WO2021014959A1 - Conduction-cooling-type superconducting magnet - Google Patents

Conduction-cooling-type superconducting magnet Download PDF

Info

Publication number
WO2021014959A1
WO2021014959A1 PCT/JP2020/026506 JP2020026506W WO2021014959A1 WO 2021014959 A1 WO2021014959 A1 WO 2021014959A1 JP 2020026506 W JP2020026506 W JP 2020026506W WO 2021014959 A1 WO2021014959 A1 WO 2021014959A1
Authority
WO
WIPO (PCT)
Prior art keywords
superconducting
cooling
cooling plate
conduction
coil
Prior art date
Application number
PCT/JP2020/026506
Other languages
French (fr)
Japanese (ja)
Inventor
古賀 智之
洋之 渡邊
伸夫 岩城
翔太郎 中島
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Publication of WO2021014959A1 publication Critical patent/WO2021014959A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F6/00Superconducting magnets; Superconducting coils
    • H01F6/04Cooling
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N60/00Superconducting devices
    • H10N60/80Constructional details
    • H10N60/81Containers; Mountings

Definitions

  • the present invention relates to a conduction-cooled superconducting magnet.
  • Superconducting magnets are used in a variety of applications, such as accelerators and magnetic resonance imaging (MRI).
  • the cooling method of the superconducting magnet includes immersion cooling in which a body to be cooled such as a superconducting coil is immersed in a refrigerant to cool it, and a refrigerator or the like attached to the body to be cooled via a heat transfer body.
  • conduction cooling There is conduction cooling.
  • conduction cooling it is important to efficiently cool the superconducting coil and the coil outlet whose connection portion becomes a heat generation source when energized.
  • the contact surface is made of a thermally conductive insulator, and the cooling block connected to the refrigerator and the coil outlet are thermally contacted to generate heat at the connection portion.
  • the contact surface is made of a thermally conductive insulator, and the cooling block connected to the refrigerator and the coil outlet are thermally contacted to generate heat at the connection portion.
  • Patent Document 1 a structure in which a heat transfer plate thermally connected to the cooling stage of the refrigerator is attached to the outer peripheral surface of the superconducting coil via a flange
  • Patent Document 2 A structure is known in which a cooling plate thermally connected to a cooling stage of a refrigerator is attached to an end surface of a superconducting coil via a heat transfer body (see Patent Document 3).
  • Patent Document 1 Patent Document 2, and Patent Document 3 independently disclose a structure in which a coil outlet and a superconducting coil are cooled by conduction cooling.
  • the superconducting coil is usually arranged in the Crystat, which is an adiabatic vacuum vessel, it is difficult to realize two or more of the structures shown in the patent documents at the same time due to spatial restrictions (problem). ).
  • the superconducting wire drawn from the coil outlet of the superconducting coil is routed to the power lead as a crossover wire and wired. In order to ensure the thermal stability of the superconducting magnet, this crossover has a problem that it is preferable to be cooled as in the case of the superconducting coil and the coil opening.
  • the length of the cooling path to the refrigerator differs between one coil and the other coil. Therefore, when this structure is used, there is a problem (problem) that a temperature difference may occur between the two superconducting coils.
  • the present invention has been made in view of such a conventional situation, and provides a conduction-cooled superconducting magnet capable of stable operation by eliminating a temperature difference between two paired superconducting coils.
  • the task (purpose) is to do.
  • the present invention was configured as follows. That is, in the conduction cooling type superconducting magnet of the present invention, two superconducting coils arranged coaxially to form a pair, a first cooling plate for cooling the superconducting coil, and two superconducting coils.
  • a second cooling plate for cooling the crossover and a cooling stage for cooling the second cooling plate are provided, and the first cooling plate is evenly distributed in the middle portion of the two paired superconducting coils. It is characterized by being arranged.
  • the superconducting coil, the coil outlet, and the crossover can be cooled at the same time, and the cooling from the cooling stage thermally connected to the refrigerator to the two superconducting coils can be cooled.
  • the lengths of the paths are almost equivalent. Therefore, it is possible to provide a conduction-cooled superconducting magnet that operates stably by eliminating the temperature difference between the superconducting coils.
  • FIG. 1 is a diagram showing an example of a cross-sectional structure on a cut surface including a central axis Z of a conduction-cooled superconducting magnet 1 according to the first embodiment of the present invention.
  • the conduction-cooled superconducting magnet 1 has two superconducting coils 11A and 11B, a first cooling plate 12A, a second cooling plate 12B, a coil outlet 13, a crossover 14, a power lead 15, and a cooling stage 16. , A refrigerator or a heat exchanger 17 connected to the refrigerator.
  • the heat exchanger is provided in the refrigerator and is a part of the refrigerator (17), and the heat exchanger (17) is a device different from the refrigerator and is in contact with the refrigerator. There are cases where it is.
  • the two superconducting coils 11A and 11B are wound around the same axis (central axis Z) of the cylindrical winding frame (bobbin) 18.
  • the first cooling plate 12A is provided in contact with the superconducting coil 11A and the superconducting coil 11B, and cools both the superconducting coil 11A and the superconducting coil 11B. Further, the first cooling plate 12A is evenly provided in the intermediate portion between the two paired superconducting coils 11A and the superconducting coil 11B.
  • the first cooling plate 12A is wound on the same axis (central axis Z) of the winding frame 18 via the superconducting coils 11A and 11B. That is, the first cooling plate 12A is composed of a cylindrical structure that surrounds the two superconducting coils 11A and 11B from the outer peripheral side.
  • the superconducting coil 11A and the superconducting coil 11B are composed of a solenoid coil in which a superconducting wire (31: FIG. 2) is wound around a cylindrical winding frame 18 to form a winding.
  • a superconducting wire 31: FIG. 2
  • FIG. 1 since the superconducting wire at the beginning of winding and the superconducting wire at the end of winding are shown with respect to one coil outlet 13, they are schematically shown as two conducting wires.
  • the coil outlets 13 of the two superconducting coils 11A and 11B are substantially the same position in the circumferential direction of the central axis Z, and the two coils are in the axial direction. It is located at the end on the plane of symmetry. Since the coil outlets 13 of the two superconducting coils 11A and 11B are located at close distances in this way, the crossover wire 14 and the second cooling plate 12B are located at the same location on the two coil outlets 13. You can connect all at once with. The details of the structure in the vicinity of the coil outlet 13 will be described later with reference to FIG.
  • the first cooling plate 12A contacts the second cooling plate 12B and exchanges heat.
  • the second cooling plate 12B is in contact with the cooling stage 16 via a curved L-shaped plate-like structure in the region 100, and is thermally connected.
  • the cooling stage 16 is in contact with the refrigerator or the heat exchanger 17 connected to the refrigerator and is thermally connected.
  • the superconducting coils 11A and 11B are cooled from the refrigerator or the heat exchanger 17 connected to the refrigerator via the cooling stage 16, the second cooling plate 12B, and the first cooling plate 12A.
  • the crossover line 14 is also cooled by the second cooling plate 12B via insulation (electrical insulation).
  • crossover wire 14 connects the lead wires drawn from the superconducting coils 11A and 11B at the coil outlet 13 to the power lead 15. With this configuration, current is supplied to and controlled from the superconducting coils 11A and 11B from an external device (not shown) arranged at the tip of the power lead 15.
  • an external device not shown
  • FIG. 2 is a diagram showing an example of a structure of the coil outlet 13 and its vicinity in the conduction-cooled superconducting magnet 1 according to the first embodiment of the present invention.
  • the coil outlet 13 includes a superconducting wire 31, stabilized copper 32, and a support structure 33.
  • the superconducting coils 11A and 11B, the winding frame 18, and the central axis Z in FIG. 2 correspond to those in FIG.
  • the superconducting wire 31 is drawn from the superconducting coil 11A and the superconducting coil 11B, respectively.
  • the superconducting wires 31 drawn from the superconducting coil 11A and the superconducting coil 11B are shown as one for convenience of the notation in the figure, but in reality, FIG. As shown in the two thick lines in the vicinity of the coil opening 13 of the above, there are two each.
  • the stabilized copper 32 is produced by passing the current flowing through the superconducting wire 31 through the stabilized copper 32 when the superconducting wire 31 undergoes a quench (phase transition from the superconductor to the normal conductor). It is provided to reduce sudden current changes and temperature changes. Further, the stabilized copper 32 has a plate shape and is provided with a groove (not shown) for routing the superconducting wire 31.
  • the support structure 33 is for supporting the superconducting wire 31 and the stabilized copper 32 from the winding frame 18.
  • the superconducting wire 31 is connected to the superconducting wire 41 (FIG. 3) described later. Further, the stabilized copper 32 is connected to the stabilized copper 42 (FIG. 3) described later.
  • the superconducting wire 31 is wired in a groove provided in the stabilized copper 32 and is mechanically and electrically connected to the stabilized copper 32 by soldering. Further, the anti-coil side end portion of the stabilized copper 32 has a terminal structure provided with a bolt hole for making an electrical connection with the crossover wire 14. Further, an insulating plate (not shown) having sufficient thermal conductivity is sandwiched between the stabilized copper 32 and the support structure 33, and bolted (near the indicator line 201). At this time, an insulating cylindrical collar (not shown) is inserted between the bolt and the bolt hole so that the stabilized copper 32 and the support structure 33 do not electrically conduct with each other through the bolt. Further, for the same reason, an insulating washer (not shown) is inserted in the contact surface between the stabilized copper 32 and the head of the bolt. Further, the support structure 33 is bolted to the winding frame 18 (near the indicator line 202).
  • the coil outlet 13 shown in FIG. 2 heat is generated due to electric resistance at the solder connection portion of the stabilized copper 32 and the superconducting wire 31 and the stabilized copper 32 when energized.
  • one end of the support structure 33 is connected to the second cooling plate 12B of FIG. Further, the second cooling plate 12B is connected to the cooling stage 16 (FIG. 1).
  • the coil outlet 13 is cooled by the refrigerator or the heat exchanger 17 connected to the refrigerator via the second cooling plate 12B and further via the cooling stage 16, and the heat generated by the above-mentioned electric resistance is generated. However, the heat is efficiently removed (removed).
  • FIG. 3 is a diagram showing an example of the structure of the crossover line 14 in the conduction-cooled superconducting magnet 1 according to the first embodiment of the present invention.
  • the crossover wire 14 includes a superconducting wire (lead wire) 41 and a stabilized copper 42.
  • the superconducting wire 41 in FIG. 3 electrically connects between the superconducting coils 11A and 11B shown in FIG. 1 and the power lead 15.
  • the stabilized copper 42 in FIG. 3 is provided with a groove for routing the superconducting wire 41, and is formed in a plate shape and an L shape.
  • the superconducting wire 41 is wired in the groove provided in the stabilized copper 42 and is mechanically and electrically connected to the stabilized copper 42 by soldering.
  • the stabilized copper 42 and the second cooling plate 12B are bolted together with an insulating material having sufficient thermal conductivity sandwiched between them.
  • an insulating cylindrical collar 44 is inserted between the bolt 43 and the bolt hole 46 so that the stabilized copper 42 and the second cooling plate 12B do not electrically conduct with each other through the bolt 43. ..
  • an insulating washer 45 is inserted into the contact surface between the stabilized copper 42 and the head of the bolt 43.
  • the crossover line 14 is electrically connected to the coil outlet 13 at one end on the superconducting coil (11A, 11B) side. Further, the crossover line 14 is electrically connected to the power lead 15 at the other end. Therefore, when the superconducting coils 11A and 11B are energized, heat is generated due to the electric resistance at the connection portion at the end of the crossover wire 14. Further, when the superconducting wire 41 (FIG. 3) wired to the crossover wire 14 is damaged due to distortion or a defect inside the wire rod, the current diverges to the stabilized copper 42 (FIG. 3) at the damaged portion. Therefore, resistance heat generation is generated by this bypass current. However, as shown in FIG.
  • the second cooling plate 12B is thermally connected to the refrigerator or the heat exchanger 17 connected to the refrigerator via the cooling stage 16. Therefore, the crossover line 14 thermally connected to the second cooling plate 12B is cooled via the second cooling plate 12B, and the resistance of the contact portion and the heat generated by the bypass current are efficiently removed. Be heated.
  • the superconducting wire 41 shown in FIG. 3 is bent at a bent portion of the L-shaped stabilized copper 42 with a radius equal to or larger than an appropriate minimum bending radius so as not to be damaged by bending strain.
  • the bending radius of the bent portion of the stabilized copper 42 also has a structure that follows the bending radius of the superconducting wire 41.
  • the superconducting wire 41 is uniformly cooled through the stabilized copper 42 without the superconducting wire 41 being separated from the stabilized copper 42 at the bent portion (region 100: FIG. 3).
  • the superconducting wire 41 receives an electromagnetic force when energized by the magnetic field created by the superconducting coils (11A, 11B).
  • the structure becomes strong against the electromagnetic force generated by the magnetic field. There is.
  • the number of crossovers 14 and the number of power leads 15 are, for example, three each. Is.
  • Two superconducting wires 31 (FIGS. 2 and 1) are drawn from both ends of the superconducting coils 11A and 11B shown in FIG. 1, for a total of four (2 ⁇ 2). Of the total of four superconducting wires 31, one (two in total) that is one end of each coil in the superconducting coils 11A and 11B is connected to each of the two crossover wires 14. Then, the two power leads 15 are pulled out as they are through the two crossovers 14.
  • a total of two superconducting wires 31 which are the other ends of the respective coils in the superconducting coils 11A and 11B are electrically connected to each other and are shared by one. This common one is connected to the remaining one crossover wire 14, and is led out to the remaining one power lead 15 via the crossover wire 14.
  • Cylindrical structure of the first cooling plate 12A The cylindrical structure of the first cooling plate 12A shown in FIG. 1 is installed so as to be in thermal contact with the outer periphery of the superconducting coils 11A and 11B, and is bolted to the winding frame (bobbin) 18 of the superconducting coils 11A and 11B. Has been done. With this structure, the superconducting coils 11A and 11B are in contact with the first cooling plate 12A over one round of the cylindrical shape, and the second cooling plate 12B, the cooling stage 16 and the refrigerator are refrigerated from the outer peripheral surface via the first cooling plate 12A. It is cooled by the path of the heat exchanger 17 connected to the machine or the refrigerator.
  • the superconducting coils 11A and 11B generate heat by quenching (phase transition from the superconductor to the normal conductor) due to various factors, and this heat generation is also generated by the first cooling plate 12A, the second cooling plate 12B, and the like.
  • the heat is efficiently removed by the refrigerator or the heat exchanger 17 connected to the refrigerator via the cooling stage 16.
  • the superconducting coils 11A and 11B are housed in a cryostat (not shown) which is an adiabatic vacuum container.
  • the power lead 15 shown in FIG. 1 is for electrically connecting the low temperature vacuum in the cryostat in which the superconducting coils 11A and 11B are installed and the normal temperature atmosphere outside the cryostat, and from the normal temperature side to the low temperature side.
  • Superconductors high-temperature superconductors are partially used in order to reduce the amount of heat invading the surface.
  • the crossover wire 14 has a sufficient length so that the superconducting coils 11A and 11B and the power lead 15 can be installed apart from each other. Further, although not clearly shown in FIG. 1, the power lead 15 is also cooled by the refrigerator or the heat exchanger 17 connected to the refrigerator via the second cooling plate 12B or the cooling stage 16. It has become.
  • a motor of the refrigerator is usually used in the upper part of the refrigerator or the heat exchanger 17 connected to the refrigerator in FIG. 1, and there is a possibility that the motor may operate abnormally due to the influence of the magnetic field. Therefore, the refrigerator or the heat exchanger 17 connected to the refrigerator is sufficiently far from the superconducting coils 11A and 11B so as not to be affected by the magnetic field created by the superconducting coils 11A and 11B, like the power lead 15. It is installed with a place. Second cooling made of a material with sufficiently high thermal conductivity in order to transfer heat over a long distance between the refrigerator or the heat exchanger 17 connected to the refrigerator and the superconducting coils 11A and 11B. Plate 12B is used. The second cooling plate 12B has a necessary cross-sectional area so that the temperature difference between the cooling stage 16 and the superconducting coils 11A and 11B can be appropriately suppressed.
  • the two superconducting coils 11A and 11B, the coil outlet 13, and the crossover 14 are all the first cooling plate 12A, the first. 2 It is thermally connected to the cooling stage 16 connected to the refrigerator or the heat exchanger 17 connected to the refrigerator via the cooling plate 12B, and these parts (11A, 11B, 13, 14) are simultaneously connected. It is possible to cool. Further, in the coil outlet 13, since the conducting wire (superconducting wire 31) drawn from the superconducting coils 11A and 11B and the crossing wire 14 are electrically connected, heat is generated (heat generation part) due to the connection resistance when energized. ..
  • the heat generating portion is cooled by conduction cooling. This is possible, and the superconducting magnet (conducting cooling type superconducting magnet 1) can be stably operated (operated).
  • the crossover wire 14 is a lead wire that electrically connects the coil outlet 13 to the vicinity of the cooling stage 16 connected to the refrigerator or the heat exchanger 17 connected to the refrigerator.
  • the crossover wire 14 and the cooling stage 16 are thermally connected by the second cooling plate 12B via insulation to conduct the crossover wire 14. It has a structure that can be cooled by cooling.
  • the crossover line 14 may be a superconductor, a normal conductor, or both. When the crossover wire 14 is a superconductor, the thermal stability of the superconductor wire 41 can be maintained by cooling. When the crossover wire 14 is a normal conductor, heat cannot be transferred to the superconducting wire 31 or the superconducting coils 11A and 11B by removing the heat generated by the resistance generated when the power is applied.
  • the crossover wire 14 and the superconducting coils 11A and 11B Therefore, there is heat intrusion due to heat transfer. However, since the crossover wire 14 is cooled by the structure, heat intrusion into the superconducting coils 11A and 11B can be suppressed.
  • the first cooling plate 12A is in contact with the superconducting coils 11A and 11B, and is evenly arranged in the intermediate portion between the two paired superconducting coils 11A and 11B. Therefore, the lengths of the cooling paths from the cooling stage 16 thermally connected to the refrigerator or the heat exchanger 17 connected to the refrigerator to the superconducting coil 11A and the superconducting coil 11B are almost equal. The temperature difference between the two superconducting coils 11A and 11B can be suppressed to a very small size.
  • the superconducting magnet (conducting cooling type superconducting magnet 1) provided with the two paired superconducting coils 11A and 11B can be stably operated. That is, it is possible to provide a conduction-cooled superconducting magnet 1 capable of stable operation.
  • the superconducting coils 11A and 11B have been described as having the shape of a solenoid coil, but the superconducting coils 11A and 11B are not limited to the solenoid coil. For example, it may be an ellipse, a rectangle, or a race track shape.
  • the material of the superconducting wire used for the superconducting coils 11A and 11B has not been described, but either a low-temperature superconductor or a high-temperature superconductor may be used.
  • low-temperature superconductors include NbTi and Nb 3 Sn.
  • high-temperature superconductors include MgB 2 , or bismuth-based superconductors such as Bi 2 Sr 2 CaCu 2 O 8+ ⁇ (Bi2212) and Bi 2 Sr 2 Ca 2 Cu 3 O 10+ ⁇ (Bi2223).
  • rare earth-based superconductors such as REBa 2 Cu 3 O 7- ⁇ (RE123, RE: rare earth element).
  • RE123, RE rare earth element
  • the shape of the superconducting wire may be any of a round wire, a square wire, a flat wire, and a tape wire.
  • the power lead 15 and the crossover line 14 are directly connected to each other.
  • a conductive flexible lead (not shown) for absorbing (relaxing) mechanical displacement may be used between the connection between the power lead 15 and the crossover line 14 in FIG. 1.
  • the superconducting coils 11A and 11B, the first cooling plate 12A, the second cooling plate 12B, the coil outlet 13, and the crossover line 14 are integrally displaced by cooling shrinkage.
  • the power lead 15 is connected to a structure having a temperature higher than that of each of the above-mentioned parts (11A, 11B, 12A, 12B, 13, 14). Therefore, a mechanical variation (displacement difference) occurs between the power lead 15 and each of the above-mentioned parts (11A, 11B, 12A, 12B, 13, 14).
  • the superconducting coils 11A and 11B, the first cooling plate 12A, the second cooling plate 12B, the coil outlet 13, the crossover wire 14, and the power lead are generated by the acceleration applied from the outside.
  • a displacement different from that of 15 will occur and a displacement difference will occur.
  • the above-mentioned displacement difference is absorbed by the conductive flexible lead, and the crossover wire 14 or the power
  • the flexible lead for conductivity one having high electric conductivity and good flexibility is used. For example, copper braid is used.
  • the crossover wire 14 shown in FIG. 3 is provided with a superconducting wire (lead wire) 41, and the electrical conducting wire is described as the superconducting wire 41.
  • the electrical conducting wire is described as the superconducting wire 41.
  • the resistance value of the conducting wire is set to be a sufficiently low value.
  • the crossover line 14 shows an example in which the crossover line 14 is bent. However, depending on the arrangement of the magnets, the bent portion of the crossover line 14 shown in FIGS. 1 and 3 may be eliminated. Further, two or more places may be provided.
  • the superconducting wire 41 and the stabilized copper 42 are divided and connected between them by a flexible lead for conduction. There is also a configuration to do.
  • the number of the crossovers 14 and the number of the power leads 15 are each three. Then, the superconducting wires 31 of each coil (superconducting coils 11A and 11B) are electrically connected to each other and shared into one, and then are drawn out to the power lead 15 via the crossover wire 14.
  • the number of crossovers and power leads is not limited to the above number.
  • the lead wires (superconducting wires 31) of the superconducting coils 11A and 11B may be shared by two, and the number of crossover wires 14 and the number of power leads 15 may be two each. Good.
  • the number of crossover wires 14 and the number of power leads 15 may be 4 each without sharing all the leader wires.
  • the first cooling plate 12A is composed of a cylindrical structure that surrounds the two superconducting coils 11A and 11B from the outer peripheral side with reference to FIG.
  • the cylindrical structure of the first cooling plate 12A may be a divided structure. In this case, the split portions are thermally connected by a flexible lead for heat transfer.
  • ⁇ Structure of the second cooling plate 12B In the first embodiment, in the conduction-cooled superconducting magnet 1 of FIG. 1, two superconducting plates 12B and one refrigerator or a heat exchanger 17 connected to the refrigerator 17 are used.
  • the set of the conducting coils 11A and 11B is cooled as one set, but the structure is not necessarily limited to this. For example, by modifying a part of the structure of the second cooling plate 12B, a plurality of sets of superconductivity are provided by one second cooling plate 12B and one refrigerator or a heat exchanger 17 connected to the refrigerator.
  • the coils (11A, 11B) may be cooled at the same time.
  • one or more sets of superconducting coils (11A, 11B) may be cooled by one second cooling plate 12B and a plurality of refrigerators or heat exchangers 17 connected to the refrigerators.
  • a plurality of first cooling plates (12A) evenly provided in the middle portion between the two superconducting coils (11A) forming a plurality of pairs and the superconducting coil (11B) are common. They are connected to each other and shared (shared) via a second cooling plate (12B). Further, a plurality of coil outlets 13 are provided so that the superconducting wire (31) is drawn from each of the plurality of sets of the two superconducting coils (11A, 11B).
  • a plurality of or common power leads (15) for supplying a current to a plurality of sets of superconducting coils (11A, 11B) are provided.
  • a plurality of crossover wires (14) are provided, each of which is wired from the superconducting wire (31) of the plurality of coil outlets (13) to the plurality of or common power leads (15).
  • a common second cooling plate (12B) for cooling the plurality of first cooling plates (12A) and the plurality of crossovers (14) is provided.
  • a cooling stage (16) for cooling the second cooling plate (12B) is provided.
  • the plurality of crossovers (14) are wired while being cooled by a common second cooling plate (12B) via insulation.
  • a plurality of sets of two paired superconducting coils (11A, 11B) can be cooled together.
  • Refrigerator and conduction-cooled superconducting magnet >>
  • the refrigerator may not be provided in the conduction-cooled superconducting magnet 1.
  • the conduction cooling type superconducting magnet may be provided with a refrigerator. That is, there is also a configuration in which a refrigerator including a heat exchanger (17) is provided in a conduction cooling type superconducting magnet, and the refrigerator (heat exchanger) and the cooling stage (16: FIG. 1) are thermally directly connected. ..

Abstract

The present invention comprises: two superconducting coils 11A, 11B that form a pair by being positioned coaxially, a first cooling plate 12A that cools the superconducting coils, coil lead-outs 13 to which a superconducting wire is drawn from each of the two superconducting coils, a power lead 15 that supplies current to the superconducting coils, a crossover wire 14 that is routed from the superconducting wires of the coil lead-outs to the power lead, a second cooling plate 12B that cools the first cooling plate and the crossover wire, and a cooling stage 16 that cools the second cooling plate. The first cooling plate is positioned evenly in an intermediate part of the pair of superconducting coils.

Description

伝導冷却型超伝導磁石Conductive cooling type superconducting magnet
 本発明は、伝導冷却型超伝導磁石に関する。 The present invention relates to a conduction-cooled superconducting magnet.
 超伝導磁石は、加速器や磁気共鳴画像診断装置(MRI)といった、様々な用途に用いられる。超伝導磁石の冷却方式には、超伝導コイル等の被冷却体を、冷媒に浸して冷却する浸漬冷却と、被冷却体に伝熱体を介して取り付けた、冷凍機等を用いて冷却する伝導冷却と、がある。近年、浸漬冷却の主要な冷媒である、液体ヘリウムの資源の枯渇が危惧されていることから、伝導冷却が注目されている。伝導冷却では、超伝導コイルと、通電時に接続部が発熱源となるコイル口出しと、を効率よく冷却することが重要である。
 コイル口出しを冷却する方法としては、例えば、接触面が熱伝導性の絶縁体からなり、冷凍機に連結された冷却ブロックと、コイル口出しと、を熱的に接触させることにより、接続部の発熱を抑制する構造が知られている(特許文献1参照)。
 一方、超伝導コイルを冷却する方法としては、フランジを介して、冷凍機の冷却ステージに熱的に接続された伝熱板を、超伝導コイルの外周面に取り付ける構造(特許文献2参照)や、伝熱体を介して、冷凍機の冷却ステージに熱的に接続された冷却板を、超伝導コイルの端面に取り付ける構造(特許文献3参照)が知られている。
Superconducting magnets are used in a variety of applications, such as accelerators and magnetic resonance imaging (MRI). The cooling method of the superconducting magnet includes immersion cooling in which a body to be cooled such as a superconducting coil is immersed in a refrigerant to cool it, and a refrigerator or the like attached to the body to be cooled via a heat transfer body. There is conduction cooling. In recent years, there is a concern that the resources of liquid helium, which is the main refrigerant for immersion cooling, will be depleted, so conduction cooling has attracted attention. In conduction cooling, it is important to efficiently cool the superconducting coil and the coil outlet whose connection portion becomes a heat generation source when energized.
As a method of cooling the coil outlet, for example, the contact surface is made of a thermally conductive insulator, and the cooling block connected to the refrigerator and the coil outlet are thermally contacted to generate heat at the connection portion. Is known (see Patent Document 1).
On the other hand, as a method of cooling the superconducting coil, a structure in which a heat transfer plate thermally connected to the cooling stage of the refrigerator is attached to the outer peripheral surface of the superconducting coil via a flange (see Patent Document 2) , A structure is known in which a cooling plate thermally connected to a cooling stage of a refrigerator is attached to an end surface of a superconducting coil via a heat transfer body (see Patent Document 3).
特開2012-256744号公報Japanese Unexamined Patent Publication No. 2012-256744 特開2007-266244号公報JP-A-2007-266244 国際公開第2013/133319号International Publication No. 2013/133319
 特許文献1、特許文献2、および特許文献3は、それぞれ独立に、コイル口出しと、超伝導コイルとを伝導冷却によって冷却する構造を開示している。
 しかし、通常、超伝導コイルは、断熱真空容器であるクライスタットの中に配置されるため、空間的な制約から、前記特許文献に示す構造を2つ以上同時に実現することは難しいという課題(問題)がある。
 また、超伝導磁石において、超伝導コイルのコイル口出しから引き出された超伝導線は、渡り線として、パワーリードまで引き回されて配線される。この渡り線は、超伝導磁石の熱的安定性を確保するために、超伝導コイルおよびコイル口出しと同様に、冷却されることが好ましいという課題がある
 さらに、特許文献2、および特許文献3においては、2個の超伝導コイルを冷却する際に、一方のコイルと、他方のコイルと、で冷凍機までの冷却パスの長さが異なる。そのため、本構造を用いた場合、2個の超伝導コイルに温度差が発生する可能性があるという課題(問題)がある。
Patent Document 1, Patent Document 2, and Patent Document 3 independently disclose a structure in which a coil outlet and a superconducting coil are cooled by conduction cooling.
However, since the superconducting coil is usually arranged in the Crystat, which is an adiabatic vacuum vessel, it is difficult to realize two or more of the structures shown in the patent documents at the same time due to spatial restrictions (problem). ).
Further, in the superconducting magnet, the superconducting wire drawn from the coil outlet of the superconducting coil is routed to the power lead as a crossover wire and wired. In order to ensure the thermal stability of the superconducting magnet, this crossover has a problem that it is preferable to be cooled as in the case of the superconducting coil and the coil opening. When cooling the two superconducting coils, the length of the cooling path to the refrigerator differs between one coil and the other coil. Therefore, when this structure is used, there is a problem (problem) that a temperature difference may occur between the two superconducting coils.
 本発明は、このような従来の実情を鑑みてなされたものであり、対をなす2個の超伝導コイルの間の温度差をなくして、安定した運転ができる伝導冷却型超伝導磁石を提供することを課題(目的)とする。 The present invention has been made in view of such a conventional situation, and provides a conduction-cooled superconducting magnet capable of stable operation by eliminating a temperature difference between two paired superconducting coils. The task (purpose) is to do.
 前記の課題を解決するために、本発明を以下のように構成した。
 すなわち、本発明の伝導冷却型超伝導磁石は、同軸上に配置されて対をなす2個の超伝導コイルと、前記超伝導コイルを冷却する第1冷却板と、2個の前記超伝導コイルからそれぞれ超伝導線が引き出されるコイル口出しと、前記超伝導コイルに電流を供給するパワーリードと、前記コイル口出しの超伝導線から前記パワーリードまで配線される渡り線と、前記第1冷却板と前記渡り線を冷却する第2冷却板と、前記第2冷却板を冷却する冷却ステージと、を備え、前記第1冷却板は、対をなす2個の前記超伝導コイルの中間部に均等に配置されることを特徴とする。
In order to solve the above-mentioned problems, the present invention was configured as follows.
That is, in the conduction cooling type superconducting magnet of the present invention, two superconducting coils arranged coaxially to form a pair, a first cooling plate for cooling the superconducting coil, and two superconducting coils. A coil outlet from which a superconducting wire is drawn from, a power lead that supplies a current to the superconducting coil, a crossover wire that is wired from the superconducting wire of the coil outlet to the power lead, and the first cooling plate. A second cooling plate for cooling the crossover and a cooling stage for cooling the second cooling plate are provided, and the first cooling plate is evenly distributed in the middle portion of the two paired superconducting coils. It is characterized by being arranged.
 また、その他の手段は、発明を実施するための形態のなかで説明する。 In addition, other means will be described in the form for carrying out the invention.
 本発明によれば、超伝導コイルと、コイル口出しと、渡り線と、を同時に冷却可能であり、かつ冷凍機に熱的に接続される冷却ステージから、2個の超伝導コイルまでの冷却のパスの長さがほとんど等価となる。そのため、超伝導コイルの間の温度差をなくして、安定した動作をする伝導冷却型超伝導磁石を提供できる。 According to the present invention, the superconducting coil, the coil outlet, and the crossover can be cooled at the same time, and the cooling from the cooling stage thermally connected to the refrigerator to the two superconducting coils can be cooled. The lengths of the paths are almost equivalent. Therefore, it is possible to provide a conduction-cooled superconducting magnet that operates stably by eliminating the temperature difference between the superconducting coils.
本発明の第1実施形態に係る伝導冷却型超伝導磁石の中心軸を含む切断面における断面構造の一例を示す図である。It is a figure which shows an example of the cross-sectional structure in the cut surface including the central axis of the conduction cooling type superconducting magnet which concerns on 1st Embodiment of this invention. 本発明の第1実施形態に係る伝導冷却型超伝導磁石におけるコイル口出し、およびその近傍の構造の一例を示す図である。It is a figure which shows an example of the coil mouthing in the conduction cooling type superconducting magnet which concerns on 1st Embodiment of this invention, and the structure in the vicinity thereof. 本発明の第1実施形態に係る伝導冷却型超伝導磁石における渡り線の構造の一例を示す図である。It is a figure which shows an example of the structure of the crossover in the conduction cooling type superconducting magnet which concerns on 1st Embodiment of this invention.
 以下、本発明を実施するための形態(以下においては「実施形態」と表記する)を、適宜、図面を参照して説明する。なお、各図面において、共通する構成要素には同一の符号を付し、重複した説明を、適宜、省略する。 Hereinafter, embodiments for carrying out the present invention (hereinafter referred to as “embodiments”) will be described as appropriate with reference to the drawings. In each drawing, common components are designated by the same reference numerals, and duplicate description will be omitted as appropriate.
≪第1実施形態≫
 本発明の第1実施形態に係る伝導冷却型超伝導磁石について、図1~図3を参照して説明する。なお、伝導冷却型超伝導磁石の「超伝導」は「超電導」と同義語として、本発明の実施形態の説明では、「超伝導」と表記する。
<< First Embodiment >>
The conduction-cooled superconducting magnet according to the first embodiment of the present invention will be described with reference to FIGS. 1 to 3. In addition, "superconductivity" of the conduction cooling type superconducting magnet is synonymous with "superconductivity", and is described as "superconductivity" in the description of the embodiment of the present invention.
《伝導冷却型超伝導磁石1の断面構造》
 図1は、本発明の第1実施形態に係る伝導冷却型超伝導磁石1の中心軸Zを含む切断面における断面構造の一例を示す図である。
 図1において、伝導冷却型超伝導磁石1は、2個の超伝導コイル11A,11B、第1冷却板12A、第2冷却板12B、コイル口出し13、渡り線14、パワーリード15、冷却ステージ16、冷凍機または冷凍機に接続された熱交換器17を備えて構成されている。なお、熱交換器は、冷凍機に備えられていて冷凍機(17)の一部である場合と、熱交換器(17)は、冷凍機とは別の機器であって、冷凍機と接している場合とがある。
 2個の超伝導コイル11A,11Bが、円筒状の巻枠(ボビン)18の同軸上(中心軸Z)に巻回して構成されている。
 第1冷却板12Aは、超伝導コイル11Aと超伝導コイル11Bとに接触して備えられ、超伝導コイル11Aと超伝導コイル11Bとを共に冷却する。
 また、第1冷却板12Aは、対をなす2個の超伝導コイル11Aと超伝導コイル11Bとの中間部に均等に渡って設けられている。
 また、第1冷却板12Aは、超伝導コイル11A,11Bを介して、巻枠18の同軸上(中心軸Z)に巻回されている。すなわち、第1冷却板12Aは、2個の超伝導コイル11A,11Bを外周側から取り囲む円筒構造体からなる。
<< Cross-sectional structure of conduction-cooled superconducting magnet 1 >>
FIG. 1 is a diagram showing an example of a cross-sectional structure on a cut surface including a central axis Z of a conduction-cooled superconducting magnet 1 according to the first embodiment of the present invention.
In FIG. 1, the conduction-cooled superconducting magnet 1 has two superconducting coils 11A and 11B, a first cooling plate 12A, a second cooling plate 12B, a coil outlet 13, a crossover 14, a power lead 15, and a cooling stage 16. , A refrigerator or a heat exchanger 17 connected to the refrigerator. It should be noted that the heat exchanger is provided in the refrigerator and is a part of the refrigerator (17), and the heat exchanger (17) is a device different from the refrigerator and is in contact with the refrigerator. There are cases where it is.
The two superconducting coils 11A and 11B are wound around the same axis (central axis Z) of the cylindrical winding frame (bobbin) 18.
The first cooling plate 12A is provided in contact with the superconducting coil 11A and the superconducting coil 11B, and cools both the superconducting coil 11A and the superconducting coil 11B.
Further, the first cooling plate 12A is evenly provided in the intermediate portion between the two paired superconducting coils 11A and the superconducting coil 11B.
Further, the first cooling plate 12A is wound on the same axis (central axis Z) of the winding frame 18 via the superconducting coils 11A and 11B. That is, the first cooling plate 12A is composed of a cylindrical structure that surrounds the two superconducting coils 11A and 11B from the outer peripheral side.
 超伝導コイル11Aおよび超伝導コイル11Bは、超伝導線(31:図2)を円筒状の巻枠18に巻回されて、巻線をなすソレノイドコイルで構成されている。
 ソレノイドコイルとしての巻始めの超伝導線と、巻線終わりの超伝導線とを引き出したコイル口出し13が、超伝導コイル11Aおよび超伝導コイル11Bのコイル1個につきそれぞれ1箇所存在する。なお、図1においては、1箇所のコイル口出し13に対して、巻始めの超伝導線と、巻線終わりの超伝導線を示すため、模式的に2本の導線として表記している。
The superconducting coil 11A and the superconducting coil 11B are composed of a solenoid coil in which a superconducting wire (31: FIG. 2) is wound around a cylindrical winding frame 18 to form a winding.
There is one coil outlet 13 for pulling out the superconducting wire at the beginning of winding and the superconducting wire at the end of winding as a solenoid coil for each coil of the superconducting coil 11A and the superconducting coil 11B. In addition, in FIG. 1, since the superconducting wire at the beginning of winding and the superconducting wire at the end of winding are shown with respect to one coil outlet 13, they are schematically shown as two conducting wires.
 図1に示した伝導冷却型超伝導磁石1では、2個の超伝導コイル11A,11Bの各々のコイル口出し13は、中心軸Zの周方向ではほぼ同一位置、軸方向では2個のコイルの対称面側の端部に位置している。
 このように2個の超伝導コイル11A,11Bのコイル口出し13が、近い距離に位置しているため、2個のコイル口出し13に、渡り線14と、第2冷却板12Bと、を同一箇所でまとめて接続することができる。
 なお、コイル口出し13の近傍の構造の詳細については、図2を参照して後記する。
In the conduction-cooled superconducting magnet 1 shown in FIG. 1, the coil outlets 13 of the two superconducting coils 11A and 11B are substantially the same position in the circumferential direction of the central axis Z, and the two coils are in the axial direction. It is located at the end on the plane of symmetry.
Since the coil outlets 13 of the two superconducting coils 11A and 11B are located at close distances in this way, the crossover wire 14 and the second cooling plate 12B are located at the same location on the two coil outlets 13. You can connect all at once with.
The details of the structure in the vicinity of the coil outlet 13 will be described later with reference to FIG.
 図1において、第1冷却板12Aは、第2冷却板12Bと接触して熱交換をする。第2冷却板12Bは、領域100において曲がりL字型の板状の構造を経て冷却ステージ16と接触し、熱的に接続されている。冷却ステージ16は、冷凍機または冷凍機に接続された熱交換器17と接触し、熱的に接続されている。
 このような構成、構造によって、冷凍機または冷凍機に接続された熱交換器17から冷却ステージ16、第2冷却板12B、第1冷却板12Aを介して、超伝導コイル11A,11Bが冷却される。
 なお、渡り線14も絶縁(電気的な絶縁)を介して、第2冷却板12Bによって冷却される。
In FIG. 1, the first cooling plate 12A contacts the second cooling plate 12B and exchanges heat. The second cooling plate 12B is in contact with the cooling stage 16 via a curved L-shaped plate-like structure in the region 100, and is thermally connected. The cooling stage 16 is in contact with the refrigerator or the heat exchanger 17 connected to the refrigerator and is thermally connected.
With such a configuration and structure, the superconducting coils 11A and 11B are cooled from the refrigerator or the heat exchanger 17 connected to the refrigerator via the cooling stage 16, the second cooling plate 12B, and the first cooling plate 12A. To.
The crossover line 14 is also cooled by the second cooling plate 12B via insulation (electrical insulation).
 また、渡り線14は、コイル口出し13で超伝導コイル11A,11Bから引き出した導線をパワーリード15に接続している。この構成によって、超伝導コイル11A,11Bに、パワーリード15の先に配置される外部装置(不図示)から、電流を供給され、制御される。
 なお、渡り線14、およびその近傍の構造については、図3を参照して後記する。
Further, the crossover wire 14 connects the lead wires drawn from the superconducting coils 11A and 11B at the coil outlet 13 to the power lead 15. With this configuration, current is supplied to and controlled from the superconducting coils 11A and 11B from an external device (not shown) arranged at the tip of the power lead 15.
The structure of the crossover line 14 and its vicinity will be described later with reference to FIG.
《コイル口出し13の詳細構造》
 次に、コイル口出し13、およびその近傍の構造を、図2を参照して説明する。
 図2は、本発明の第1実施形態に係る伝導冷却型超伝導磁石1におけるコイル口出し13、およびその近傍の構造の一例を示す図である。
 図2において、コイル口出し13は、超伝導線31、安定化銅32、支持構造体33を備えて構成される。なお、図2における超伝導コイル11A,11B、巻枠18、中心軸Zは、図1に対応している。
 超伝導線31は、超伝導コイル11Aおよび超伝導コイル11Bからそれぞれ引き出されている。なお、図2においては、超伝導コイル11Aおよび超伝導コイル11Bからそれぞれ引き出された超伝導線31は、図の表記上の都合により、それぞれ1本として示しているが、実際には、図1のコイル口出し13の近傍の太線2本に示すように、それぞれ2本ずつである。
<< Detailed structure of coil outlet 13 >>
Next, the structure of the coil outlet 13 and its vicinity will be described with reference to FIG.
FIG. 2 is a diagram showing an example of a structure of the coil outlet 13 and its vicinity in the conduction-cooled superconducting magnet 1 according to the first embodiment of the present invention.
In FIG. 2, the coil outlet 13 includes a superconducting wire 31, stabilized copper 32, and a support structure 33. The superconducting coils 11A and 11B, the winding frame 18, and the central axis Z in FIG. 2 correspond to those in FIG.
The superconducting wire 31 is drawn from the superconducting coil 11A and the superconducting coil 11B, respectively. In FIG. 2, the superconducting wires 31 drawn from the superconducting coil 11A and the superconducting coil 11B are shown as one for convenience of the notation in the figure, but in reality, FIG. As shown in the two thick lines in the vicinity of the coil opening 13 of the above, there are two each.
 安定化銅32は、超伝導線31がクエンチ(超伝導体から常伝導体への相転移)を起こした場合に、超伝導線31に流れていた電流を安定化銅32に流すことによって、急激な電流変化や温度変化を低減するために備えられたものである。
 また、安定化銅32は、板状であり、超伝導線31を引き回すための溝(不図示)が設けられている。
 支持構造体33は、超伝導線31と安定化銅32を、巻枠18から支持するためのものである。
 なお、超伝導線31は、後記する超伝導線41(図3)と接続される。また、安定化銅32は、後記する安定化銅42(図3)と接続される。
The stabilized copper 32 is produced by passing the current flowing through the superconducting wire 31 through the stabilized copper 32 when the superconducting wire 31 undergoes a quench (phase transition from the superconductor to the normal conductor). It is provided to reduce sudden current changes and temperature changes.
Further, the stabilized copper 32 has a plate shape and is provided with a groove (not shown) for routing the superconducting wire 31.
The support structure 33 is for supporting the superconducting wire 31 and the stabilized copper 32 from the winding frame 18.
The superconducting wire 31 is connected to the superconducting wire 41 (FIG. 3) described later. Further, the stabilized copper 32 is connected to the stabilized copper 42 (FIG. 3) described later.
 超伝導線31は、安定化銅32に設けられた溝の中に配線され、はんだ付けで安定化銅32に、機械的、および電気的に接続されている。
 また、安定化銅32の反コイル側端部は、渡り線14と電気的接続を取るためのボルト穴が設けられた端子構造となっている。
 また、安定化銅32と支持構造体33との間に、十分な熱伝導率を持つ絶縁板(不図示)を挟んで、ボルト締結される(指示線201近傍)。このとき、ボルトを通じて安定化銅32と、支持構造体33とが電気的に導通しないように、ボルトとボルト穴の間には絶縁性の円筒状のカラー(不図示)が挿入されている。また、同じ理由により、安定化銅32と、ボルトの頭との接触面には絶縁性のワッシャ(不図示)が挿入されている。
 また、支持構造体33は、巻枠18とボルト締結される(指示線202近傍)。
The superconducting wire 31 is wired in a groove provided in the stabilized copper 32 and is mechanically and electrically connected to the stabilized copper 32 by soldering.
Further, the anti-coil side end portion of the stabilized copper 32 has a terminal structure provided with a bolt hole for making an electrical connection with the crossover wire 14.
Further, an insulating plate (not shown) having sufficient thermal conductivity is sandwiched between the stabilized copper 32 and the support structure 33, and bolted (near the indicator line 201). At this time, an insulating cylindrical collar (not shown) is inserted between the bolt and the bolt hole so that the stabilized copper 32 and the support structure 33 do not electrically conduct with each other through the bolt. Further, for the same reason, an insulating washer (not shown) is inserted in the contact surface between the stabilized copper 32 and the head of the bolt.
Further, the support structure 33 is bolted to the winding frame 18 (near the indicator line 202).
 図2に示すコイル口出し13では、安定化銅32と超伝導線31のはんだ接続部と、安定化銅32とにおいて、通電時に電気抵抗による発熱が発生する。
 ただし、支持構造体33の一端は、図1の第2冷却板12Bに接続されている。
 さらに第2冷却板12Bは、冷却ステージ16(図1)に接続されている。
 この構造により、コイル口出し13は、第2冷却板12Bを介し、さらに冷却ステージ16を介して、冷凍機または冷凍機に接続された熱交換器17により冷却されて、前記した電気抵抗により生じる発熱が、効率的に除熱(除去)される。
In the coil outlet 13 shown in FIG. 2, heat is generated due to electric resistance at the solder connection portion of the stabilized copper 32 and the superconducting wire 31 and the stabilized copper 32 when energized.
However, one end of the support structure 33 is connected to the second cooling plate 12B of FIG.
Further, the second cooling plate 12B is connected to the cooling stage 16 (FIG. 1).
With this structure, the coil outlet 13 is cooled by the refrigerator or the heat exchanger 17 connected to the refrigerator via the second cooling plate 12B and further via the cooling stage 16, and the heat generated by the above-mentioned electric resistance is generated. However, the heat is efficiently removed (removed).
《渡り線の詳細構造》
 次に、渡り線14の詳細構造について説明する。
 図3は、本発明の第1実施形態に係る伝導冷却型超伝導磁石1における渡り線14の構造の一例を示す図である。
 図3において、渡り線14は、超伝導線(導線)41と安定化銅42とを備えて構成される。
 図3における超伝導線41は、図1に示す超伝導コイル11A,11Bとパワーリード15の間を電気的に接続する。
 図3における安定化銅42は、超伝導線41を引き回すための溝が設けられ、板状でL字型の形状で構成されている。
<< Detailed structure of crossover >>
Next, the detailed structure of the crossover line 14 will be described.
FIG. 3 is a diagram showing an example of the structure of the crossover line 14 in the conduction-cooled superconducting magnet 1 according to the first embodiment of the present invention.
In FIG. 3, the crossover wire 14 includes a superconducting wire (lead wire) 41 and a stabilized copper 42.
The superconducting wire 41 in FIG. 3 electrically connects between the superconducting coils 11A and 11B shown in FIG. 1 and the power lead 15.
The stabilized copper 42 in FIG. 3 is provided with a groove for routing the superconducting wire 41, and is formed in a plate shape and an L shape.
 超伝導線41は、前記した安定化銅42に設けられた溝の中に配線され、はんだ付けで安定化銅42に、機械的および電気的に接続されている。
 安定化銅42と第2冷却板12Bとは、間に十分な熱伝導性を有する絶縁材を挟んで、ボルト締結される。
 このとき、ボルト43を通じて、安定化銅42と、第2冷却板12Bとが電気的に導通しないように、ボルト43とボルト穴46の間には、絶縁性の円筒状のカラー44を挿入する。また、安定化銅42とボルト43の頭との接触面には、絶縁性のワッシャ45が挿入されている。
The superconducting wire 41 is wired in the groove provided in the stabilized copper 42 and is mechanically and electrically connected to the stabilized copper 42 by soldering.
The stabilized copper 42 and the second cooling plate 12B are bolted together with an insulating material having sufficient thermal conductivity sandwiched between them.
At this time, an insulating cylindrical collar 44 is inserted between the bolt 43 and the bolt hole 46 so that the stabilized copper 42 and the second cooling plate 12B do not electrically conduct with each other through the bolt 43. .. Further, an insulating washer 45 is inserted into the contact surface between the stabilized copper 42 and the head of the bolt 43.
 渡り線14は、図1を参照して前記したように、超伝導コイル(11A,11B)側の一方の端部で、コイル口出し13と電気的に接続されている。また、渡り線14は、他方の端部で、パワーリード15と、電気的に接続されている。そのため、超伝導コイル11A,11Bの通電時には、前記した渡り線14の端部の接続部における電気抵抗により発熱が生じる。
 また、渡り線14に配線された超伝導線41(図3)が、歪や線材内部の欠陥により損傷していた場合、その損傷部分で電流は、安定化銅42(図3)へ迂回することになり、この迂回電流によって抵抗発熱が生じる。
 しかし、図1に示すように第2冷却板12Bは、冷却ステージ16を介して、冷凍機または冷凍機に接続された熱交換器17と熱的に接続されている。そのため、第2冷却板12Bに熱的に接続されている渡り線14は、第2冷却板12Bを介して冷却され、前記の接触部の抵抗、および迂回電流によって生じる発熱は、効率的に除熱される。
As described above with reference to FIG. 1, the crossover line 14 is electrically connected to the coil outlet 13 at one end on the superconducting coil (11A, 11B) side. Further, the crossover line 14 is electrically connected to the power lead 15 at the other end. Therefore, when the superconducting coils 11A and 11B are energized, heat is generated due to the electric resistance at the connection portion at the end of the crossover wire 14.
Further, when the superconducting wire 41 (FIG. 3) wired to the crossover wire 14 is damaged due to distortion or a defect inside the wire rod, the current diverges to the stabilized copper 42 (FIG. 3) at the damaged portion. Therefore, resistance heat generation is generated by this bypass current.
However, as shown in FIG. 1, the second cooling plate 12B is thermally connected to the refrigerator or the heat exchanger 17 connected to the refrigerator via the cooling stage 16. Therefore, the crossover line 14 thermally connected to the second cooling plate 12B is cooled via the second cooling plate 12B, and the resistance of the contact portion and the heat generated by the bypass current are efficiently removed. Be heated.
 また、図3で示した超伝導線41は、曲げ歪で損傷しないよう、L字型の安定化銅42の屈曲部で、適切な最小曲げ半径以上の半径で曲げられる。また、安定化銅42の屈曲部の曲げ半径も、超伝導線41の曲げ半径に倣うような構造としている。この構造によって、超伝導線41が屈曲部分(領域100:図3)で安定化銅42から離れることなく、超伝導線41は、安定化銅42を介して、均一に冷却される。
 また、超伝導線41は、超伝導コイル(11A,11B)が作る磁場によって、通電時に電磁力を受けることが考えられる。しかし、十分な剛性を持つ安定化銅42の溝に配線され固定され、かつ第2冷却板12Bにボルト締結されることで、前記磁場によって発生する電磁力に対しても強固な構造となっている。
Further, the superconducting wire 41 shown in FIG. 3 is bent at a bent portion of the L-shaped stabilized copper 42 with a radius equal to or larger than an appropriate minimum bending radius so as not to be damaged by bending strain. Further, the bending radius of the bent portion of the stabilized copper 42 also has a structure that follows the bending radius of the superconducting wire 41. With this structure, the superconducting wire 41 is uniformly cooled through the stabilized copper 42 without the superconducting wire 41 being separated from the stabilized copper 42 at the bent portion (region 100: FIG. 3).
Further, it is considered that the superconducting wire 41 receives an electromagnetic force when energized by the magnetic field created by the superconducting coils (11A, 11B). However, by being wired and fixed in the groove of the stabilized copper 42 having sufficient rigidity and bolted to the second cooling plate 12B, the structure becomes strong against the electromagnetic force generated by the magnetic field. There is.
《渡り線、パワーリードの数》
 本(第1)実施形態の伝導冷却型超伝導磁石1においては、図1~図3において、明記はしていないが、渡り線14、およびパワーリード15の数は、例えば、それぞれ3本ずつである。
 図1に示した超伝導コイル11A,11Bのそれぞれの両端から超伝導線31(図2、図1)をそれぞれ2本ずつ、合計4本(2個×2本)を引き出している。
 この合計4本の超伝導線31のうち、超伝導コイル11A,11Bにおける各コイルの一方の端となる1本ずつ(計2本)は、2本の渡り線14にそれぞれ接続される。
 そして、この2本の渡り線14を介して、それぞれ2個のパワーリード15までそのまま引き出されている。
 超伝導コイル11A,11Bにおける各コイルの他方の端となる計2本の超伝導線31は、互いに電気的に接続されて1本に共通化される。この共通化された1本が、残り1本の渡り線14に接続され、この渡り線14を介して、残り1個のパワーリード15まで引き出されている。
《Number of crossovers and power leads》
In the conduction-cooled superconducting magnet 1 of the present (first) embodiment, although not specified in FIGS. 1 to 3, the number of crossovers 14 and the number of power leads 15 are, for example, three each. Is.
Two superconducting wires 31 (FIGS. 2 and 1) are drawn from both ends of the superconducting coils 11A and 11B shown in FIG. 1, for a total of four (2 × 2).
Of the total of four superconducting wires 31, one (two in total) that is one end of each coil in the superconducting coils 11A and 11B is connected to each of the two crossover wires 14.
Then, the two power leads 15 are pulled out as they are through the two crossovers 14.
A total of two superconducting wires 31 which are the other ends of the respective coils in the superconducting coils 11A and 11B are electrically connected to each other and are shared by one. This common one is connected to the remaining one crossover wire 14, and is led out to the remaining one power lead 15 via the crossover wire 14.
 このように、超伝導コイル11A,11Bからそれぞれ2本ずつ引き出した、合計4本(2個×2本)の超伝導線31が、3本の渡り線14を介して、3本のパワーリード15に接続されて、取り出されている。
 このような接続構成によって、通電する2本のパワーリード15を3本のパワーリード15の中から適切に選択することで、2個の超伝導コイル11A,11Bを直列に通電することもできるし、また、それぞれの超伝導コイル11A、および超伝導コイル11Bに独立に通電することもできる。
In this way, a total of four (2 x 2) superconducting wires 31 drawn from the superconducting coils 11A and 11B, respectively, have three power leads via the three crossover wires 14. It is connected to 15 and taken out.
With such a connection configuration, the two superconducting coils 11A and 11B can be energized in series by appropriately selecting the two power leads 15 to be energized from the three power leads 15. Further, each superconducting coil 11A and superconducting coil 11B can be independently energized.
《第1冷却板12Aの円筒構造体》
 図1に示す第1冷却板12Aの円筒構造体は、超伝導コイル11A,11Bの外周に熱的に接触するように設置され、超伝導コイル11A,11Bの巻枠(ボビン)18にボルト締結されている。
 この構造によって、超伝導コイル11A,11Bは、円筒状の1周にわたって、第1冷却板12Aに接し、第1冷却板12Aを介して、外周面から第2冷却板12B、冷却ステージ16、冷凍機または冷凍機に接続された熱交換器17の経路により冷却される。
 また、超伝導コイル11A,11Bは、種々の要因によって、クエンチ(超伝導体から常伝導体への相転移)して発熱するが、この発熱も第1冷却板12A、第2冷却板12B、冷却ステージ16を介して、冷凍機または冷凍機に接続された熱交換器17により効率的に除熱される。
<< Cylindrical structure of the first cooling plate 12A >>
The cylindrical structure of the first cooling plate 12A shown in FIG. 1 is installed so as to be in thermal contact with the outer periphery of the superconducting coils 11A and 11B, and is bolted to the winding frame (bobbin) 18 of the superconducting coils 11A and 11B. Has been done.
With this structure, the superconducting coils 11A and 11B are in contact with the first cooling plate 12A over one round of the cylindrical shape, and the second cooling plate 12B, the cooling stage 16 and the refrigerator are refrigerated from the outer peripheral surface via the first cooling plate 12A. It is cooled by the path of the heat exchanger 17 connected to the machine or the refrigerator.
Further, the superconducting coils 11A and 11B generate heat by quenching (phase transition from the superconductor to the normal conductor) due to various factors, and this heat generation is also generated by the first cooling plate 12A, the second cooling plate 12B, and the like. The heat is efficiently removed by the refrigerator or the heat exchanger 17 connected to the refrigerator via the cooling stage 16.
《パワーリード15および磁場の影響》
 超伝導コイル11A,11Bは、断熱真空容器であるクライオスタット(不図示)に収納されている。
 図1に示すパワーリード15には、超伝導コイル11A,11Bが設置されるクライオスタット内の低温真空と、クライオスタット外の常温大気との間を電気的に接続するためと、かつ常温側から低温側への熱侵入量を低減するために、一部に超伝導体(高温超伝導体)が用いられている。
 超伝導体を備えるパワーリード15は、高磁場中で臨界電流が低下するため、超伝導コイル11A,11Bの作る磁場の影響を受けないように、超伝導コイル11A,11Bから十分距離を置いて設置されている。
 そのため、渡り線14には、超伝導コイル11A,11Bとパワーリード15を離して設置することができるだけの十分な長さが確保されている。
 また、図1には明確に示していないが、パワーリード15も第2冷却板12B、もしくは冷却ステージ16を介して、冷凍機または冷凍機に接続された熱交換器17により冷却される構成となっている。
<< Effects of power lead 15 and magnetic field >>
The superconducting coils 11A and 11B are housed in a cryostat (not shown) which is an adiabatic vacuum container.
The power lead 15 shown in FIG. 1 is for electrically connecting the low temperature vacuum in the cryostat in which the superconducting coils 11A and 11B are installed and the normal temperature atmosphere outside the cryostat, and from the normal temperature side to the low temperature side. Superconductors (high-temperature superconductors) are partially used in order to reduce the amount of heat invading the surface.
Since the critical current of the power lead 15 provided with the superconductor decreases in a high magnetic field, keep a sufficient distance from the superconducting coils 11A and 11B so as not to be affected by the magnetic field created by the superconducting coils 11A and 11B. is set up.
Therefore, the crossover wire 14 has a sufficient length so that the superconducting coils 11A and 11B and the power lead 15 can be installed apart from each other.
Further, although not clearly shown in FIG. 1, the power lead 15 is also cooled by the refrigerator or the heat exchanger 17 connected to the refrigerator via the second cooling plate 12B or the cooling stage 16. It has become.
 図1の冷凍機または冷凍機に接続された熱交換器17の上部には、通常、冷凍機のモータが用いられており、磁場の影響によってモータに異常な動作が発生する可能性がある。
 そのため、冷凍機または冷凍機に接続された熱交換器17は、パワーリード15と同様に、超伝導コイル11A,11Bの作る磁場の影響を受けないよう、超伝導コイル11A,11Bから十分、距離を置いて設置されている。
 この冷凍機または冷凍機に接続された熱交換器17と、超伝導コイル11A,11Bとの間の長い距離を伝熱するため、十分に熱伝導率の高い材質で製作されている第2冷却板12Bが用いられる。
 第2冷却板12Bは、冷却ステージ16と超伝導コイル11A,11Bの温度差が適切に抑えられるような、必要な断面積が確保されている。
A motor of the refrigerator is usually used in the upper part of the refrigerator or the heat exchanger 17 connected to the refrigerator in FIG. 1, and there is a possibility that the motor may operate abnormally due to the influence of the magnetic field.
Therefore, the refrigerator or the heat exchanger 17 connected to the refrigerator is sufficiently far from the superconducting coils 11A and 11B so as not to be affected by the magnetic field created by the superconducting coils 11A and 11B, like the power lead 15. It is installed with a place.
Second cooling made of a material with sufficiently high thermal conductivity in order to transfer heat over a long distance between the refrigerator or the heat exchanger 17 connected to the refrigerator and the superconducting coils 11A and 11B. Plate 12B is used.
The second cooling plate 12B has a necessary cross-sectional area so that the temperature difference between the cooling stage 16 and the superconducting coils 11A and 11B can be appropriately suppressed.
<第1実施形態の総括>
 本(第1)実施形態の伝導冷却型超伝導磁石1によれば、2個の超伝導コイル11A,11Bと、コイル口出し13と、渡り線14とのすべてが、第1冷却板12A、第2冷却板12Bを介して冷凍機または冷凍機に接続された熱交換器17に接続されている冷却ステージ16に熱的に接続されており、これら部品(11A,11B,13,14)を同時に冷却することが可能である。
 また、コイル口出し13では、超伝導コイル11A,11Bから引き出した導線(超伝導線31)と、渡り線14と、を電気的に接続するため、通電時に接続抵抗によって発熱(発熱部)が生じる。
 本(第1)実施形態では、冷却ステージ16に連結された第2冷却板12Bが、絶縁を介してコイル口出し13に熱的に接続されているため、前記の発熱部を伝導冷却により冷却することが可能であり、超伝導磁石(伝導冷却型超伝導磁石1)を安定して運転(動作)することができる。
<Summary of the first embodiment>
According to the conduction cooling type superconducting magnet 1 of the present (first) embodiment, the two superconducting coils 11A and 11B, the coil outlet 13, and the crossover 14 are all the first cooling plate 12A, the first. 2 It is thermally connected to the cooling stage 16 connected to the refrigerator or the heat exchanger 17 connected to the refrigerator via the cooling plate 12B, and these parts (11A, 11B, 13, 14) are simultaneously connected. It is possible to cool.
Further, in the coil outlet 13, since the conducting wire (superconducting wire 31) drawn from the superconducting coils 11A and 11B and the crossing wire 14 are electrically connected, heat is generated (heat generation part) due to the connection resistance when energized. ..
In the present (first) embodiment, since the second cooling plate 12B connected to the cooling stage 16 is thermally connected to the coil outlet 13 via insulation, the heat generating portion is cooled by conduction cooling. This is possible, and the superconducting magnet (conducting cooling type superconducting magnet 1) can be stably operated (operated).
 渡り線14は、コイル口出し13から冷凍機または冷凍機に接続された熱交換器17に接続された冷却ステージ16の近傍までを、電気的に接続する導線である。本(第1)実施形態の伝導冷却型超伝導磁石1では、渡り線14と、冷却ステージ16とを第2冷却板12Bによって絶縁を介して熱的に接続することで、渡り線14を伝導冷却により冷却可能な構造となっている。
 なお、渡り線14は、超伝導体でも、常伝導体でも、あるいはその両方を用いてもよい。
 渡り線14が超伝導体である場合、冷却により超伝導線41の熱的安定性を保つことができる。
 渡り線14が常伝導体である場合、通電時に生じる抵抗発熱を除熱することで、超伝導線31、あるいは超伝導コイル11A,11Bに熱を伝えないようにすることができる。
The crossover wire 14 is a lead wire that electrically connects the coil outlet 13 to the vicinity of the cooling stage 16 connected to the refrigerator or the heat exchanger 17 connected to the refrigerator. In the conduction-cooled superconducting magnet 1 of the present (first) embodiment, the crossover wire 14 and the cooling stage 16 are thermally connected by the second cooling plate 12B via insulation to conduct the crossover wire 14. It has a structure that can be cooled by cooling.
The crossover line 14 may be a superconductor, a normal conductor, or both.
When the crossover wire 14 is a superconductor, the thermal stability of the superconductor wire 41 can be maintained by cooling.
When the crossover wire 14 is a normal conductor, heat cannot be transferred to the superconducting wire 31 or the superconducting coils 11A and 11B by removing the heat generated by the resistance generated when the power is applied.
 また、一端を渡り線14に接続されたパワーリード15の他端は、一般に、超伝導コイルよりも高い温度の構造物に接続されるため、渡り線14、および超伝導コイル11A,11Bに対して、伝熱による熱侵入が存在する。しかし、前記構造によって渡り線14が冷却されることで、超伝導コイル11A,11Bへの熱侵入を抑制できる。 Further, since the other end of the power lead 15 whose one end is connected to the crossover wire 14 is generally connected to a structure having a temperature higher than that of the superconducting coil, the crossover wire 14 and the superconducting coils 11A and 11B Therefore, there is heat intrusion due to heat transfer. However, since the crossover wire 14 is cooled by the structure, heat intrusion into the superconducting coils 11A and 11B can be suppressed.
<第1実施形態の効果>
 本(第1)実施形態では、第1冷却板12Aが超伝導コイル11A,11Bに接するとともに、対をなす2個の超伝導コイル11A,11Bの中間部に均等に配置されている。そのため、冷凍機または冷凍機に接続された熱交換器17に熱的に接続される冷却ステージ16から、超伝導コイル11Aと超伝導コイル11Bまでの冷却パスの長さがほとんど等しくなっており、2個の超伝導コイル11A,11Bの温度差を非常に小さく抑えることができる。
 その結果、対をなす2個の超伝導コイル11A,11Bを備えた超伝導磁石(伝導冷却型超伝導磁石1)を安定して動作させることができる。すなわち、安定した運転ができる伝導冷却型超伝導磁石1が提供できる。
<Effect of the first embodiment>
In the present (first) embodiment, the first cooling plate 12A is in contact with the superconducting coils 11A and 11B, and is evenly arranged in the intermediate portion between the two paired superconducting coils 11A and 11B. Therefore, the lengths of the cooling paths from the cooling stage 16 thermally connected to the refrigerator or the heat exchanger 17 connected to the refrigerator to the superconducting coil 11A and the superconducting coil 11B are almost equal. The temperature difference between the two superconducting coils 11A and 11B can be suppressed to a very small size.
As a result, the superconducting magnet (conducting cooling type superconducting magnet 1) provided with the two paired superconducting coils 11A and 11B can be stably operated. That is, it is possible to provide a conduction-cooled superconducting magnet 1 capable of stable operation.
≪その他の実施形態≫
 なお、本発明は、以上に説明した実施形態に限定されるものでなく、さらに様々な変形例が含まれる。例えば、前記の実施形態は、本発明を分かりやすく説明するために、詳細に説明したものであり、必ずしも説明したすべての構成を備えるものに限定されるものではない。また、ある実施形態の構成の一部を他の実施形態の構成の一部で置き換えることが可能であり、さらに、ある実施形態の構成に他の実施形態の構成の一部または全部を追加・削除・置換をすることも可能である。
 以下に、その他の実施形態や変形例について、さらに説明する。
<< Other Embodiments >>
The present invention is not limited to the embodiments described above, and further includes various modifications. For example, the above-described embodiment has been described in detail in order to explain the present invention in an easy-to-understand manner, and is not necessarily limited to those having all the described configurations. Further, it is possible to replace a part of the configuration of one embodiment with a part of the configuration of another embodiment, and further, add a part or all of the configuration of another embodiment to the configuration of one embodiment. It is also possible to delete / replace.
Hereinafter, other embodiments and modifications will be further described.
《超伝導コイル》
 第1実施形態においては、超伝導コイル11A,11Bは、ソレノイドコイルの形状であると説明したが、ソレノイドコイルに限定されない。例えば、楕円、矩形、レーストラック形状であってもよい。
《Superconducting coil》
In the first embodiment, the superconducting coils 11A and 11B have been described as having the shape of a solenoid coil, but the superconducting coils 11A and 11B are not limited to the solenoid coil. For example, it may be an ellipse, a rectangle, or a race track shape.
《超伝導線の材質と形状》
 第1実施形態においては、超伝導コイル11A,11Bに用いる超伝導線の材質については、説明しなかったが、低温超伝導体や高温超伝導体のいずれでもよい。
 例えば、低温超伝導体としては、NbTi、Nb3Sn等がある。また高温超伝導体としては、MgB2、あるいは、Bi2Sr2CaCu28+δ(Bi2212)、Bi2Sr2Ca2Cu310+δ(Bi2223)等のビスマス系超伝導体、REBa2Cu37-δ(RE123、RE:希土類元素)等の希土類系超伝導体がある。
 さらに、超伝導線の形状は丸線、角線、平角線、テープ線のいずれでもよい。
<< Material and shape of superconducting wire >>
In the first embodiment, the material of the superconducting wire used for the superconducting coils 11A and 11B has not been described, but either a low-temperature superconductor or a high-temperature superconductor may be used.
For example, examples of low-temperature superconductors include NbTi and Nb 3 Sn. Examples of high-temperature superconductors include MgB 2 , or bismuth-based superconductors such as Bi 2 Sr 2 CaCu 2 O 8+ δ (Bi2212) and Bi 2 Sr 2 Ca 2 Cu 3 O 10+ δ (Bi2223). There are rare earth-based superconductors such as REBa 2 Cu 3 O 7- δ (RE123, RE: rare earth element).
Further, the shape of the superconducting wire may be any of a round wire, a square wire, a flat wire, and a tape wire.
《導電用の可撓リード》
 第1実施形態においては、図1に示すように、パワーリード15と渡り線14との間を直接に接続していた。
 しかし、図1におけるパワーリード15と渡り線14との接続の間を、機械的な変位を吸収(緩和)するための導電用の可撓リード(不図示)を用いてもよい。
 冷却時に、超伝導コイル11A,11B、第1冷却板12A、第2冷却板12B、コイル口出し13、渡り線14は、一体となって冷却収縮により変位する。そしてパワーリード15は、前記の各部品(11A,11B、12A、12B、13、14)よりも高い温度の構造体に接続されている。そのため、パワーリード15と前記の各部品(11A,11B、12A、12B、13、14)との間に、機械的な変異(変位差)が生じる。
《Flexible lead for conductivity》
In the first embodiment, as shown in FIG. 1, the power lead 15 and the crossover line 14 are directly connected to each other.
However, a conductive flexible lead (not shown) for absorbing (relaxing) mechanical displacement may be used between the connection between the power lead 15 and the crossover line 14 in FIG. 1.
At the time of cooling, the superconducting coils 11A and 11B, the first cooling plate 12A, the second cooling plate 12B, the coil outlet 13, and the crossover line 14 are integrally displaced by cooling shrinkage. The power lead 15 is connected to a structure having a temperature higher than that of each of the above-mentioned parts (11A, 11B, 12A, 12B, 13, 14). Therefore, a mechanical variation (displacement difference) occurs between the power lead 15 and each of the above-mentioned parts (11A, 11B, 12A, 12B, 13, 14).
 また、伝導冷却型超伝導磁石1の輸送時には、外部から加えられる加速度により、超伝導コイル11A,11B、第1冷却板12A、第2冷却板12B、コイル口出し13、渡り線14と、パワーリード15とに異なる変位が起こり、変位差が生じる可能性がある。
 可撓リードを、パワーリード15と渡り線14との間に備え、それらを直接に接続する構造とすることによって、前記の変位差を導電用の可撓リードが吸収し、渡り線14またはパワーリード15に機械的な力が伝わらない効果がある。
 導電用の可撓リードには、電気伝導率の高く、かつ可撓性の良いものが使用される。例えば銅の編線が用いられる。
Further, when the conduction cooling type superconducting magnet 1 is transported, the superconducting coils 11A and 11B, the first cooling plate 12A, the second cooling plate 12B, the coil outlet 13, the crossover wire 14, and the power lead are generated by the acceleration applied from the outside. There is a possibility that a displacement different from that of 15 will occur and a displacement difference will occur.
By providing a flexible lead between the power lead 15 and the crossover wire 14 and directly connecting them, the above-mentioned displacement difference is absorbed by the conductive flexible lead, and the crossover wire 14 or the power There is an effect that mechanical force is not transmitted to the lead 15.
As the flexible lead for conductivity, one having high electric conductivity and good flexibility is used. For example, copper braid is used.
《渡り線の導線》
 第1実施形態において、図3に示した渡り線14には、超伝導線(導線)41が備えられているとして、電気的な導線を超伝導線41として説明した。しかし、前記したように、超伝導線の代わりに常伝導線の導線を用いることも可能である。ただし、この常伝導線である導線の抵抗値は十分に低い値となるように設定する。
《Crossover wire》
In the first embodiment, it is assumed that the crossover wire 14 shown in FIG. 3 is provided with a superconducting wire (lead wire) 41, and the electrical conducting wire is described as the superconducting wire 41. However, as described above, it is also possible to use a normal conducting wire instead of the superconducting wire. However, the resistance value of the conducting wire, which is a normal conducting wire, is set to be a sufficiently low value.
《渡り線の屈曲部》
 第1実施形態の説明で参照した図1、図3の領域100において、渡り線14は、屈曲して設けられている例を示した。しかし、磁石の配置に応じては、図1、図3で示した渡り線14の屈曲部は無くしてもよい。また、2箇所以上設けてもよい。
《Bending part of crossover》
In the region 100 of FIGS. 1 and 3 referred to in the description of the first embodiment, the crossover line 14 shows an example in which the crossover line 14 is bent. However, depending on the arrangement of the magnets, the bent portion of the crossover line 14 shown in FIGS. 1 and 3 may be eliminated. Further, two or more places may be provided.
《屈曲部の導電用の可撓リード》
 第1実施形態の説明で参照した図1、図3の領域100に示したような屈曲部において、超伝導線41、および安定化銅42を分割し、その間を導電用の可撓リードで接続する構成もある。
《Flexible lead for conductivity of bent part》
In the bent portion as shown in the region 100 of FIGS. 1 and 3 referred to in the description of the first embodiment, the superconducting wire 41 and the stabilized copper 42 are divided and connected between them by a flexible lead for conduction. There is also a configuration to do.
《渡り線とパワーリードの数》
 第1実施形態の伝導冷却型超伝導磁石1における説明では、渡り線14、およびパワーリード15の数をそれぞれ3本ずつであるとして説明した。そして、各コイル(超伝導コイル11A,11B)の超伝導線31は、互いに電気的に接続されて1本に共通化された後に、渡り線14を介してパワーリード15まで引き出されている。
 しかし、渡り線とパワーリードの数は、前記の数に限定されない。
 例えば、超伝導磁石の用途に応じて、超伝導コイル11A,11Bの引き出し線(超伝導線31)を2本とも共通化して、渡り線14およびパワーリード15の数を各々2本ずつとしてもよい。
 あるいは引き出し線をすべて共通化せずに、渡り線14及びパワーリード15の数を各々4本としてもよい。
《Number of crossovers and power leads》
In the description of the conduction-cooled superconducting magnet 1 of the first embodiment, the number of the crossovers 14 and the number of the power leads 15 are each three. Then, the superconducting wires 31 of each coil ( superconducting coils 11A and 11B) are electrically connected to each other and shared into one, and then are drawn out to the power lead 15 via the crossover wire 14.
However, the number of crossovers and power leads is not limited to the above number.
For example, depending on the application of the superconducting magnet, the lead wires (superconducting wires 31) of the superconducting coils 11A and 11B may be shared by two, and the number of crossover wires 14 and the number of power leads 15 may be two each. Good.
Alternatively, the number of crossover wires 14 and the number of power leads 15 may be 4 each without sharing all the leader wires.
《第1冷却板12Aの円筒構造体の構造》
 第1実施形態においては、図1を参照して、第1冷却板12Aは、2個の超伝導コイル11A,11Bを外周側から取り囲む円筒構造体からなると説明した。しかし基本的な円筒構造体に限定されない。
 例えば、第1冷却板12Aの円筒構造体は、分割構造でもよい。この場合には、各分割部の間は伝熱用の可撓リードで熱的に接続する。
<< Structure of the cylindrical structure of the first cooling plate 12A >>
In the first embodiment, it has been described that the first cooling plate 12A is composed of a cylindrical structure that surrounds the two superconducting coils 11A and 11B from the outer peripheral side with reference to FIG. However, it is not limited to the basic cylindrical structure.
For example, the cylindrical structure of the first cooling plate 12A may be a divided structure. In this case, the split portions are thermally connected by a flexible lead for heat transfer.
《第2冷却板12Bの構造》
 第1実施形態においては、図1の伝導冷却型超伝導磁石1では、1枚の第2冷却板12Bと1台の冷凍機または冷凍機に接続された熱交換器17によって、2個の超伝導コイル11A,11Bの組を1組として冷却しているが、必ずしもこの構造に限定されるものではない。
 例えば、第2冷却板12Bの構造の一部を変形することで、1枚の第2冷却板12Bおよび1台の冷凍機または冷凍機に接続された熱交換器17によって、複数組の超伝導コイル(11A,11B)を同時に冷却してもよい。
 あるいは、1枚の第2冷却板12Bと複数の冷凍機または冷凍機に接続された熱交換器17によって、1組または複数組の超伝導コイル(11A,11B)を冷却してもよい。
<< Structure of the second cooling plate 12B >>
In the first embodiment, in the conduction-cooled superconducting magnet 1 of FIG. 1, two superconducting plates 12B and one refrigerator or a heat exchanger 17 connected to the refrigerator 17 are used. The set of the conducting coils 11A and 11B is cooled as one set, but the structure is not necessarily limited to this.
For example, by modifying a part of the structure of the second cooling plate 12B, a plurality of sets of superconductivity are provided by one second cooling plate 12B and one refrigerator or a heat exchanger 17 connected to the refrigerator. The coils (11A, 11B) may be cooled at the same time.
Alternatively, one or more sets of superconducting coils (11A, 11B) may be cooled by one second cooling plate 12B and a plurality of refrigerators or heat exchangers 17 connected to the refrigerators.
《複数組の対をなす2個の超伝導コイル》
 図1に示す第1実施形態の伝導冷却型超伝導磁石においては、対をなす2個の超伝導コイルは、1組の場合を例示した。しかし、1組には限定させず、複数組で構成することもできる。以下に例示する。
 同軸上に配置されて対をなす2個の超伝導コイル(11A,11B)の複数の組がある。
 第1冷却板(12A)は、対をなす2個の超伝導コイル(11A)と超伝導コイル(11B)との中間部に均等に渡って設けられている。また、複数の組の対をなす2個の超伝導コイル(11A)と超伝導コイル(11B)との中間部に均等に渡って設けられた複数の第1冷却板(12A)は、共通の第2冷却板(12B)を介して、互いに接続されて共通化(共有化)されている。
 また、2個の超伝導コイル(11A,11B)の複数の組からそれぞれ超伝導線(31)が引き出される複数のコイル口出し13が設けられている。
《Two pairs of superconducting coils》
In the conduction-cooled superconducting magnet of the first embodiment shown in FIG. 1, the case where two pairs of superconducting coils are paired is illustrated. However, it is not limited to one set, and may be composed of a plurality of sets. It is illustrated below.
There are multiple sets of two superconducting coils (11A, 11B) arranged coaxially and in pairs.
The first cooling plate (12A) is evenly provided in the intermediate portion between the two paired superconducting coils (11A) and the superconducting coil (11B). Further, a plurality of first cooling plates (12A) evenly provided in the middle portion between the two superconducting coils (11A) forming a plurality of pairs and the superconducting coil (11B) are common. They are connected to each other and shared (shared) via a second cooling plate (12B).
Further, a plurality of coil outlets 13 are provided so that the superconducting wire (31) is drawn from each of the plurality of sets of the two superconducting coils (11A, 11B).
 また、複数の組の超伝導コイル(11A,11B)に電流を供給する複数または共通のパワーリード(15)が設けられている。
 また、複数のコイル口出し(13)の超伝導線(31)から複数または共通のパワーリード(15)までそれぞれ配線される複数の渡り線(14)が設けられている。
 また、複数の第1冷却板(12A)と複数の渡り線(14)を冷却する共通の第2冷却板(12B)が設けられている。
 また、第2冷却板(12B)を冷却する冷却ステージ(16)が設けられている。
 複数の渡り線(14)は、共通の第2冷却板(12B)によって絶縁を介して冷却されつつ配線されている。
 以上の構成によって、同一の冷却源である冷凍機または冷凍機に接続された熱交換器(17)から、冷却ステージ(16)、共通の第2冷却板(12B)、第1冷却板(12A)を介して、対をなす2個の超伝導コイル(11A,11B)の複数の組を、併せて冷却することができる。
Further, a plurality of or common power leads (15) for supplying a current to a plurality of sets of superconducting coils (11A, 11B) are provided.
Further, a plurality of crossover wires (14) are provided, each of which is wired from the superconducting wire (31) of the plurality of coil outlets (13) to the plurality of or common power leads (15).
Further, a common second cooling plate (12B) for cooling the plurality of first cooling plates (12A) and the plurality of crossovers (14) is provided.
Further, a cooling stage (16) for cooling the second cooling plate (12B) is provided.
The plurality of crossovers (14) are wired while being cooled by a common second cooling plate (12B) via insulation.
With the above configuration, from the refrigerator (17) which is the same cooling source or connected to the refrigerator, the cooling stage (16), the common second cooling plate (12B), and the first cooling plate (12A). ), A plurality of sets of two paired superconducting coils (11A, 11B) can be cooled together.
《冷凍機と伝導冷却型超伝導磁石》
 図1で示した第1実施形態の伝導冷却型超伝導磁石1では、冷凍機が伝導冷却型超伝導磁石1に備えられていない場合もあるものとして説明した。
 しかし、伝導冷却型超伝導磁石に冷凍機を備えてもよい。つまり、熱交換器(17)を含む冷凍機を伝導冷却型超伝導磁石に備え、冷凍機(熱交換器)と冷却ステージ(16:図1)とを熱的に直に接続する構成もある。
<< Refrigerator and conduction-cooled superconducting magnet >>
In the conduction-cooled superconducting magnet 1 of the first embodiment shown in FIG. 1, it has been described that the refrigerator may not be provided in the conduction-cooled superconducting magnet 1.
However, the conduction cooling type superconducting magnet may be provided with a refrigerator. That is, there is also a configuration in which a refrigerator including a heat exchanger (17) is provided in a conduction cooling type superconducting magnet, and the refrigerator (heat exchanger) and the cooling stage (16: FIG. 1) are thermally directly connected. ..
 1  伝導冷却型超伝導磁石
 11A,11B  超伝導コイル
 12A  第1冷却板(冷却板)
 12B  第2冷却板(冷却板)
 13  コイル口出し
 14  渡り線
 15  パワーリード
 16  冷却ステージ
 17  冷凍機または熱交換器
 18  巻枠(ボビン)
 31  超伝導線
 32  安定化銅
 33  支持構造体
 41  導線(超伝導線、常伝導線)
 42  安定化銅
 43  ボルト
 44  カラー
 45  ワッシャ
 46  ボルト穴
1 Conductive cooling type superconducting magnet 11A, 11B Superconducting coil 12A 1st cooling plate (cooling plate)
12B 2nd cooling plate (cooling plate)
13 Coil outlet 14 Crossover wire 15 Power lead 16 Cooling stage 17 Refrigerator or heat exchanger 18 Roll frame (bobbin)
31 Superconducting wire 32 Stabilized copper 33 Support structure 41 Superconducting wire (superconducting wire, normal conducting wire)
42 Stabilized Copper 43 Bolts 44 Color 45 Washers 46 Bolt Holes

Claims (12)

  1.  同軸上に配置されて対をなす2個の超伝導コイルと、
     前記超伝導コイルを冷却する第1冷却板と、
     2個の前記超伝導コイルからそれぞれ超伝導線が引き出されるコイル口出しと、
     前記超伝導コイルに電流を供給するパワーリードと、
     前記コイル口出しの超伝導線から前記パワーリードまで配線される渡り線と、
     前記第1冷却板と前記渡り線を冷却する第2冷却板と、
     前記第2冷却板を冷却する冷却ステージと、
    を備え、
     前記第1冷却板は、対をなす2個の前記超伝導コイルの中間部に均等に配置される、
    ことを特徴とする伝導冷却型超伝導磁石。
    Two superconducting coils arranged coaxially and paired with each other
    A first cooling plate for cooling the superconducting coil and
    A coil outlet from which superconducting wires are drawn from each of the two superconducting coils, and
    A power lead that supplies current to the superconducting coil,
    A crossover wire wired from the superconducting wire at the coil outlet to the power lead,
    The first cooling plate, the second cooling plate for cooling the crossover, and
    A cooling stage for cooling the second cooling plate and
    With
    The first cooling plate is evenly arranged in the middle of the two paired superconducting coils.
    A conduction-cooled superconducting magnet characterized by this.
  2.  請求項1において、
     前記コイル口出しは、
     前記超伝導コイルにから引き出された2本の前記超伝導線と、
     前記超伝導線が溝に埋め込まれてはんだ付けされた安定化銅と、
     前記安定化銅を支持する支持構造体と、
    を備える、
    ことを特徴とする伝導冷却型超伝導磁石。
    In claim 1,
    The coil mouth is
    The two superconducting wires drawn from the superconducting coil and
    Stabilized copper with the superconducting wire embedded in the groove and soldered,
    A support structure that supports the stabilized copper,
    To prepare
    A conduction-cooled superconducting magnet characterized by this.
  3.  請求項1において、
     前記渡り線は、
     超伝導体を有する導線と、
     当該導線が溝に埋め込まれてはんだ付けされた安定化銅と、
    を備える、
    ことを特徴とする伝導冷却型超伝導磁石。
    In claim 1,
    The crossover is
    A wire with a superconductor and
    Stabilized copper with the lead wire embedded in the groove and soldered,
    To prepare
    A conduction-cooled superconducting magnet characterized by this.
  4.  請求項1において、
     前記渡り線は、
     常伝導体を有する導線と、
     当該導線が溝に埋め込まれてはんだ付けされた安定化銅と、
    を備える、
    ことを特徴とする伝導冷却型超伝導磁石。
    In claim 1,
    The crossover is
    A conductor with a normal conductor and
    Stabilized copper with the lead wire embedded in the groove and soldered,
    To prepare
    A conduction-cooled superconducting magnet characterized by this.
  5.  請求項3において、
     前記安定化銅と前記第2冷却板とが、熱伝導性を有する絶縁材を挟んでボルト締結される、
    ことを特徴とする伝導冷却型超伝導磁石。
    In claim 3,
    The stabilized copper and the second cooling plate are bolted together with an insulating material having thermal conductivity interposed therebetween.
    A conduction-cooled superconducting magnet characterized by this.
  6.  請求項1において、
     3本の前記渡り線と、
     3本の前記パワーリードと、
    を備え、
     2個の前記超伝導コイルの両端からそれぞれ引き出された計4本の前記超伝導線において、
     2個の前記超伝導コイルのそれぞれの一端から引き出された計2本の前記超伝導線は、2本の前記渡り線のそれぞれの一端に接続され、
     2個の前記超伝導コイルのそれぞれの他端から引き出された計2本の前記超伝導線は、互いに接続され共通化されて残り1本の前記渡り線の一端に接続され、
     3本の前記渡り線の他端は、3本の前記パワーリードにそれぞれ接続されている、
    ことを特徴とする伝導冷却型超伝導磁石。
    In claim 1,
    With the three crossovers
    With the three power leads
    With
    In a total of four superconducting wires drawn from both ends of the two superconducting coils,
    A total of two superconducting wires drawn from one end of each of the two superconducting coils are connected to each end of each of the two crossover wires.
    A total of two superconducting wires drawn from the other ends of the two superconducting coils are connected to each other and shared, and are connected to one end of the remaining one crossover wire.
    The other ends of the three crossovers are connected to the three power leads, respectively.
    A conduction-cooled superconducting magnet characterized by this.
  7.  請求項1において、
     前記パワーリードと前記渡り線との間に接続された電導用の可撓リードを備え、
     当該可撓リードによって、前記パワーリードと前記渡り線との間の機械的な力の伝達が緩和される、
    ことを特徴とする伝導冷却型超伝導磁石。
    In claim 1,
    A flexible lead for conduction connected between the power lead and the crossover is provided.
    The flexible lead mitigates the transfer of mechanical force between the power lead and the crossover.
    A conduction-cooled superconducting magnet characterized by this.
  8.  請求項1において、
     前記第1冷却板は、前記超伝導コイルに取り付けられる円筒構造体を形成し、
     前記第2冷却板は、L字型の板状の構造体を形成し、
     前記円筒構造体と前記L字型の板状の構造体とが、伝熱用の可撓リードで接続されている、
    ことを特徴とする伝導冷却型超伝導磁石。
    In claim 1,
    The first cooling plate forms a cylindrical structure attached to the superconducting coil.
    The second cooling plate forms an L-shaped plate-shaped structure, and forms an L-shaped plate-like structure.
    The cylindrical structure and the L-shaped plate-shaped structure are connected by a flexible lead for heat transfer.
    A conduction-cooled superconducting magnet characterized by this.
  9.  請求項1において、
     冷凍機を備え、
     前記冷凍機と前記冷却ステージとを熱的に直に接続する、
    ことを特徴とする伝導冷却型超伝導磁石。
    In claim 1,
    Equipped with a refrigerator
    The refrigerator and the cooling stage are thermally directly connected.
    A conduction-cooled superconducting magnet characterized by this.
  10.  請求項1において、
     熱交換器を備え、
     当該熱交換器を介して冷凍機と前記冷却ステージとを熱的に接続する、
    ことを特徴とする伝導冷却型超伝導磁石。
    In claim 1,
    Equipped with a heat exchanger
    The refrigerator and the cooling stage are thermally connected via the heat exchanger.
    A conduction-cooled superconducting magnet characterized by this.
  11.  請求項1において、
     円筒状の巻枠を備え、
     前記超伝導コイルは、前記巻枠に巻回される、
    ことを特徴とする伝導冷却型超伝導磁石。
    In claim 1,
    Equipped with a cylindrical winding frame,
    The superconducting coil is wound around the winding frame.
    A conduction-cooled superconducting magnet characterized by this.
  12.  同軸上に配置されて対をなす2個の超伝導コイルの複数の組と、
     複数の組の前記超伝導コイルを冷却する第1冷却板と、
     2個の前記超伝導コイルの複数の組からそれぞれ超伝導線が引き出される複数のコイル口出しと、
     複数の組の前記超伝導コイルに電流を供給する複数のパワーリードと、
     複数の前記コイル口出しの超伝導線から複数の前記パワーリードまでそれぞれ配線される複数の渡り線と、
     前記第1冷却板と複数の前記渡り線を冷却する共通の第2冷却板と、
     前記第2冷却板を冷却する冷却ステージと、
    を備え、
     前記第1冷却板は、対をなす2個の前記超伝導コイルの中間部に均等に配置され、かつ複数の組で共通化され、
     複数の前記渡り線は、共通の前記第2冷却板によって絶縁を介して冷却されつつ配線されている、
    ことを特徴とする伝導冷却型超伝導磁石。
    Multiple sets of two superconducting coils arranged coaxially and in pairs,
    A first cooling plate for cooling a plurality of sets of the superconducting coils,
    A plurality of coil openings in which superconducting wires are drawn from a plurality of sets of the two superconducting coils, and
    A plurality of power leads that supply current to a plurality of sets of the superconducting coils,
    A plurality of crossovers wired from the plurality of superconducting wires of the coil outlet to the plurality of power leads, respectively.
    A common second cooling plate that cools the first cooling plate and the plurality of crossovers, and
    A cooling stage for cooling the second cooling plate and
    With
    The first cooling plate is evenly arranged in the middle portion of the two paired superconducting coils, and is shared by a plurality of sets.
    The plurality of crossovers are wired while being cooled through insulation by the common second cooling plate.
    A conduction-cooled superconducting magnet characterized by this.
PCT/JP2020/026506 2019-07-22 2020-07-07 Conduction-cooling-type superconducting magnet WO2021014959A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-134239 2019-07-22
JP2019134239A JP2021019106A (en) 2019-07-22 2019-07-22 Conduction cooling type super conductive magnet

Publications (1)

Publication Number Publication Date
WO2021014959A1 true WO2021014959A1 (en) 2021-01-28

Family

ID=74193841

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/026506 WO2021014959A1 (en) 2019-07-22 2020-07-07 Conduction-cooling-type superconducting magnet

Country Status (2)

Country Link
JP (1) JP2021019106A (en)
WO (1) WO2021014959A1 (en)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07142237A (en) * 1993-11-22 1995-06-02 Toshiba Corp Superconducting magnet device
JPH0878737A (en) * 1994-08-31 1996-03-22 Mitsubishi Electric Corp Superconductive magnet
JPH10189328A (en) * 1996-12-27 1998-07-21 Mitsubishi Electric Corp Superconducting magnet
JP2000294053A (en) * 1999-04-12 2000-10-20 Kobe Steel Ltd Stabilized compisite superconductive wire and its manufacture
JP2001244109A (en) * 2000-02-28 2001-09-07 Toshiba Corp High-temperature superconducting coil device
JP2009188065A (en) * 2008-02-04 2009-08-20 Sumitomo Electric Ind Ltd Superconductive device
JP2012256744A (en) * 2011-06-09 2012-12-27 Fujikura Ltd Superconductive coil
JP2014086584A (en) * 2012-10-24 2014-05-12 Sumitomo Heavy Ind Ltd Quench detector of superconducting coil
JP2014143840A (en) * 2013-01-24 2014-08-07 Swcc Showa Cable Systems Co Ltd Terminal structure of tape like superconducting wire material and manufacturing method of the same
JP2016058608A (en) * 2014-09-11 2016-04-21 公益財団法人鉄道総合技術研究所 High temperature superconducting current lead

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07142237A (en) * 1993-11-22 1995-06-02 Toshiba Corp Superconducting magnet device
JPH0878737A (en) * 1994-08-31 1996-03-22 Mitsubishi Electric Corp Superconductive magnet
JPH10189328A (en) * 1996-12-27 1998-07-21 Mitsubishi Electric Corp Superconducting magnet
JP2000294053A (en) * 1999-04-12 2000-10-20 Kobe Steel Ltd Stabilized compisite superconductive wire and its manufacture
JP2001244109A (en) * 2000-02-28 2001-09-07 Toshiba Corp High-temperature superconducting coil device
JP2009188065A (en) * 2008-02-04 2009-08-20 Sumitomo Electric Ind Ltd Superconductive device
JP2012256744A (en) * 2011-06-09 2012-12-27 Fujikura Ltd Superconductive coil
JP2014086584A (en) * 2012-10-24 2014-05-12 Sumitomo Heavy Ind Ltd Quench detector of superconducting coil
JP2014143840A (en) * 2013-01-24 2014-08-07 Swcc Showa Cable Systems Co Ltd Terminal structure of tape like superconducting wire material and manufacturing method of the same
JP2016058608A (en) * 2014-09-11 2016-04-21 公益財団法人鉄道総合技術研究所 High temperature superconducting current lead

Also Published As

Publication number Publication date
JP2021019106A (en) 2021-02-15

Similar Documents

Publication Publication Date Title
US20120094840A1 (en) Refrigerator cooling-type superconducting magnet
US4692560A (en) Forced flow cooling-type superconducting coil apparatus
US8162037B2 (en) Device for generating a pulsed magnetic field
EP0596249B1 (en) Compact superconducting magnet system free from liquid helium
KR20150065694A (en) Superconductive coil device and production method
JP2019012815A (en) Flexible super-conduction lead wire assembly
KR20090129979A (en) Superconducting coil and superconductor used for the same
WO2021014959A1 (en) Conduction-cooling-type superconducting magnet
US8275429B1 (en) High magnetic field gradient strength superconducting coil system
JP4599807B2 (en) Current leads for superconducting equipment
US20160064127A1 (en) Superconducting coil device with switchable conductor section and method for switching
JP2020136637A (en) High-temperature superconducting magnet device
JP7419208B2 (en) Superconducting current lead and superconducting magnet device
JP4703545B2 (en) Superconducting devices and current leads
JP2014192490A (en) Permanent current switch and superconducting device having the same
Watanabe et al. Cryogen-free 23 T superconducting magnet with a 7.5 T YBa2Cu3O7 insert coil
JP3450318B2 (en) Thermoelectric cooling type power lead
JP3020140B2 (en) Permanent current switch device for refrigerator cooled superconducting magnet
CN113169658A (en) Rotor with superconducting windings for operation in continuous current mode
JP5060275B2 (en) Superconducting coil device
KR101620697B1 (en) Reactor for superconduction and normal conduction
JP2607661Y2 (en) Cryogenic container
WO2023105974A1 (en) Superconducting coil apparatus
JP4906182B2 (en) Conduit type forced cooling superconducting conductor and superconducting magnet
JP2005129609A (en) Conduction cooling type super-conductive magnet

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20842961

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20842961

Country of ref document: EP

Kind code of ref document: A1