 12 penetrates through the bore portion. Although the reactors 1a to 1e are superconducting reactors, they are simply referred to as reactors here for convenience of explanation.

【0019】次に本実施の形態の動作について説明す
る。リアクトル1a〜1eの自己インダクタンスをLa
〜Le、リアクトル1a〜1e間の相互インダクタンス
をMab、Mac、Mad…、Mba、Mbc…〜…、
Mdb、Mdc、Mdeとすると、リアクトル2aと2
c間の電流分布比は次のように決まる。
Next, the operation of this embodiment will be described. The self-inductance of the reactors 1a to 1e is La
~ Le, the mutual inductance between the reactors 1a ~ 1e is Mab, Mac, Mad ..., Mba, Mbc ... ~,
Assuming that Mdb, Mdc, and Mde, the reactors 2a and 2
The current distribution ratio between c is determined as follows.

【0020】Ic/Ia=(La−Mca−Mcb−M
cd−Mce)/(Lc−Mab−Mac−Mad−M
ae) 但し、Ia、Icはリアクトル2a、2cを流
れる電流値である。
Ic / Ia = (La−Mca−Mcb−M)
cd-Mce) / (Lc-Mab-Mac-Mad-M
ae) Here, Ia and Ic are current values flowing through the reactors 2a and 2c.

【0021】ここで、図2において鉄心12を配置しな
いとすると、Mad及びMaeはMca、Mcb、Mc
d、Mceのいずれよりも小さくなるので、リアクトル
1cよりリアクトル1aを流れる電流が大きくなる。し
かし、図2のように鉄心12を配置すると、相互インダ
クタンスのMab〜Mdeはほぼ等しくなるため、リア
クトル2a〜2eの電流分流比が均等化される。又、リ
アクトル2a〜2eの軸上に鉄心12を配置することに
より磁束密度分布が改善される。
Here, if the iron core 12 is not arranged in FIG. 2, Mad and Mae are Mca, Mcb, Mc
Since the current is smaller than both d and Mce, the current flowing through reactor 1a becomes larger than reactor 1c. However, when the iron cores 12 are arranged as shown in FIG. 2, the mutual inductances Mab to Mde are substantially equal, so that the current shunt ratios of the reactors 2 a to 2 e are equalized. Further, by disposing the iron core 12 on the axis of the reactors 2a to 2e, the magnetic flux density distribution is improved.

【0022】図3は鉄心12を配置した際の磁束密度分
布を示した図である。鉄心12を配置しない際の磁束密
度分布を示した図5に比べ、超電導リアクトル全体の中
で端部に当たるリアクトル1aの位置で磁束密度が特に
小さいことがわかる。その理由は、図2におけるリアク
トル1b〜1eの作る磁束は、鉄心12中を流れる形で
ループを構成するからである。
FIG. 3 is a diagram showing a magnetic flux density distribution when the iron core 12 is arranged. Compared to FIG. 5 showing the magnetic flux density distribution when the iron core 12 is not arranged, it can be seen that the magnetic flux density is particularly small at the position of the reactor 1a corresponding to the end in the entire superconducting reactor. The reason is that the magnetic flux generated by the reactors 1 b to 1 e in FIG. 2 forms a loop by flowing through the iron core 12.

【0023】本実施の形態によれば、複数のリアクトル
1a〜1eを同軸上に配置して並列接続することによっ
て成る超電導リアクトルのボア部に鉄心12を貫通させ
ることにより、超電導リアクトルに掛かる磁束を低減す
ることができ、図6に示すような銀シーステープ線材1
1の通電容量の低下を防止することができる。特にリア
クトル1aにおいては銀シーステープ線材11の幅広面
に対し磁束が垂直にかかるため、通電容量の低下防止効
果が大きくなり、この分、通電容量の増大が容易となっ
て、所望の通電容量を容易に実現できる。
According to the present embodiment, the magnetic flux applied to the superconducting reactor is formed by penetrating iron core 12 into the bore of the superconducting reactor formed by arranging a plurality of reactors 1a to 1e coaxially and connecting them in parallel. The silver sheath tape wire 1 as shown in FIG.
1 can be prevented from lowering. In particular, in the reactor 1a, since the magnetic flux is applied perpendicularly to the wide surface of the silver sheath tape wire 11, the effect of preventing a decrease in the current carrying capacity is increased. Can be easily realized.

【0024】尚、図2におけるリアクトル1a〜1eの
分流比を均等とすることで、鉄心12によりリアクトル
端部の磁束密度を更に低減できるので、リアクトル全体
としての通電容量低下を防して、所望の通電容量を得る
ことができる。
It is to be noted that since the magnetic flux density at the end of the reactor can be further reduced by the iron core 12 by equalizing the shunt ratio of the reactors 1a to 1e in FIG. Can be obtained.

【0025】[0025]

【発明の効果】以上詳細に説明したように、本発明の超
電導リアクトルによれば、1本の銀シーステープ線材に
より構成されたリアクトル複数個を同軸方向に配列して
並列接続することで、高温超電導線材を用いて所望の通
電容量を容易に得ることができ、更に、前記複数個のリ
アクトルのボア部に鉄心を配することで、超電導リアク
トルの磁束密度分布を改善して、通電容量の低下を防止
し、所望の通電容量を更に容易に得ることができる。
As described above in detail, according to the superconducting reactor of the present invention, a plurality of reactors each composed of one silver sheath tape wire are coaxially arranged and connected in parallel, so that high temperature can be achieved. A desired current carrying capacity can be easily obtained by using a superconducting wire.Furthermore, by arranging an iron core in the bores of the plurality of reactors, the magnetic flux density distribution of the superconducting reactor is improved, and the current carrying capacity is reduced. Is prevented, and a desired current-carrying capacity can be more easily obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の超電導リアクトルの一実施の形態を示
した図である。
FIG. 1 is a diagram showing one embodiment of a superconducting reactor of the present invention.

【図2】本発明の超電導リアクトルの他の実施の形態を
示した図である。
FIG. 2 is a diagram showing another embodiment of the superconducting reactor of the present invention.

【図3】図2に示した超電導リアクトルの磁束密度分布
例を示した図である。
3 is a diagram showing an example of a magnetic flux density distribution of the superconducting reactor shown in FIG.

【図4】従来の超電導リアクトルの構成例を示した図で
ある。
FIG. 4 is a diagram showing a configuration example of a conventional superconducting reactor.

【図5】図4に示した超電導アクトルの磁束密度分布例
を示した図である。
5 is a diagram showing an example of a magnetic flux density distribution of the superconducting actuator shown in FIG.

【図6】銀シーステープ線材のIc−B特性を示した特
性図である。
FIG. 6 is a characteristic diagram showing Ic-B characteristics of a silver sheath tape wire.

【符号の説明】[Explanation of symbols]

1a、1b リアクトル 11 銀シーステープ線材 12 鉄心 1a, 1b reactor 11 silver sheath tape wire 12 iron core

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 超電導線材を用いた超電導リアクトルに
おいて、 1本の超電導線材をパンケーキ状に巻回して構成したリ
アクトル複数個を同軸上に配列して並列接続したことを
特徴とする超電導リアクトル。
1. A superconducting reactor using a superconducting wire, wherein a plurality of reactors each formed by winding one superconducting wire in a pancake shape are coaxially arranged and connected in parallel.
【請求項2】 前記超電導線材は銀シーステープ線材で
あることを特徴とする請求項1記載の超電導リアクト
ル。
2. The superconducting reactor according to claim 1, wherein said superconducting wire is a silver sheath tape wire.
【請求項3】 前記複数のリアクトルのボア部に貫通す
る鉄心を配したことを特徴とする請求項1又は2記載の
超電導リアクトル。
3. The superconducting reactor according to claim 1, wherein an iron core penetrating through bores of the plurality of reactors is provided.
【請求項4】 各リアクトルの分流比を均等とすること
を特徴とする請求項3記載の超電導リアクトル。
4. The superconducting reactor according to claim 3, wherein the split ratio of each reactor is equalized.
JP10208292A 1998-07-23 1998-07-23 Superconducting reactor Pending JP2000040426A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10208292A JP2000040426A (en) 1998-07-23 1998-07-23 Superconducting reactor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10208292A JP2000040426A (en) 1998-07-23 1998-07-23 Superconducting reactor

Publications (1)

Publication Number Publication Date
JP2000040426A true JP2000040426A (en) 2000-02-08

Family

ID=16553849

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10208292A Pending JP2000040426A (en) 1998-07-23 1998-07-23 Superconducting reactor

Country Status (1)

Country Link
JP (1) JP2000040426A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008047563A (en) * 2006-08-10 2008-02-28 Sumitomo Electric Ind Ltd Superconducting coil and superconducting apparatus equipped with superconducting coil
JP2008047561A (en) * 2006-08-10 2008-02-28 Sumitomo Electric Ind Ltd Superconducting coil and superconducting apparatus equipped with superconducting coil

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008047563A (en) * 2006-08-10 2008-02-28 Sumitomo Electric Ind Ltd Superconducting coil and superconducting apparatus equipped with superconducting coil
JP2008047561A (en) * 2006-08-10 2008-02-28 Sumitomo Electric Ind Ltd Superconducting coil and superconducting apparatus equipped with superconducting coil

Similar Documents

Publication Publication Date Title
JP7280274B2 (en) Partially insulated HTS coil
JP3215697B2 (en) Superconducting coil that limits fault current
RU2397589C2 (en) Electrotechnical current limitation device
US6275365B1 (en) Resistive fault current limiter
Choi et al. Operating performance of the flux-lock and the transformer type superconducting fault current limiter using the YBCO thin films
US5038127A (en) Process for reducing eddy currents in a superconductor strip, and a superconductor arrangement
US11257611B2 (en) Superconducting wire rod and superconducting coil
JP2000032654A (en) Current limiting element using oxide superconductor, and current limiter thereof
JP3892605B2 (en) Superconducting coil device for current limiting element
GB2578307A (en) Wound HTS magnet coils
US4409425A (en) Cryogenically stabilized superconductor in cable form for large currents and alternating field stresses
JP2000040426A (en) Superconducting reactor
US20110034337A1 (en) Superconductive current limiter with magnetic field triggering
US20200381155A1 (en) Wound hts magnet coils
US10629332B2 (en) Low-temperature superconducting wire having low stabilizing matrix ratio, and superconducting coil having same
KR20210085295A (en) SUPERCONDUCTING FAULT-CURRENT LIMITER MODULE and HIGH TEMPERATURE RESISTIVE TYPE DC FAULT-CURRENT LIMITER
KR100763164B1 (en) Superconducting fault current limiters having fault current module used superconductive tape
Min-Cheol et al. Fault Current Limiting Characteristic of Non-inductively Wound HTS Magnets in Sub-cooled $ LN_2 $ Cooling System
JP3861263B2 (en) Superconducting current limiter and superconducting current limiter system
JP2001069665A (en) Current-limiting unit
JPH05327039A (en) Superconducting current limiter
JP2001256841A (en) Superconductive cable and magnet using the same
Miura et al. The development of a 2.5 T/100 kV A AC superconducting magnet using a high-Jc NbTi superconducting wire having Nb artificial pins
JP3363164B2 (en) Superconducting conductor
JP2922663B2 (en) Superconducting current lead

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040624

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050530

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060404

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060602

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060815

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061016

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20061024

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20070112

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20070710

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20070713

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20070711