JP2016058608A - High temperature superconducting current lead - Google Patents

High temperature superconducting current lead Download PDF

Info

Publication number
JP2016058608A
JP2016058608A JP2014185069A JP2014185069A JP2016058608A JP 2016058608 A JP2016058608 A JP 2016058608A JP 2014185069 A JP2014185069 A JP 2014185069A JP 2014185069 A JP2014185069 A JP 2014185069A JP 2016058608 A JP2016058608 A JP 2016058608A
Authority
JP
Japan
Prior art keywords
temperature superconducting
current lead
current
base material
superconducting wire
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014185069A
Other languages
Japanese (ja)
Other versions
JP6268648B2 (en
Inventor
水野 克俊
Katsutoshi Mizuno
克俊 水野
正文 小方
Masabumi Ogata
正文 小方
山下 知久
Tomohisa Yamashita
知久 山下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Railway Technical Research Institute
Original Assignee
Railway Technical Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Railway Technical Research Institute filed Critical Railway Technical Research Institute
Priority to JP2014185069A priority Critical patent/JP6268648B2/en
Publication of JP2016058608A publication Critical patent/JP2016058608A/en
Application granted granted Critical
Publication of JP6268648B2 publication Critical patent/JP6268648B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a high temperature superconducting current lead excellent in cooling efficiency and durability at the time of overcurrent that can suppress heat generation of a superconducting wire rod by cooling it effectively, and can prevent impairment due to heat generation even if a rating current or more is conducted.SOLUTION: In a high temperature superconducting current lead 1 housed in a vacuum container, together with a high temperature superconducting coil operating in a cryogenic region, having one end side for connection with an external power supply via a current lead and the other end side for connection with the high temperature superconducting coil, and supplying an excitation current to the high temperature superconducting coil, a high temperature superconducting wire rod 3 is laminated on at least a base material 2 composed of high purity aluminum.SELECTED DRAWING: Figure 1

Description

本発明は、極低温で動作させる高温超電導コイルに励磁電流を供給するための高温超電導電流リードに関する。   The present invention relates to a high temperature superconducting current lead for supplying an exciting current to a high temperature superconducting coil operated at a cryogenic temperature.

例えば、真空容器中に高温超電導コイルが格納され、極低温域において用いられる高温超電導磁石は、一般的に、励磁電源から常時通電され、磁場発生装置として動作する。このため、高温超電導コイルに励磁電流を供給する電流リードには、低発熱であるとともに高い信頼性が求められる。   For example, a high-temperature superconducting magnet in which a high-temperature superconducting coil is housed in a vacuum vessel and used in a very low temperature region is generally energized constantly from an excitation power source and operates as a magnetic field generator. For this reason, the current lead that supplies the exciting current to the high-temperature superconducting coil is required to have low heat generation and high reliability.

上述のような、高温超電導コイルに電流を供給する電流リードとして、例えば、酸化物系超電導線材からなる高温側超電導電流リードと、金属系超電導線材からなる低温側超電導電流リードとを備えたものが提案されている(例えば、特許文献1を参照)。特許文献1に記載の電流リードは、高温側超電導電流リードの低温端が低温側超電導電流リードの一方端に接続され、低温側超電導電流リードの他方端が高温超電導コイルに接続された構成とされている。   As described above, the current leads for supplying current to the high-temperature superconducting coil include, for example, a high-temperature superconducting current lead made of an oxide-based superconducting wire and a low-temperature superconducting current lead made of a metal-based superconducting wire. It has been proposed (see, for example, Patent Document 1). The current lead described in Patent Document 1 is configured such that the low temperature end of the high temperature side superconducting current lead is connected to one end of the low temperature side superconducting current lead, and the other end of the low temperature side superconducting current lead is connected to the high temperature superconducting coil. ing.

また、高温超電導コイルに接続される低温側超電導電流リードについても、酸化物系超電導線材からなる電流リードが用いられるようになっている(例えば、特許文献2を参照)。このような酸化物系超電導線材は、金属系超電導線材に比べて臨界温度が高く、熱伝導率も小さいため、極低温域で動作させる高温超電導コイルに励磁電流を供給する電流リードの材料として、発熱を抑制する観点から好適である。   In addition, a current lead made of an oxide-based superconducting wire is used for a low-temperature superconducting current lead connected to a high-temperature superconducting coil (see, for example, Patent Document 2). Such an oxide-based superconducting wire has a higher critical temperature and lower thermal conductivity than a metal-based superconducting wire, and therefore, as a material for a current lead that supplies an exciting current to a high-temperature superconducting coil operated in a cryogenic temperature range, This is preferable from the viewpoint of suppressing heat generation.

特開平11−340027号公報JP-A-11-340027 特開2013−175293号公報JP 2013-175293 A

しかしながら、上述のような超電導線材は、例えば、温度が高くなるほど臨界電流が低減するため、定格温度以上の温度条件で電流が通電されたり、あるいは、冷却が不十分な状態で通電したりすると、急激に発熱して電流リード自体が損傷してしまうおそれがあった。   However, the superconducting wire as described above, for example, because the critical current decreases as the temperature becomes higher, or when the current is energized at a temperature condition higher than the rated temperature, or when energized in an insufficiently cooled state, There was a risk of sudden heat generation and damage to the current lead itself.

本発明は上記課題に鑑みてなされたものであり、超電導線材を効果的に冷却することで該超電導線材の発熱を抑制できるとともに、万が一、定格以上の電流が通電された場合であっても発熱による損傷を防止でき、冷却効率及び過電流時の耐久性に優れた高温超電導電流リードを提供することを目的とする。   The present invention has been made in view of the above problems, and can effectively suppress the heat generation of the superconducting wire by cooling the superconducting wire, and generate heat even when a current exceeding the rating is energized. An object of the present invention is to provide a high-temperature superconducting current lead that can prevent damage due to heat and has excellent cooling efficiency and durability during overcurrent.

上記課題を解決するため、本発明に係る高温超電導電流リードは、真空容器中に、極低温域で動作させる高温超電導コイルとともに収容され、一端側が電流リードを介して外部電源に接続されるとともに、他端側が前記高温超電導コイルに接続されることで、該高温超電導コイルに励磁電流を供給する高温超電導電流リードであって、少なくとも高純度アルミニウムからなる基材上に、高温超電導線材が積層されてなることを特徴とする。   In order to solve the above problems, a high-temperature superconducting current lead according to the present invention is housed in a vacuum vessel together with a high-temperature superconducting coil that operates in a cryogenic region, and one end side is connected to an external power source via a current lead, The other end side is connected to the high-temperature superconducting coil, thereby being a high-temperature superconducting current lead for supplying an exciting current to the high-temperature superconducting coil, and a high-temperature superconducting wire is laminated on a substrate made of at least high-purity aluminum It is characterized by becoming.

このような構成の高温超電導電流リードによれば、高温超電導線材が、熱伝導率の高い高純度アルミニウムからなる基材上に積層された構成なので、当該高温超電導電流リードが設置される冷却板からの冷却熱が基材を介して効果的に高温超電導線材に伝わることから、高温超電導線材を安定的して冷却することができる。さらに、基材をなす高純度アルミニウムは電気伝導率も高いことから、高温超電導線材に定格以上の電流が通電された場合であっても、この電流が基材側に分流するので、高温超電導線材が発熱するのが抑制され、高温超電導線材の損傷を防止できる。従って、冷却効率及び過電流時の耐久性に優れた高温超電導電流リードを提供することが可能となる。   According to the high-temperature superconducting current lead having such a configuration, since the high-temperature superconducting wire is laminated on the base material made of high-purity aluminum having high thermal conductivity, the cooling plate on which the high-temperature superconducting current lead is installed Since the cooling heat is effectively transmitted to the high-temperature superconducting wire through the base material, the high-temperature superconducting wire can be stably cooled. Furthermore, since the high-purity aluminum that forms the base material has high electrical conductivity, even when a current exceeding the rated current is applied to the high-temperature superconducting wire, this current is shunted to the base material side, so the high-temperature superconducting wire Is prevented from generating heat, and damage to the high-temperature superconducting wire can be prevented. Accordingly, it is possible to provide a high-temperature superconducting current lead having excellent cooling efficiency and durability during overcurrent.

また、本発明に係る高温超電導電流リードは、上記構成において、前記基材が、高純度アルミニウムからなる冷却基板と、無酸素銅からなる接合基板とが爆着法によって接合された積層構造とされ、前記接合基板上に、前記高温超電導線材がはんだ付けによって接合されている構成を採用することが好ましい。   Further, the high-temperature superconducting current lead according to the present invention has a laminated structure in which the base material is bonded to the cooling substrate made of high-purity aluminum and the joining substrate made of oxygen-free copper by the explosion method in the above-described configuration. It is preferable to adopt a configuration in which the high-temperature superconducting wire is joined to the joining substrate by soldering.

このような構成の高温超電導電流リードによれば、基材が、高純度アルミニウムからなる冷却基板上に無酸素銅からなる接合基板が爆着された構成なので、この接合基板上に、高温超電導線材をはんだ付けによって接合することが可能となる。通常、アルミニウム材の表面には酸化被膜が形成されていることから、一般的なはんだ付けの手法によって高温超電導線材を接合することはできないが、基材を上記のような積層構造で構成することにより、無酸素銅からなる接合基板上へのはんだ付けが可能となる。従って、上述したような冷却効率及び過電流時の耐久性の向上に加え、生産性が向上するという効果が得られる。   According to the high-temperature superconducting current lead having such a configuration, since the base material is a configuration in which a bonding substrate made of oxygen-free copper is exploded on a cooling substrate made of high-purity aluminum, the high-temperature superconducting wire is formed on the bonding substrate. Can be joined by soldering. Usually, since an oxide film is formed on the surface of an aluminum material, a high-temperature superconducting wire cannot be joined by a general soldering method. Thus, soldering onto a bonding substrate made of oxygen-free copper can be performed. Therefore, in addition to the improvement of the cooling efficiency and the durability at the time of overcurrent as described above, the effect of improving the productivity can be obtained.

また、本発明に係る高温超電導電流リードは、上記構成において、前記基材をなす高純度アルミニウムが、純度99.99%以上の高純度アルミニウムであることがより好ましい。   In the high-temperature superconducting current lead according to the present invention, in the above configuration, the high-purity aluminum forming the base material is more preferably high-purity aluminum having a purity of 99.99% or more.

このような構成の高温超電導電流リードによれば、基材に用いられる高純度アルミニウムが、上記のような非常に高純度のものとされることで、熱伝導率及び電気伝導率がより高められるので、上述したような高温超電導線材の冷却効率がさらに向上するとともに、高温超電導線材に定格以上の電流が通電された際には、電流をより効果的に基材側に分流させることができる。従って、上述したような冷却効率及び過電流時の耐久性がさらに向上する効果が得られる。   According to the high-temperature superconducting current lead having such a configuration, the high-purity aluminum used for the base material is made to have a very high purity as described above, so that the thermal conductivity and the electrical conductivity are further increased. Therefore, the cooling efficiency of the high-temperature superconducting wire as described above is further improved, and when a current exceeding the rating is applied to the high-temperature superconducting wire, the current can be more effectively diverted to the substrate side. Therefore, an effect of further improving the cooling efficiency and durability at the time of overcurrent as described above can be obtained.

本発明に係る高温超電導電流リードによれば、上述のように、高温超電導線材が、熱伝導率の高い高純度アルミニウムからなる基材上に積層された構成なので、当該高温超電導電流リードが設置される冷却板からの冷却熱が基材を介して効果的に高温超電導線材に伝わることから、高温超電導線材を安定的して冷却することができる。さらに、基材をなす高純度アルミニウムは電気伝導率も高いことから、高温超電導線材に定格以上の電流が通電された場合であっても、この電流が基材側に分流するので、高温超電導線材が発熱するのが抑制され、高温超電導線材の損傷を防止できる。
従って、冷却効率及び過電流時の耐久性に優れた高温超電導電流リードを提供することが可能となる。
According to the high-temperature superconducting current lead according to the present invention, as described above, the high-temperature superconducting wire is laminated on a base material made of high-purity aluminum having a high thermal conductivity. Therefore, the high-temperature superconducting current lead is installed. Since the cooling heat from the cooling plate is effectively transmitted to the high-temperature superconducting wire through the base material, the high-temperature superconducting wire can be stably cooled. Furthermore, since the high-purity aluminum that forms the base material has high electrical conductivity, even when a current exceeding the rated current is applied to the high-temperature superconducting wire, this current is shunted to the base material side, so the high-temperature superconducting wire Is prevented from generating heat, and damage to the high-temperature superconducting wire can be prevented.
Accordingly, it is possible to provide a high-temperature superconducting current lead having excellent cooling efficiency and durability during overcurrent.

本発明の一実施形態である高温超電導電流リードを模式的に説明する図であり、高純度アルミニウムからなる冷却基板と無酸素銅からなる接合基板とが接合された基材上に、高温超電導線材が積層された構造を示す斜視図である。BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a diagram schematically illustrating a high-temperature superconducting current lead according to an embodiment of the present invention, and a high-temperature superconducting wire on a base material in which a cooling substrate made of high-purity aluminum and a bonding substrate made of oxygen-free copper are joined. It is a perspective view which shows the structure where was laminated | stacked. 本発明の一実施形態である高温超電導電流リードを、真空容器内に収容された高温超電導コイルへの励磁電流の供給手段に適用した場合について説明する概略図である。It is the schematic explaining the case where the high temperature superconducting current | flow lead which is one Embodiment of this invention is applied to the supply means of the exciting current to the high temperature superconducting coil accommodated in the vacuum vessel. 本発明の一実施形態である高温超電導電流リードの実施例について説明する図であり、高温超電導電流リードの各端部間の電圧を測定する際に用いた試験装置の回路構成を示す概略図である。It is a figure explaining the Example of the high temperature superconducting current lead which is one embodiment of the present invention, and is a schematic diagram showing the circuit configuration of the test apparatus used when measuring the voltage between each end of the high temperature superconducting current lead. is there. 本発明の一実施形態である高温超電導電流リードの実施例について説明する図であり、高温超電導電流リードへの印加電流と、図3に示す回路で測定した各端部間の電圧との関係を示すグラフである。It is a figure explaining the Example of the high-temperature superconducting current lead which is one embodiment of the present invention, and shows the relationship between the current applied to the high-temperature superconducting current lead and the voltage between the ends measured by the circuit shown in FIG. It is a graph to show. 本発明の一実施形態である高温超電導電流リードの実施例について説明する図であり、高温超電導電流リードの臨界電流(280A)からの超過電流と、高温超電導電流リードの単位長さ当たりの各端部間の電圧との関係を示すグラフである。It is a figure explaining the Example of the high-temperature superconducting current lead which is one embodiment of the present invention, and the excess current from the critical current (280A) of the high-temperature superconducting current lead and each end per unit length of the high-temperature superconducting current lead It is a graph which shows the relationship with the voltage between parts.

以下、本発明の実施形態である高温超電導電流リードの一例を挙げ、その構成及び作用について、主に図1及び図2を適宜参照しながら詳述する。なお、以下の説明で用いる各図面は、その特徴をわかりやすくするために、便宜上、特徴となる部分を拡大して示している場合があり、各構成要素の寸法比率等は実際とは異なる場合がある。また、以下の説明において例示される材料、寸法等は一例であって、本発明はそれらに限定されるものではなく、その要旨を変更しない範囲で適宜変更して実施することが可能である。   Hereinafter, an example of the high-temperature superconducting current lead that is an embodiment of the present invention will be given, and its configuration and operation will be described in detail with reference to FIGS. 1 and 2 as appropriate. In addition, each drawing used in the following description may show the characteristic part in an enlarged manner for convenience in order to make the feature easy to understand, and the dimensional ratio of each component is different from the actual case. There is. In addition, the materials, dimensions, and the like exemplified in the following description are examples, and the present invention is not limited to them, and can be appropriately changed and implemented without changing the gist thereof.

図1は、本実施形態の高温超電導電流リード1の積層構造を説明する斜視図であり、図2は、本実施形態の高温超電導電流リード1を、真空容器11内に収容された高温超電導コイル12への励磁電流の供給手段に用いた高温超電導磁石10の構成を示す概略図である。図2中に示すように、本実施形態の高温超電導電流リード1は、冷凍機13によって冷却される冷却板14上に設置され、外部から高温超電導コイル12に励磁電流を供給するものである。   FIG. 1 is a perspective view for explaining a laminated structure of the high-temperature superconducting current lead 1 of this embodiment. FIG. 2 is a high-temperature superconducting coil in which the high-temperature superconducting current lead 1 of this embodiment is accommodated in a vacuum vessel 11. 12 is a schematic diagram showing a configuration of a high-temperature superconducting magnet 10 used as means for supplying an exciting current to 12. FIG. As shown in FIG. 2, the high-temperature superconducting current lead 1 of the present embodiment is installed on a cooling plate 14 cooled by a refrigerator 13 and supplies an excitation current to the high-temperature superconducting coil 12 from the outside.

図1に示すように、本実施形態の高温超電導電流リード1は、高純度アルミニウムからなる冷却基板21と、無酸素銅からなる接合基板22とが爆着法によって接合された積層構造の基材2上に、高温超電導線材3が積層された、長尺の線材として概略構成されている。そして、高温超電導電流リード1は、基材2の上面2a、即ち、接合基板22上に、高温超電導線材3が、はんだ付けによって接合された構成とされている。   As shown in FIG. 1, the high-temperature superconducting current lead 1 of the present embodiment has a laminated structure in which a cooling substrate 21 made of high-purity aluminum and a bonding substrate 22 made of oxygen-free copper are bonded by an explosion method. 2 is schematically configured as a long wire in which a high-temperature superconducting wire 3 is laminated. The high-temperature superconducting current lead 1 is configured such that the high-temperature superconducting wire 3 is joined to the upper surface 2a of the base material 2, that is, the joining substrate 22, by soldering.

基材2は、平面視で長尺板状のものであり、詳細を後述する高温超電導線材3が上面2a側に積層されることから、高温超電導線材3と同様、長尺に構成されるとともに、図示例では、横幅方向の寸法が高温超電導線材3よりも若干大きくなるように構成されている。また、基材2の下面2b側、即ち、冷却基板21の下面側は、詳細を後述する高温超電導磁石10に備えられる冷却板14への設置面となる。   The base material 2 has a long plate shape in plan view, and a high-temperature superconducting wire 3 to be described in detail later is laminated on the upper surface 2a side. In the illustrated example, the horizontal width dimension is configured to be slightly larger than that of the high-temperature superconducting wire 3. Moreover, the lower surface 2b side of the base material 2, that is, the lower surface side of the cooling substrate 21, serves as an installation surface for the cooling plate 14 provided in the high-temperature superconducting magnet 10 described later in detail.

冷却基板21は、上述したように、高純度アルミニウムから構成されることで、高い熱伝導率及び電気伝導率を備えるものである。これにより、冷却基板21は、図2に示した高温超電導磁石10に備えられる冷却板14から、高温超電導線材3側に向けて冷却熱を効率的に伝えることができる。   As described above, the cooling substrate 21 is made of high-purity aluminum and thus has high thermal conductivity and electrical conductivity. Thereby, the cooling substrate 21 can efficiently transmit the cooling heat from the cooling plate 14 provided in the high temperature superconducting magnet 10 shown in FIG. 2 toward the high temperature superconducting wire 3 side.

冷却基板21に用いられる高純度アルミニウムとしては、可能な限り高純度であることが好ましく、純度99.99%以上の高純度アルミニウムであることが特に好ましい。このように、冷却基板21を、純度99.99%以上の高純度アルミニウムから構成することで、冷却基板21のみならず、基材2全体の熱伝導率が向上するとともに、電気伝導率もより高いものとなる。   The high-purity aluminum used for the cooling substrate 21 is preferably as high as possible and is particularly preferably high-purity aluminum having a purity of 99.99% or more. In this way, by configuring the cooling substrate 21 from high-purity aluminum having a purity of 99.99% or more, not only the cooling substrate 21 but also the overall thermal conductivity of the base material 2 is improved, and the electrical conductivity is further increased. It will be expensive.

接合基板22は、図1においては、平面視における寸法や形状が、冷却基板21と同一とされている。
接合基板22の材料としては、冷却基板21の場合と同様、熱伝導率の高いものであることが好ましく、例えば、C1020等の無酸素銅を用いることができる。このような無酸素銅は、高純度アルミニウムと同様、熱伝導率及び電気伝導率にも優れるので、高温超電導線材3側に向けて冷却熱を効率的に伝えることができるとともに、高温超電導線材3に定格以上の電流が通電された際には、電流を効果的に基材2側に分流させることができる。
In FIG. 1, the bonding substrate 22 has the same size and shape in plan view as the cooling substrate 21.
The material of the bonding substrate 22 is preferably a material having high thermal conductivity as in the case of the cooling substrate 21, and for example, oxygen-free copper such as C1020 can be used. Such oxygen-free copper is excellent in thermal conductivity and electrical conductivity as in the case of high-purity aluminum. Therefore, it is possible to efficiently transmit cooling heat toward the high-temperature superconducting wire 3, and the high-temperature superconducting wire 3. When a current exceeding the rating is applied to the current, the current can be effectively diverted to the substrate 2 side.

そして、基材2は、上記の冷却基板21と接合基板22とが爆着法によって面接合された積層構造を有している。このように、異種金属からなる冷却基板21と接合基板22とを接合するに際しては、その接合強度等を考慮し、ダイナマイトを用いた爆着法を用いることが好ましい。この際の爆着条件としても、従来からアルミニウム材料と銅材料とを接合する際に採用されている条件を、何ら制限無く用いることができる。   The base material 2 has a laminated structure in which the cooling substrate 21 and the bonding substrate 22 are surface-bonded by an explosion bonding method. Thus, when joining the cooling substrate 21 and the joining substrate 22 which are made of different metals, it is preferable to use an blasting method using dynamite in consideration of the joining strength and the like. As the explosive deposition conditions at this time, the conditions conventionally employed when joining an aluminum material and a copper material can be used without any limitation.

本実施形態においては、基材2が、高純度アルミニウムからなる冷却基板21上に無酸素銅からなる接合基板22が積層された構成を採用することで、詳細を後述する高温超電導線材3を基材2上に接合するにあたり、接合基板22上へのはんだ付けによる接合が可能になる。   In this embodiment, the base material 2 employs a configuration in which a bonding substrate 22 made of oxygen-free copper is laminated on a cooling substrate 21 made of high-purity aluminum. In joining on the material 2, joining by soldering onto the joining substrate 22 becomes possible.

なお、基材2を構成する冷却基板21及び接合基板22の各々の厚みや、基材2全体の厚みとしては、特に限定されないが、本実施形態の高温超電導電流リード1を構成した際のサイズや熱伝導率等を考慮し、例えば、冷却基板21の厚みを4〜7mm、接合基板22の厚みを1〜3mmとし、基材2の全体厚みを5〜10mmの範囲とすることができる。同様に、基材2の幅寸法、即ち、この基材2を構成する冷却基板21及び接合基板22の幅寸法についても、高温超電導電流リード1を構成した際のサイズや熱伝導率等を考慮しながら、適宜決定すればよい。   In addition, although it does not specifically limit as each thickness of the cooling substrate 21 and the joining board | substrate 22 which comprise the base material 2, and the thickness of the base material 2 whole, The size at the time of comprising the high temperature superconducting current | flow lead 1 of this embodiment. For example, the thickness of the cooling substrate 21 can be 4 to 7 mm, the thickness of the bonding substrate 22 can be 1 to 3 mm, and the total thickness of the base material 2 can be 5 to 10 mm. Similarly, with respect to the width dimension of the base material 2, that is, the width dimensions of the cooling substrate 21 and the bonding substrate 22 constituting the base material 2, the size and thermal conductivity when the high-temperature superconducting current lead 1 is constructed are taken into consideration. However, it may be determined appropriately.

高温超電導線材3は、高温超電導材料からなる線材であり、図1においては、基材2と同様、平面視で長尺板状に形成されるとともに、その幅方向の寸法が、基材2、即ち、冷却基板21や接合基板22よりも若干狭く構成されている。これにより、高温超電導電流リード1は、平面視した際に、高温超電導線材3の幅方向の両側近傍から基材2の接合基板22が露出するように構成されている。   The high-temperature superconducting wire 3 is a wire made of a high-temperature superconducting material. In FIG. 1, like the base material 2, the high-temperature superconducting wire 3 is formed in a long plate shape in plan view, and the width direction dimension is the base material 2. That is, it is configured to be slightly narrower than the cooling substrate 21 and the bonding substrate 22. Thus, the high-temperature superconducting current lead 1 is configured such that the bonding substrate 22 of the base material 2 is exposed from both sides in the width direction of the high-temperature superconducting wire 3 when viewed in plan.

本実施形態の高温超電導電流リード1に用いられる高温超電導線材3は、例えば、酸化物系超電導材料からなるものであり、300℃程度の耐熱特性を有するものが用いられる。
より具体的には、高温超電導線材3としては、詳細な図示を省略するが、例えば、金属からなる基材上に、中間層を介して超電導層が積層され、さらに、この上に安定化層及び保護層が順次積層された構造のものが挙げられる。
The high-temperature superconducting wire 3 used for the high-temperature superconducting current lead 1 of the present embodiment is made of, for example, an oxide-based superconducting material and has a heat resistance of about 300 ° C.
More specifically, the high-temperature superconducting wire 3 is not shown in detail, but, for example, a superconducting layer is laminated on a base material made of metal via an intermediate layer, and a stabilization layer is further formed thereon. And a structure in which protective layers are sequentially laminated.

高温超電導線材3の基材としては、例えば、Cu上に、Ni−W合金やハステロイ(登録商標)等の合金材料からなる基板が積層されたものを用いることができる。   As the base material of the high-temperature superconducting wire 3, for example, a substrate in which a substrate made of an alloy material such as Ni-W alloy or Hastelloy (registered trademark) is laminated on Cu can be used.

高温超電導線材3において、基材と超電導層との間に介在する中間層としては、例えば、Y/YSZ/CeOなる組成及び積層構造を有するものを採用することができる。このような組成の中間層を金属からなる基材上に積層する方法としては、特に限定されないが、例えば、気相成長法(CVD法)やスパッタリング法等、従来公知の方法を用いることができる。 In the high-temperature superconducting wire 3, as the intermediate layer interposed between the base material and the superconducting layer, for example, one having a composition and a laminated structure of Y 2 O 3 / YSZ / CeO 2 can be adopted. A method for laminating the intermediate layer having such a composition on a base material made of metal is not particularly limited, and a conventionally known method such as a vapor deposition method (CVD method) or a sputtering method can be used. .

高温超電導線材3において、中間層上に設けられる超電導層としては、例えば、REBaCu(但し、RE:Rare Earth(希土類元素))や、ビスマス系超電導層等、臨界温度が高く且つ熱伝導率の小さな酸化物系超電導材料を採用することができる。このような各組成を有する超電導層を中間層上に積層する方法としても、特に限定されないが、例えば、PLD(Pulse Laser Deposition)法等の従来公知の方法を用いることができる。 In the high-temperature superconducting wire 3, the superconducting layer provided on the intermediate layer has a high critical temperature such as REBa 2 Cu 3 O x (RE: Rare Earth (rare earth element)), bismuth-based superconducting layer, and the like. An oxide-based superconducting material having a small thermal conductivity can be employed. A method of laminating the superconducting layer having such a composition on the intermediate layer is not particularly limited, and for example, a conventionally known method such as a PLD (Pulse Laser Deposition) method can be used.

また、高温超電導線材3において、超電導層上に積層される安定化層としては、例えば、Ag材料を用いることができる。
さらに、安定化層上に積層される、高温超電導線材3の保護層としては、例えば、Cu材料を用いることができる。
これらの安定化層及び保護層の形成にあたっては、例えば、従来公知のスパッタリング法等を用いることができる。
In the high-temperature superconducting wire 3, for example, an Ag material can be used as the stabilizing layer laminated on the superconducting layer.
Furthermore, as the protective layer of the high-temperature superconducting wire 3 laminated on the stabilization layer, for example, a Cu material can be used.
In forming these stabilizing layers and protective layers, for example, a conventionally known sputtering method or the like can be used.

ここで、高温超電導線材3の厚み、並びに、この高温超電導線材3を構成する上記各層の厚みとしては、特に限定されないが、高温超電導電流リード1を構成した際のサイズや電気的特性等を考慮し、例えば、基材の厚みを50〜100μm、中間層の厚みを1〜2μm、超電導層の厚みを1〜6μm、保護層の厚みを1〜5μm、安定化層の厚みを40〜100μmの範囲とし、高温超電導線材3の全体厚みを0.1〜0.2μmの範囲とすることができる。同様に、高温超電導線材3の幅寸法についても、高温超電導電流リード1を構成した際の電気的特性等を考慮しながら、適宜決定すればよい。   Here, the thickness of the high-temperature superconducting wire 3 and the thickness of each of the layers constituting the high-temperature superconducting wire 3 are not particularly limited, but the size and electrical characteristics when the high-temperature superconducting current lead 1 is constructed are taken into consideration. For example, the thickness of the substrate is 50 to 100 μm, the thickness of the intermediate layer is 1 to 2 μm, the thickness of the superconducting layer is 1 to 6 μm, the thickness of the protective layer is 1 to 5 μm, and the thickness of the stabilization layer is 40 to 100 μm. The overall thickness of the high-temperature superconducting wire 3 can be in the range of 0.1 to 0.2 μm. Similarly, the width dimension of the high-temperature superconducting wire 3 may be appropriately determined in consideration of the electrical characteristics when the high-temperature superconducting current lead 1 is configured.

また、本実施形態の高温超電導電流リード1に用いられる高温超電導線材としては、上記構成のような、板状に各層が積層されたものには限定されない。例えば、本出願人による特開2012−14883号公報(特願2010−148409)に記載したような、軸材となる金属基材を覆うように、基材、中間層、超電導層、安定化層及び保護層が順次積層され、さらに、断面が多角形状とされた構成の高温超電導線材を採用することも可能である。   Further, the high-temperature superconducting wire used for the high-temperature superconducting current lead 1 of the present embodiment is not limited to a plate in which each layer is laminated as in the above configuration. For example, as described in Japanese Patent Application Laid-Open No. 2012-14883 (Japanese Patent Application No. 2010-148409) by the present applicant, a base material, an intermediate layer, a superconducting layer, and a stabilization layer are covered so as to cover a metal base material serving as a shaft material. It is also possible to employ a high-temperature superconducting wire having a configuration in which the protective layer and the protective layer are sequentially laminated and the cross-section is polygonal.

そして、本実施形態で説明する高温超電導電流リード1は、高温超電導線材3における図示略の基材側、即ち、図1中に示す下面3aが、基材2の上面2a(接合基板22)上にはんだ付けされることで、基材2上に高温超電導線材3が接合された積層構造を有する。この際に用いるはんだ材料としては、特に限定されないが、低融点はんだ材料を用いることが好ましい。   In the high-temperature superconducting current lead 1 described in the present embodiment, the base material side (not shown) of the high-temperature superconducting wire 3, that is, the lower surface 3 a shown in FIG. 1 is on the upper surface 2 a (bonding substrate 22) of the base material 2. As a result, the high-temperature superconducting wire 3 is joined to the base material 2. The solder material used at this time is not particularly limited, but a low melting point solder material is preferably used.

本実施形態の高温超電導電流リード1は、上記のように、高温超電導線材3が、熱伝導率及び電気伝導率の高い高純度アルミニウムからなる基材2上に積層された構成とされている。具体的には、高温超電導電流リード1は、基材2が、高純度アルミニウムからなる冷却基板21と無酸素銅からなる接合基板22とが積層されてなり、接合基板22の上に高温超電導線材3が積層された構成とされている。これにより、高温超電導電流リード1が設置される高温超電導磁石10の冷却板14からの冷却熱が基材2を介して効果的に高温超電導線材3に伝わることから、高温超電導線材3が安定的に冷却される効果が得られる。さらに、高純度アルミニウムは電気伝導率が高いことから、高温超電導線材3に定格以上の電流が通電された場合であっても、この電流が基材2側に分流することで、高温超電導線材3の発熱を抑制できるので、高温超電導線材3の損傷を確実に防止できる効果が得られる。   As described above, the high-temperature superconducting current lead 1 of the present embodiment has a configuration in which the high-temperature superconducting wire 3 is laminated on the base material 2 made of high-purity aluminum having high thermal conductivity and high electrical conductivity. Specifically, the high-temperature superconducting current lead 1 has a base material 2 in which a cooling substrate 21 made of high-purity aluminum and a bonding substrate 22 made of oxygen-free copper are laminated, and the high-temperature superconducting wire rod is formed on the bonding substrate 22. 3 is laminated. Thereby, the cooling heat from the cooling plate 14 of the high-temperature superconducting magnet 10 on which the high-temperature superconducting current lead 1 is installed is effectively transmitted to the high-temperature superconducting wire 3 through the base material 2, so that the high-temperature superconducting wire 3 is stable. The effect of being cooled is obtained. Furthermore, since high-purity aluminum has a high electrical conductivity, even when a current exceeding the rated current is passed through the high-temperature superconducting wire 3, the current is shunted to the substrate 2 side, whereby the high-temperature superconducting wire 3 Therefore, the effect of reliably preventing damage to the high-temperature superconducting wire 3 can be obtained.

ここで、高温超電導電流リードとして、基材2を高純度アルミニウムからなる冷却基板21のみで構成し、この冷却基板21上に後述の高温超電導線材3を接合した構成とすることも可能である。一方、このような場合には、高温超電導線材3を基材2に接合するに際し、はんだ付け以外の方法を検討する必要がある。このため、本実施形態においては、図1に示すように、基材2が、無酸素銅からなる接合基板22が高純度アルミニウムからなる冷却基板21上に積層された構成とされていることが好ましい。これにより、基材2の上面2a側に配置される接合基板22上への、はんだ付けによる高温超電導線材3の接合が可能になるので、上述したような冷却効率及び過電流時の耐久性の向上に加え、生産性が向上し、製造コストも低減できるという効果が得られる。   Here, as the high-temperature superconducting current lead, the base material 2 may be composed only of the cooling substrate 21 made of high-purity aluminum, and the high-temperature superconducting wire 3 to be described later may be joined to the cooling substrate 21. On the other hand, in such a case, when joining the high temperature superconducting wire 3 to the base material 2, it is necessary to consider a method other than soldering. For this reason, in this embodiment, as shown in FIG. 1, the base material 2 has a configuration in which a bonding substrate 22 made of oxygen-free copper is laminated on a cooling substrate 21 made of high-purity aluminum. preferable. As a result, the high-temperature superconducting wire 3 can be joined to the joining substrate 22 disposed on the upper surface 2a side of the base material 2 by soldering, so that the above-described cooling efficiency and durability during overcurrent can be achieved. In addition to the improvement, the productivity can be improved and the manufacturing cost can be reduced.

次に、図2を参照しながら、本実施形態の高温超電導電流リード1が備えられた高温超電導磁石10について説明する。
図2に示すように、高温超電導磁石10は、真空容器11内に、高温超電導コイル12、冷凍機13及び冷却板14が収容されてなる。そして、図示例においては、本実施形態の高温超電導電流リード1、及び、この高温超電導電流リード1に外部から電流を通電する電流リード15の一部が真空容器11内に設置され、外部から高温超電導コイル12に励磁電流を供給できる構成とされている。また、図示例においては、高温超電導電流リード1の一端側1aが、電流リード15を介して図示略の外部電源に接続されるとともに、他端側1bが高温超電導コイル12に接続されている。また、高温超電導電流リード1は、冷凍機13によって冷却される冷却板14上に、例えば、グリースや金属材料等の密着性を高める材料を介して設置されるとともに、基材2の下面2b、即ち、冷却基板21側が冷却板14上に設置されている。
Next, the high-temperature superconducting magnet 10 provided with the high-temperature superconducting current lead 1 of the present embodiment will be described with reference to FIG.
As shown in FIG. 2, the high-temperature superconducting magnet 10 includes a high-temperature superconducting coil 12, a refrigerator 13, and a cooling plate 14 housed in a vacuum vessel 11. In the illustrated example, the high-temperature superconducting current lead 1 of this embodiment and a part of the current lead 15 that conducts current from the outside to the high-temperature superconducting current lead 1 are installed in the vacuum vessel 11, and the high-temperature superconducting current lead 1 is heated from the outside. The exciting current can be supplied to the superconducting coil 12. In the illustrated example, one end side 1 a of the high-temperature superconducting current lead 1 is connected to an external power source (not shown) via a current lead 15, and the other end side 1 b is connected to the high-temperature superconducting coil 12. In addition, the high-temperature superconducting current lead 1 is installed on a cooling plate 14 cooled by the refrigerator 13 via a material that enhances adhesion, such as grease or a metal material, and the lower surface 2b of the substrate 2; That is, the cooling substrate 21 side is installed on the cooling plate 14.

真空容器11は、高温超電導磁石10の主要な構成を内部空間に収容するものであり、例えば、図示略の真空ポンプよって内部空間が真空減圧される。また、図示例の真空容器11は、容器本体11aの内部に、高温超電導電流リード1、高温超電導コイル12、冷凍機13、冷却板14及び電流リード15の一部が収容され、その開口部が容器蓋部11bによって覆われた構成とされている。   The vacuum vessel 11 accommodates the main components of the high-temperature superconducting magnet 10 in the internal space. For example, the internal space is depressurized by a vacuum pump (not shown). In the illustrated vacuum vessel 11, the high temperature superconducting current lead 1, the high temperature superconducting coil 12, the refrigerator 13, the cooling plate 14 and a part of the current lead 15 are accommodated inside the container body 11a, and the opening thereof is formed. It is set as the structure covered with the container cover part 11b.

高温超電導コイル12は、電流リード15及び高温超電導電流リード1によって外部から励磁電流が供給されることによって、高温超電導磁石10としての強力な磁力を発生させるものである。また、高温超電導コイル12は、図示例のように冷却板14上に設置されている。   The high-temperature superconducting coil 12 generates a strong magnetic force as the high-temperature superconducting magnet 10 when an excitation current is supplied from the outside by the current lead 15 and the high-temperature superconducting current lead 1. Further, the high temperature superconducting coil 12 is installed on the cooling plate 14 as shown in the drawing.

冷凍機13は、例えば、従来公知の圧縮機等から構成されるものであり、後述の冷却板14と熱的・機械的に接続される。冷凍機13は、冷却板14を冷却することにより、冷却板14上に設置された高温超電導コイル12及び高温超電導電流リード1を、例えば、−200℃以下の極低温域まで冷却するものである。   The refrigerator 13 is constituted by, for example, a conventionally known compressor or the like, and is thermally and mechanically connected to a later-described cooling plate 14. The refrigerator 13 cools the high-temperature superconducting coil 12 and the high-temperature superconducting current lead 1 installed on the cooling plate 14 to a cryogenic temperature region of −200 ° C. or lower, for example, by cooling the cooling plate 14. .

冷却板(コールドヘッド)14は、図示例のように、真空容器11の内部空間において概略下方に設置される平板状の部材であり、例えば、熱伝導率の高い金属材料から構成される。冷却板14は、上述のように、その上面側に冷凍機13が接続されることで極低温域まで冷却され、これにより、上面側に設置された高温超電導コイル12及び高温超電導電流リード1の各々を極低温域まで冷却する。   As shown in the illustrated example, the cooling plate (cold head) 14 is a flat plate-like member installed substantially downward in the internal space of the vacuum vessel 11 and is made of, for example, a metal material having high thermal conductivity. As described above, the cooling plate 14 is cooled to a cryogenic temperature region by connecting the refrigerator 13 to the upper surface side thereof, and thereby the high temperature superconducting coil 12 and the high temperature superconducting current lead 1 installed on the upper surface side. Cool each to a cryogenic temperature range.

電流リード15は、一端側15aが高温超電導電流リード1の一端側1aに接続され、他端側が図示略の外部電源に接続されることで、外部から供給される励磁電流を、高温超電導電流リード1を介して高温超電導コイル12に供給できるように構成される。   The current lead 15 has one end side 15a connected to one end side 1a of the high-temperature superconducting current lead 1 and the other end side connected to an external power supply (not shown), so that an excitation current supplied from the outside can be supplied to the high-temperature superconducting current lead. 1 is configured so that it can be supplied to the high-temperature superconducting coil 12 via 1.

なお、図2に示す例においては、電流リード15については、正極(+)側と負極(−)側の両方を図示しているが、高温超電導電流リード1については、冷却板14上に設置された状態となることから、一方のみを図示している。   In the example shown in FIG. 2, the current lead 15 is shown on both the positive electrode (+) side and the negative electrode (−) side, but the high-temperature superconducting current lead 1 is installed on the cooling plate 14. Only one of them is shown in the figure because it is in a state of being performed.

本実施形態の高温超電導電流リード1は、上述のように、高純度アルミニウムからなる冷却基板21側が冷却板14上に設置されることから、基材2を介して伝わる冷却熱により、高温超電導線材3が安定的に冷却されるので、高温超電導線材3の発熱を効果的に抑制でき、また、高温超電導線材3が損傷するのを確実に防止することが可能となる。   As described above, the high-temperature superconducting current lead 1 of the present embodiment is installed on the cooling plate 14 on the side of the cooling substrate 21 made of high-purity aluminum, so that the high-temperature superconducting wire is generated by the cooling heat transmitted through the base material 2. Since 3 is cooled stably, the heat generation of the high temperature superconducting wire 3 can be effectively suppressed, and the high temperature superconducting wire 3 can be reliably prevented from being damaged.

次に、本発明を以下の実施例により詳細に説明するが、本発明はこれらの実施例にのみ限定されるものではない。   Next, the present invention will be described in detail by the following examples, but the present invention is not limited only to these examples.

[実施例1]
実施例1においては、以下に示す条件及び手順で、図1に示すような高温超電導電流リードを作製した後、図3に示すような回路構成の試験装置を作製して、高温超電導電流リードの各端部間の電圧を測定した。
[Example 1]
In Example 1, a high-temperature superconducting current lead as shown in FIG. 1 was manufactured under the conditions and procedures shown below, and then a test apparatus having a circuit configuration as shown in FIG. 3 was prepared. The voltage between each end was measured.

まず、純度が99.99%以上の高純度アルミニウムからなる冷却基板上に、無酸素銅からなる接合基板が、ダイナマイトを用いた爆着法によって接合された、長さが200mm、幅が100mm、厚みが41mm(無酸素銅4mm)の基材を準備した。そして、この基材を圧延した後、所定のサイズに切り出すことにより、長さが600mm、幅が12mm、厚みが7mmの平面視長尺状とされ、冷却基板21上に接合基板22が接合されてなる基材2を得た。   First, a bonded substrate made of oxygen-free copper is bonded to a cooling substrate made of high-purity aluminum having a purity of 99.99% or more by a blasting method using dynamite, having a length of 200 mm, a width of 100 mm, A base material having a thickness of 41 mm (oxygen-free copper 4 mm) was prepared. And after rolling this base material, by cutting out to a predetermined size, the length is 600 mm, the width is 12 mm, the thickness is 7 mm in plan view, and the bonding substrate 22 is bonded onto the cooling substrate 21. A base material 2 was obtained.

また、高温超電導線材3としては、SuperPower社製の2G HTS WIRE(登録商標)を用い、この線材を所定のサイズに切り出すことで、長さが600mm、幅が6mm、厚みが0.1mmとされたものを準備した。   Further, as the high-temperature superconducting wire 3, 2 G HTS WIRE (registered trademark) manufactured by SuperPower is used, and the wire is cut into a predetermined size so that the length is 600 mm, the width is 6 mm, and the thickness is 0.1 mm. I prepared a dish.

そして、上記方法で得られた高温超電導線材3を、この高温超電導線材3の図示略の基材側を底面として、基材2の接合基板22上にはんだ付けした。この際、低融点はんだ材料を用いて、高温超電導線材3と基材2の接合基板22との間を、全面にわたってはんだ付けした。
以上のような条件及び手順により、図1に示すような本実施例の高温超電導電流リード1を得た。
Then, the high-temperature superconducting wire 3 obtained by the above method was soldered onto the bonding substrate 22 of the base material 2 with the unillustrated base material side of the high-temperature superconducting wire 3 as the bottom surface. At this time, the entire surface was soldered between the high temperature superconducting wire 3 and the bonding substrate 22 of the base material 2 using a low melting point solder material.
Under the conditions and procedures as described above, a high-temperature superconducting current lead 1 of this example as shown in FIG. 1 was obtained.

次に、上記手順で得られた高温超電導電流リード1を用いて、図3に示すような回路構成の試験装置を作製して、高温超電導電流リード1の各端部間の電圧を測定した。この試験装置は、アルミニウム板上に、2本の高温超電導電流リード1を、図示略の絶縁接着フィルムを用いて平行に配置して接着し、これらの一端側を短絡して直列回路を構成するとともに、他端側に図示略の電源を接続し、電流供給可能な構成とした。また、2本の高温超電導電流リード1の各々に、一端側と他端側との間の電圧を測定するための電圧計を接続した。また、この装置を図示略の断熱容器内に収容し、この断熱容器内に液体窒素を供給することにより、77K(−196℃)に冷却した。   Next, a test apparatus having a circuit configuration as shown in FIG. 3 was prepared using the high-temperature superconducting current lead 1 obtained by the above procedure, and the voltage between each end of the high-temperature superconducting current lead 1 was measured. In this test apparatus, two high-temperature superconducting current leads 1 are arranged and bonded in parallel using an insulating adhesive film (not shown) on an aluminum plate, and one end side thereof is short-circuited to form a series circuit. In addition, a power supply (not shown) is connected to the other end side so that a current can be supplied. Further, a voltmeter for measuring a voltage between one end side and the other end side was connected to each of the two high-temperature superconducting current leads 1. Moreover, this apparatus was accommodated in the heat insulation container not shown in figure, and it cooled to 77K (-196 degreeC) by supplying liquid nitrogen in this heat insulation container.

そして、一方の高温超電導電流リード1側をプラス(+)側、他方の高温超電導電流リード1側をマイナス(−)側として、0Aから徐々に電流値を増加させながら電流供給を実施した際の、各々の高温超電導電流リード1の両端間の電圧を測定するとともに、これらの目視確認を行った。   Then, when one of the high-temperature superconducting current leads 1 is on the plus (+) side and the other high-temperature superconducting current lead 1 is on the minus (−) side, current supply is performed while gradually increasing the current value from 0A. The voltage between both ends of each high-temperature superconducting current lead 1 was measured and these were visually confirmed.

実施例1の試験結果として、高温超電導電流リードへの印加電流と、各端部間の電圧との関係を図4のグラフに示す。
図4に示すように、本実施例で作製した、本発明に係る構成を有する高温超電導電流リード1は、高温超電導線材の臨界電流である280Aを超えても電圧の上昇カーブは緩やかであり、臨界電流を大きく上回る400Aでも安定して通電でき、発熱に起因する損傷等のトラブルも発生しなかった。
As a test result of Example 1, the relationship between the current applied to the high-temperature superconducting current lead and the voltage between the ends is shown in the graph of FIG.
As shown in FIG. 4, the high-temperature superconducting current lead 1 having the configuration according to the present invention manufactured in this example has a gradual voltage rise curve even when the critical current of the high-temperature superconducting wire exceeds 280A. Stable energization was possible even at 400 A, which greatly exceeded the critical current, and troubles such as damage due to heat generation did not occur.

なお、図4のグラフにおいて、高温超電導電流リード1のプラス(+)側とマイナス(−)側とで僅かに上昇カーブが異なるのは、各々の電気的接続部における損失等に起因する測定誤差と考えられる。   In the graph of FIG. 4, the rising curve slightly differs between the plus (+) side and the minus (−) side of the high-temperature superconducting current lead 1 because of a measurement error caused by a loss in each electrical connection portion. it is conceivable that.

[実施例2]
実施例2においては、実施例1で作製した高温超電導電流リード1、及び、高温超電導線材単体からなる従来の構成の高温超電導電流リードを準備し、これら各々について、それぞれ1本の高温超電導電流リードで評価した点を除き、実施例1と同様の試験装置を用いて、同様の手順で高温超電導電流リードに徐々に電流を印加して、高温超電導電流リードの単位長さ当たりの電圧を調べた。そして、実施例2の試験結果として、高温超電導電流リードの臨界電流(280A)からの超過電流と、高温超電導電流リードの単位長さあたりの電圧との関係を図5のグラフに示した。
[Example 2]
In Example 2, the high-temperature superconducting current lead 1 manufactured in Example 1 and a conventional high-temperature superconducting current lead composed of a single high-temperature superconducting wire were prepared, and one high-temperature superconducting current lead was provided for each of these. The voltage per unit length of the high-temperature superconducting current lead was examined by applying a current gradually to the high-temperature superconducting current lead in the same procedure using the same test apparatus as in Example 1 except for the points evaluated in (1). . As a test result of Example 2, the relationship between the excess current from the critical current (280 A) of the high-temperature superconducting current lead and the voltage per unit length of the high-temperature superconducting current lead is shown in the graph of FIG.

図5に示すように、実施例1で作製した、本発明に係る構成を有する高温超電導電流リード1は、高温超電導線材の臨界電流である280Aを超えても、単位長さ当たりの電圧の上昇カーブは緩やかであった。
これに対し、従来の構成の高温超電導電流リードは、この高温超電導電流リードの臨界電流である160Aを超えると、単位長さ当たりの電圧が急激に上昇するカーブ特性を示した。
As shown in FIG. 5, the high-temperature superconducting current lead 1 having the configuration according to the present invention produced in Example 1 has an increase in voltage per unit length even when the critical current of the high-temperature superconducting wire exceeds 280A. The curve was gentle.
On the other hand, the high-temperature superconducting current lead having the conventional configuration exhibited a curve characteristic in which the voltage per unit length suddenly increased when the critical current of the high-temperature superconducting current lead exceeded 160A.

上記各実施例の結果より、本発明に係る高温超電導電流リードが、臨界電流を大きく上回る電流が印加された場合であっても、電圧の上昇カーブは緩やかで、安定した通電が可能であることが明らかとなった。   From the results of each of the above examples, the high-temperature superconducting current lead according to the present invention has a gradual voltage rise curve and can be stably energized even when a current exceeding the critical current is applied. Became clear.

なお、以上説明した実施形態及び各実施例における各構成及びそれらの組み合わせ等は一例であり、本発明の趣旨を逸脱しない範囲で、構成の付加、省略、置換、及びその他の変更が可能である。また、本発明は上記の実施形態によって限定されることはなく、特許請求の範囲によってのみ限定される。   In addition, each structure in those embodiment and each Example demonstrated above, those combinations, etc. are examples, and addition, omission, substitution, and other change of a structure are possible in the range which does not deviate from the meaning of this invention. . Further, the present invention is not limited by the above-described embodiment, and is limited only by the scope of the claims.

本発明の高温超電導電流リードによれば、上記構成を採用することで、万が一、定格以上の電流が通電された場合であっても発熱による損傷を防止でき、冷却効率及び過電流時の耐久性に優れているものなので、極低温で動作させる高温超電導コイルに励磁電流を供給する用途において非常に有用である。   According to the high-temperature superconducting current lead of the present invention, by adopting the above configuration, it is possible to prevent damage due to heat generation even when a current exceeding the rated current is applied, cooling efficiency and durability during overcurrent Therefore, it is very useful in applications where an exciting current is supplied to a high temperature superconducting coil operated at a very low temperature.

1…高温超電導電流リード
2…基材
2a…上面
2b…下面
21…冷却基板21
22…接合基板
3…高温超電導線材
3a…下面
10…高温超電導磁石
11…真空容器
11a…容器本体
11b…容器蓋部
12…高温超電導コイル
13…冷凍機
14…冷却板
15…電流リード。
DESCRIPTION OF SYMBOLS 1 ... High temperature superconducting electric current lead 2 ... Base material 2a ... Upper surface 2b ... Lower surface 21 ... Cooling substrate 21
DESCRIPTION OF SYMBOLS 22 ... Bonding board 3 ... High temperature superconducting wire 3a ... Lower surface 10 ... High temperature superconducting magnet 11 ... Vacuum container 11a ... Container body 11b ... Container lid part 12 ... High temperature superconducting coil 13 ... Refrigerator 14 ... Cooling plate 15 ... Current lead.

Claims (3)

真空容器中に、極低温域で動作させる高温超電導コイルとともに収容され、一端側が電流リードを介して外部電源に接続されるとともに、他端側が前記高温超電導コイルに接続されることで、該高温超電導コイルに励磁電流を供給する高温超電導電流リードであって、
少なくとも高純度アルミニウムからなる基材上に、高温超電導線材が積層されてなることを特徴とする高温超電導電流リード。
A high-temperature superconducting coil that is operated in a cryogenic temperature region is housed in a vacuum vessel, and one end side is connected to an external power source via a current lead, and the other end side is connected to the high-temperature superconducting coil, thereby A high temperature superconducting current lead for supplying an exciting current to the coil,
A high-temperature superconducting current lead comprising a high-temperature superconducting wire laminated on a substrate made of at least high-purity aluminum.
前記基材が、高純度アルミニウムからなる冷却基板と、無酸素銅からなる接合基板とが爆着法によって接合された積層構造とされ、
前記接合基板上に、前記高温超電導線材がはんだ付けによって接合されていることを特徴とする請求項1に記載の高温超電導電流リード。
The base material has a laminated structure in which a cooling substrate made of high-purity aluminum and a bonding substrate made of oxygen-free copper are bonded by an explosion method,
The high-temperature superconducting current lead according to claim 1, wherein the high-temperature superconducting wire is bonded onto the bonding substrate by soldering.
前記基材をなす高純度アルミニウムが、純度99.99%以上の高純度アルミニウムであることを特徴とする請求項1又は請求項2に記載の高温超電導電流リード。   3. The high-temperature superconducting current lead according to claim 1, wherein the high-purity aluminum forming the substrate is high-purity aluminum having a purity of 99.99% or more.
JP2014185069A 2014-09-11 2014-09-11 High temperature superconducting current lead Active JP6268648B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014185069A JP6268648B2 (en) 2014-09-11 2014-09-11 High temperature superconducting current lead

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014185069A JP6268648B2 (en) 2014-09-11 2014-09-11 High temperature superconducting current lead

Publications (2)

Publication Number Publication Date
JP2016058608A true JP2016058608A (en) 2016-04-21
JP6268648B2 JP6268648B2 (en) 2018-01-31

Family

ID=55759055

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014185069A Active JP6268648B2 (en) 2014-09-11 2014-09-11 High temperature superconducting current lead

Country Status (1)

Country Link
JP (1) JP6268648B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016105980A (en) * 2016-03-23 2016-06-16 株式会社大一商会 Game machine
WO2021014959A1 (en) * 2019-07-22 2021-01-28 株式会社日立製作所 Conduction-cooling-type superconducting magnet
CN114649114A (en) * 2022-04-07 2022-06-21 中国科学院合肥物质科学研究院 Direct-cooling high-temperature superconducting current lead structure of refrigerating machine

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61177703A (en) * 1985-01-31 1986-08-09 Sumitomo Electric Ind Ltd Electrode for superconducting magnet
JPS61208206A (en) * 1985-03-13 1986-09-16 Mitsubishi Electric Corp Superconductive magnet
JPS6231965A (en) * 1985-08-01 1987-02-10 住友電気工業株式会社 Joint sleeve for superconductor
JPS63200506A (en) * 1987-02-17 1988-08-18 Sumitomo Electric Ind Ltd Superconducting magnet
JPS63258098A (en) * 1987-04-15 1988-10-25 Fujikura Ltd Superconducting electromagnetic shield
JPS63289722A (en) * 1987-05-20 1988-11-28 Sumitomo Electric Ind Ltd Manufacture of superconductor
JPH01140516A (en) * 1987-11-25 1989-06-01 Matsushita Electric Ind Co Ltd Coating material
JPH02153503A (en) * 1988-12-05 1990-06-13 Osaka Prefecture Sheet-like superconducting magnet
JPH0631467A (en) * 1992-06-05 1994-02-08 Ishikawajima Harima Heavy Ind Co Ltd Production of clad metal having high-tensile aluminum alloy material
JP2001114576A (en) * 1999-10-15 2001-04-24 Dowa Mining Co Ltd Joined body and oxide superconductor used therein
JP2003002644A (en) * 2001-06-14 2003-01-08 Japan Science & Technology Corp Method for removing twin crystal of lanthanum-based- oxide superconducting crystal
JP2013143474A (en) * 2012-01-11 2013-07-22 Kobe Steel Ltd Superconducting magnet device and current lead for the same
JP2013175293A (en) * 2012-02-23 2013-09-05 Fujikura Ltd Superconductive current lead, current lead device, and superconducting magnet device
JP2014179526A (en) * 2013-03-15 2014-09-25 Toshiba Corp Current lead
JP2014183138A (en) * 2013-03-19 2014-09-29 Toshiba Corp Superconducting device

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61177703A (en) * 1985-01-31 1986-08-09 Sumitomo Electric Ind Ltd Electrode for superconducting magnet
JPS61208206A (en) * 1985-03-13 1986-09-16 Mitsubishi Electric Corp Superconductive magnet
JPS6231965A (en) * 1985-08-01 1987-02-10 住友電気工業株式会社 Joint sleeve for superconductor
JPS63200506A (en) * 1987-02-17 1988-08-18 Sumitomo Electric Ind Ltd Superconducting magnet
JPS63258098A (en) * 1987-04-15 1988-10-25 Fujikura Ltd Superconducting electromagnetic shield
JPS63289722A (en) * 1987-05-20 1988-11-28 Sumitomo Electric Ind Ltd Manufacture of superconductor
JPH01140516A (en) * 1987-11-25 1989-06-01 Matsushita Electric Ind Co Ltd Coating material
JPH02153503A (en) * 1988-12-05 1990-06-13 Osaka Prefecture Sheet-like superconducting magnet
JPH0631467A (en) * 1992-06-05 1994-02-08 Ishikawajima Harima Heavy Ind Co Ltd Production of clad metal having high-tensile aluminum alloy material
JP2001114576A (en) * 1999-10-15 2001-04-24 Dowa Mining Co Ltd Joined body and oxide superconductor used therein
JP2003002644A (en) * 2001-06-14 2003-01-08 Japan Science & Technology Corp Method for removing twin crystal of lanthanum-based- oxide superconducting crystal
JP2013143474A (en) * 2012-01-11 2013-07-22 Kobe Steel Ltd Superconducting magnet device and current lead for the same
JP2013175293A (en) * 2012-02-23 2013-09-05 Fujikura Ltd Superconductive current lead, current lead device, and superconducting magnet device
JP2014179526A (en) * 2013-03-15 2014-09-25 Toshiba Corp Current lead
JP2014183138A (en) * 2013-03-19 2014-09-29 Toshiba Corp Superconducting device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016105980A (en) * 2016-03-23 2016-06-16 株式会社大一商会 Game machine
WO2021014959A1 (en) * 2019-07-22 2021-01-28 株式会社日立製作所 Conduction-cooling-type superconducting magnet
CN114649114A (en) * 2022-04-07 2022-06-21 中国科学院合肥物质科学研究院 Direct-cooling high-temperature superconducting current lead structure of refrigerating machine
CN114649114B (en) * 2022-04-07 2023-09-08 中国科学院合肥物质科学研究院 Direct-cooling high-temperature superconductive current lead structure of refrigerator

Also Published As

Publication number Publication date
JP6268648B2 (en) 2018-01-31

Similar Documents

Publication Publication Date Title
JP5568361B2 (en) Superconducting wire electrode joint structure, superconducting wire, and superconducting coil
JP5697161B2 (en) Current lead
US10128025B2 (en) Oxide superconducting wire, superconducting device, and method for producing oxide superconducting wire
US20190172612A1 (en) Oxide superconducting wire
JP6268648B2 (en) High temperature superconducting current lead
JP2010108958A (en) Thermoelectric module, and method of manufacturing the same
JP5724029B2 (en) Superconducting current lead, superconducting current lead device, and superconducting magnet device
JP2013175293A (en) Superconductive current lead, current lead device, and superconducting magnet device
JP5022279B2 (en) Oxide superconducting current lead
JP2012256744A (en) Superconductive coil
JP2015028912A (en) Superconductive wire rod and superconductive coil using the same
JP2014154320A (en) Connection structure of oxide superconductive wire rod and superconductive apparatus
JPWO2016042821A1 (en) Permanent current switch and superconducting coil
KR20210066011A (en) Method of Electrical Contact of Superconducting Strip Conductors
JP5011181B2 (en) Oxide superconducting current lead
JP6364235B2 (en) Superconducting coil electrode structure
JP2018055990A (en) Superconductive current lead and oxide superconducting wire material
JP2012064323A (en) Superconductive current lead
JP5697162B2 (en) Current lead
JP4734004B2 (en) Superconducting current lead
JP6484471B2 (en) Current lead
JP6125350B2 (en) Superconducting wire connection and superconducting current lead
WO2013051254A1 (en) Thermoelectric-cooling type current lead
JP5289451B2 (en) Thermoelectric element and thermoelectric module
JP4901585B2 (en) Oxide superconducting current lead

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20161125

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20171031

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20171205

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20171215

R150 Certificate of patent or registration of utility model

Ref document number: 6268648

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150