JPS63258098A - Superconducting electromagnetic shield - Google Patents

Superconducting electromagnetic shield

Info

Publication number
JPS63258098A
JPS63258098A JP62092811A JP9281187A JPS63258098A JP S63258098 A JPS63258098 A JP S63258098A JP 62092811 A JP62092811 A JP 62092811A JP 9281187 A JP9281187 A JP 9281187A JP S63258098 A JPS63258098 A JP S63258098A
Authority
JP
Japan
Prior art keywords
substrate
shield
oxide superconductor
shield layer
superconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62092811A
Other languages
Japanese (ja)
Inventor
Nobuyuki Sadakata
伸行 定方
Masaru Sugimoto
優 杉本
Yoshimitsu Ikeno
池野 義光
Tsukasa Kono
河野 宰
Mikio Nakagawa
中川 三紀夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Original Assignee
Fujikura Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd filed Critical Fujikura Ltd
Priority to JP62092811A priority Critical patent/JPS63258098A/en
Publication of JPS63258098A publication Critical patent/JPS63258098A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Superconductor Devices And Manufacturing Methods Thereof (AREA)
  • Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)
  • Details Of Measuring And Other Instruments (AREA)
  • Physical Vapour Deposition (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Abstract

PURPOSE:To obtain a shield which is able to prevent electromagnetic wave completely from penetrating an equipment by a method wherein a shield layer formed of oxide superconductor or material containing oxide superconductor is provided on a substrate. CONSTITUTION:A substrate 2 is used on which a shield layer 3 formed of oxide superconductor or material containing oxide superconductor is provided. For example, the substrate 2 is plate-shaped and made of material such as metal containing iron, aluminum, copper, and the like, and synthetic resin containing polyvinyl chloride, polyethylene, polypropylene, fluorine resin and the like. The thickness of the substrate 2 is determined on kind of material used for the formation of the substrate 2. And, a shield layer 3 is formed of superconductor shown as A-B-Cu-O (A is element of IIIa group in periodic table such as Y, La, and the like, B is element of alkali earth metal such as Be, Sr, Ba and the like) or material containing the said superconductor.

Description

【発明の詳細な説明】 (産業上の利用分gF) この発明は、完全な電磁シールドが可能な超電導電磁シ
ールド体に関する。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application gF) The present invention relates to a superconducting electromagnetic shielding body capable of complete electromagnetic shielding.

(従来技術とその問題点) 一般に、コンピュータ、磁気記録装置などの精密機器は
、外部誘導磁界などの影響を受は易いことが知られてい
る。このため、上記機器内への電磁波の侵入を防止する
目的で電磁シールド体で機器を覆うようにしている。
(Prior Art and its Problems) It is generally known that precision instruments such as computers and magnetic recording devices are easily affected by externally induced magnetic fields. Therefore, in order to prevent electromagnetic waves from entering the device, the device is covered with an electromagnetic shield.

従来、このような電磁シールド体としては、例えばパー
マロイ材からなるシー・ルド板や二重シールド板、パー
マロイ・銅・パーマロイからなる三重シールド板などが
用いられている。
Conventionally, as such an electromagnetic shielding body, for example, a shield plate made of permalloy material, a double shield plate, a triple shield plate made of permalloy, copper, and permalloy, etc. are used.

しかしながら、このような電磁シールド体では、機器内
への電磁波の侵入を完全には防止できず、その電磁シー
ルド効果に不満があった。
However, such an electromagnetic shielding body cannot completely prevent electromagnetic waves from entering the device, and the electromagnetic shielding effect thereof has been dissatisfied.

(問題点を解決するための手段) この発明では、シールド材として酸化物超電導体あるい
は酸化物超電導体を含む材料を用いろことをその解決手
段とした。
(Means for Solving the Problem) In the present invention, the solution is to use an oxide superconductor or a material containing an oxide superconductor as a shielding material.

(実施例) 以下、図面を参照してこの発明の詳細な説明する。(Example) Hereinafter, the present invention will be described in detail with reference to the drawings.

第1図は、この発明の超電導電磁シールド体の一例を示
すもので、図中符号lは超電導電磁シールド体(以下、
単にシールド体と略称する。)である。この例のシール
ド体1は、基板(基体)2とノールド層3とから構成さ
れている。
FIG. 1 shows an example of a superconducting electromagnetic shield according to the present invention, and reference numeral l in the figure indicates a superconducting electromagnetic shield (hereinafter
It is simply called the shield body. ). The shield body 1 in this example is composed of a substrate (substrate) 2 and a nord layer 3.

基板2は板状のもので、この基板2を形成する材料とし
ては、特に限定されないが、通常は、鉄、アルミニウム
、銅等の金属、ポリ塩化ビニル樹脂、ポリエチレン樹脂
、ポリプロピレン樹脂、フッ素樹脂等の合成樹脂などが
用いられる。そして、この基板2の板厚は、シールド体
1の用途、基板2を形成する上記材料の種類などを勘案
して決められる。
The substrate 2 is plate-shaped, and the material for forming the substrate 2 is not particularly limited, but usually includes metals such as iron, aluminum, copper, polyvinyl chloride resin, polyethylene resin, polypropylene resin, fluororesin, etc. Synthetic resins and the like are used. The thickness of the substrate 2 is determined by taking into account the intended use of the shield body 1, the type of material used to form the substrate 2, and the like.

このような基板2の一面には、シールド層3が形成され
ている。このシールド層3を形成する材料としては、A
−B−Cu−0(但し、AはY、La等の周期律表第1
II a族元素を表し、Bはr3c、Sr、Ba等のア
ルカリ土類金属元素を表す。)で示される酸化物超電導
体あるいはこの酸化物超電導体を含む材料が用いられる
A shield layer 3 is formed on one surface of such a substrate 2. The material for forming this shield layer 3 is A
-B-Cu-0 (However, A is Y, La, etc. from periodic table 1)
II represents a group element, and B represents an alkaline earth metal element such as r3c, Sr, Ba, etc. ) or a material containing this oxide superconductor is used.

次に、このような構成からなるシールド体lの製造方法
の一例を説明する。まず、酸化物超電導体を構成する元
素を含む粉末を用意する。この粉末としては、周期律表
第111a族元素を含む粉末とアルカリ土類金属元素を
含む粉末と酸化銅粉末とからなる混合粉末が用いられる
。上記の周期律表第111a族元素を含む粉末には、S
c、Y、La、Ce。
Next, an example of a method for manufacturing the shield body I having such a configuration will be described. First, powder containing elements constituting an oxide superconductor is prepared. As this powder, a mixed powder consisting of a powder containing an element of group 111a of the periodic table, a powder containing an alkaline earth metal element, and a copper oxide powder is used. The powder containing the Group 111a element of the periodic table includes S
c, Y, La, Ce.

P r、Nd、Pm、S m、Eu、Gd、Tb、Dy
、Ho、Er、Tm。
P r, Nd, Pm, S m, Eu, Gd, Tb, Dy
, Ho, Er, Tm.

Y b、 L uの各元素の酸化物、例えば酸化イツト
リウム、酸化ランタン等の酸化物粉末などが好適であり
、またアルカリ土類金属元素を含む粉末には、r3e、
S r、Mg、13a、Raの各元素の炭酸塩、例えば
炭酸バリウム、炭酸ストロンチウム、炭酸カルシウム、
炭酸ベリリウム等の炭酸塩粉末などが好適である。さら
に、酸化銅粉末には、Cuo 、Cuz O%CutO
3、CU 403などの酸化鋼の粉末が用いられる。そ
して、これらの粉末の混合比は、得られる超電導体をA
 xI3 yCuo zの組成式で示すと、X、Y。
Oxides of each element Yb and Lu, such as oxide powders such as yttrium oxide and lanthanum oxide, are suitable, and powders containing alkaline earth metal elements include r3e,
Carbonates of each element Sr, Mg, 13a, Ra, such as barium carbonate, strontium carbonate, calcium carbonate,
Carbonate powders such as beryllium carbonate are suitable. Furthermore, the copper oxide powder contains Cuo, CuzO%CutO
3. Oxidized steel powder such as CU 403 is used. The mixing ratio of these powders makes the resulting superconductor A
The compositional formula of xI3 yCuo z is X, Y.

Zが次のような範囲となるj;うに決められることが望
ましい。
It is desirable that Z is determined to be within the following range.

0、l≦X≦2. 0.1≦y≦3.1≦Z≦4次に、
上記の各粉末を所定の混合比で混合して混合粉末を得、
この混合粉末を下記の工程で成形体に成形する。
0, l≦X≦2. 0.1≦y≦3.1≦Z≦4 Next,
Mix the above powders at a predetermined mixing ratio to obtain a mixed powder,
This mixed powder is molded into a molded body in the following steps.

(1)混合粉末−仮焼−成形体 (2)混合粉末−焼成−成形体 (3)混合粉末−圧粉一焼成一成形体 (4)混合粉末−仮焼一粉砕一焼成一成形体(5)混合
粉砕−仮焼一粉砕一圧粉一焼成一成形体そして、上記仮
焼および焼成工程は、それぞれ酸化性雰囲気中で行なわ
れることが望ましい。また、上記の焼成条件は、800
〜1100℃程度の焼成温度、1〜300時間程度の焼
成時間とされる。そして、上記の(+)工程で得られた
成形体を除く成形体は、工程中の焼成により上記混合粉
末中の各元素粉末が互いに反応して超電導体となる。
(1) Mixed powder - calcined - molded body (2) Mixed powder - fired - molded body (3) Mixed powder - compacted powder - fired - molded body (4) Mixed powder - calcined - crushed - fired - molded body ( 5) Mixing and pulverization - calcination, pulverization, compaction, calcination, and molded body It is desirable that the above calcination and calcination steps are each carried out in an oxidizing atmosphere. In addition, the above firing conditions are 800
The firing temperature is approximately 1100°C and the firing time is approximately 1 to 300 hours. The molded bodies other than the molded bodies obtained in the above (+) step become superconductors as the elemental powders in the mixed powder react with each other during firing during the process.

次に、このようにして得られた成形体をターゲットとし
、スパッタリング法によりアルミニウムからなる基板2
の一面上に酸化物超電導体からなるシールド層3を形成
して目的のシールド体lを得る。
Next, using the thus obtained molded body as a target, a substrate 2 made of aluminum is formed by sputtering.
A shield layer 3 made of an oxide superconductor is formed on one surface of the shield layer 3 to obtain a target shield body l.

このようにして得られたシールド体lにあっては、基板
2上に形成されたシールド層3が酸化物超電導体からな
るものであるので、上記のシールド層3を形成する酸化
物超電導体がその臨界温度(T c)以下の温度でかつ
臨界磁界(Hc)以下の磁界において完全反磁性(マイ
スナー効果)を示すことから、上記シールド層3により
電磁波を完全に遮断でき、完全な電磁ンールトが可能な
ものとなる。
In the shield body l thus obtained, the shield layer 3 formed on the substrate 2 is made of an oxide superconductor, so that the oxide superconductor forming the shield layer 3 is Since it exhibits complete diamagnetic property (Meissner effect) at a temperature below its critical temperature (Tc) and in a magnetic field below its critical magnetic field (Hc), the shielding layer 3 can completely block electromagnetic waves and completely eliminate electromagnetic flux. It becomes possible.

したがって、このシールド体lを用いれば、電磁波を完
全に遮断できるので、例えばコンピュータ、磁気記録装
置などの精密機器の内部への電磁波の浸入を完全に防止
できるとともに、マグネットや乙種磁場発生器から発せ
られる電磁波を完全に閉じ込めることができる。
Therefore, by using this shield l, it is possible to completely block electromagnetic waves, so it is possible to completely prevent electromagnetic waves from penetrating into precision equipment such as computers and magnetic recording devices, and also to prevent electromagnetic waves from emitting from magnets and class B magnetic field generators. can completely confine electromagnetic waves.

なお、この発明のシールド体1は、次のような実施態様
をとることができる。
In addition, the shield body 1 of this invention can take the following embodiments.

(1)上記の実施例では、シールド体lの基体として板
状の基板2を用いたが、基体として、画状、円筒状など
あらゆる形状のものを用いることができる。このように
基体の形状を種々のらのとすることで、シールド対象の
機器の形態などに対応することができる。
(1) In the above embodiment, the plate-shaped substrate 2 is used as the base of the shield body l, but the base can be of any shape such as a picture shape or a cylindrical shape. By making the shape of the base body various in this way, it is possible to correspond to the form of the equipment to be shielded.

(2)上記の実施例では、基板2の一面にシールド層3
を形成したものとしたが、基板2の一面にシールド層3
を積層した構成でもよく、また基板2の両面にそれぞれ
シールド層3を形成した構成でらよい。このようにシー
ルド層3を増やすことで、その電磁ンールド効果の増大
を図ることが可能となる。
(2) In the above embodiment, a shield layer 3 is provided on one surface of the substrate 2.
However, a shield layer 3 is formed on one surface of the substrate 2.
It may be a structure in which these are laminated, or a structure in which shield layers 3 are formed on both surfaces of the substrate 2. By increasing the number of shield layers 3 in this way, it is possible to increase the electromagnetic shielding effect.

(3)上記の実施例では、シールド層3の形成方法とし
てスパッタリング法を用いたが、この他に、蒸着法など
の薄膜作成法や塗布法などを適宜用いることができる。
(3) In the above embodiments, the sputtering method was used as the method for forming the shield layer 3, but other thin film forming methods such as vapor deposition, coating methods, etc. can be used as appropriate.

上記の塗布法は、前述した超電導体を構成する元素を含
む粉末をベヒクル中に均一に分散してペーストを作製し
、このペーストを基板2上に塗布し、然る後にペースト
中のベヒクルを熱処理することによって揮散させ、これ
によりペースト中の超電導体からなるシールド層3を基
板2上に形成する方法である。そして、上記のベヒクル
としては、例えば合成樹脂類をアルコール、テレピン油
、エステル類などに溶解した揮発性フェス、ワセリンな
どが用いられるが、これに限定されるものではない。ま
た、このベヒクルに対する熱処理は、ベヒクルを揮散さ
せるのに必要十分な程度の温度で行なわれることが望ま
しい。
In the above coating method, a paste is prepared by uniformly dispersing powder containing the elements constituting the superconductor in a vehicle, this paste is coated on the substrate 2, and then the vehicle in the paste is heat-treated. This method forms a shield layer 3 made of the superconductor in the paste on the substrate 2. Examples of the above-mentioned vehicle include, but are not limited to, volatile fests prepared by dissolving synthetic resins in alcohol, turpentine oil, esters, etc., vaseline, and the like. Further, it is desirable that the heat treatment for the vehicle be performed at a temperature necessary and sufficient to volatilize the vehicle.

さらに、上記ベヒクル中に分散される粉末が焼成された
ものではなく、仮焼したものであれば、ベヒクルに対す
る熱処理は、前述した焼成条件(800〜1100℃、
1〜300時間)で行なわれる。この塗布法を用いれば
、前述したスパッタリング法、蒸着法などの方法のよう
に、大規模な製造装置を用いる必要がないことから、シ
ールド体1の製造を容易に行なうことができ、かつ製造
コストの低減をも図れるなどの効果を得ることができる
Furthermore, if the powder dispersed in the vehicle is calcined rather than calcined, the vehicle may be heat-treated under the aforementioned firing conditions (800 to 1100°C,
1 to 300 hours). If this coating method is used, it is not necessary to use large-scale manufacturing equipment unlike the methods such as the sputtering method and vapor deposition method described above, so the shield body 1 can be manufactured easily and the manufacturing cost can be reduced. It is possible to obtain effects such as reducing the amount of

(4)上記の実施例では、基板2の一面にシールド層3
を形成した構成としたが、基板2のシールド層3が形成
された面と反対の而に粘着層を設けた構成としてもよい
。この場合、シールド体1をその粘着層により例えばコ
ンピュータ、磁気記録装置などの精密機器の外壁面に直
接取り付けることが可能となり、電磁シールドを設定す
るだめの作業の効率化を図ることが可能となる。
(4) In the above embodiment, a shield layer 3 is provided on one surface of the substrate 2.
Although the configuration is such that an adhesive layer is provided on the surface of the substrate 2 opposite to the surface on which the shield layer 3 is formed, it is also possible. In this case, the adhesive layer allows the shield body 1 to be directly attached to the outer wall surface of a precision device such as a computer or a magnetic recording device, making it possible to improve the efficiency of the work to set up the electromagnetic shield. .

(発明の効果) 以上説明したように、この発明のシールド体は、シール
ド層を形成する酸化物超電導体がその臨界温度(T c
)以下の温度でかつ臨界磁界(He)以下の磁界におい
てマイスナー効果を示すことから、シールド層により電
磁波を完全に遮断でき、完全な電磁シールドが可能なも
のとなる。
(Effects of the Invention) As explained above, in the shield body of the present invention, the oxide superconductor forming the shield layer has a critical temperature (T c
Since the Meissner effect is exhibited at temperatures below ) and in magnetic fields below the critical magnetic field (He), the shield layer can completely block electromagnetic waves, making complete electromagnetic shielding possible.

したがって、このシールド体を用いれば、電磁波を完全
に遮断できるので、例えばコンピュータ、磁気記録装置
などの精密機器の内部への電磁波の侵入を完全に防止で
きるとともに、マグネットや各種磁場発生器から発せら
れる電磁波を完全に閉じ込めることができる。
Therefore, by using this shielding body, it is possible to completely block electromagnetic waves, so it is possible to completely prevent electromagnetic waves from entering the inside of precision equipment such as computers and magnetic recording devices, and also to prevent electromagnetic waves emitted from magnets and various magnetic field generators. It can completely confine electromagnetic waves.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、この発明のシールド体の一例を示す概略断面
図である。 1・・・シールド体(超電導電磁シールド体)、2・・
・基板(基体)、3・・・シールド層。
FIG. 1 is a schematic cross-sectional view showing an example of the shield body of the present invention. 1... Shield body (superconducting electromagnetic shield body), 2...
-Substrate (substrate), 3...shield layer.

Claims (1)

【特許請求の範囲】[Claims]  基体上に酸化物超電導体あるいは酸化物超電導体を含
む材料からなるシールド層が形成されたことを特徴とす
る超電導電磁シールド体。
A superconducting electromagnetic shielding body, characterized in that a shielding layer made of an oxide superconductor or a material containing an oxide superconductor is formed on a base.
JP62092811A 1987-04-15 1987-04-15 Superconducting electromagnetic shield Pending JPS63258098A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62092811A JPS63258098A (en) 1987-04-15 1987-04-15 Superconducting electromagnetic shield

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62092811A JPS63258098A (en) 1987-04-15 1987-04-15 Superconducting electromagnetic shield

Publications (1)

Publication Number Publication Date
JPS63258098A true JPS63258098A (en) 1988-10-25

Family

ID=14064796

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62092811A Pending JPS63258098A (en) 1987-04-15 1987-04-15 Superconducting electromagnetic shield

Country Status (1)

Country Link
JP (1) JPS63258098A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0269997A (en) * 1988-09-05 1990-03-08 Mitsubishi Mining & Cement Co Ltd Ceramic superconductive magnetic shield and manufacture of the same
JPH02275779A (en) * 1989-04-17 1990-11-09 Ngk Insulators Ltd Superconducting ceramic composite material
JPH02299295A (en) * 1989-05-15 1990-12-11 Ngk Insulators Ltd Superconductive magnetic shield plate
JP2016058608A (en) * 2014-09-11 2016-04-21 公益財団法人鉄道総合技術研究所 High temperature superconducting current lead

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0269997A (en) * 1988-09-05 1990-03-08 Mitsubishi Mining & Cement Co Ltd Ceramic superconductive magnetic shield and manufacture of the same
JPH02275779A (en) * 1989-04-17 1990-11-09 Ngk Insulators Ltd Superconducting ceramic composite material
JPH02299295A (en) * 1989-05-15 1990-12-11 Ngk Insulators Ltd Superconductive magnetic shield plate
JP2016058608A (en) * 2014-09-11 2016-04-21 公益財団法人鉄道総合技術研究所 High temperature superconducting current lead

Similar Documents

Publication Publication Date Title
JP2664066B2 (en) Superconducting thin film and method for producing the same
JPS63258098A (en) Superconducting electromagnetic shield
JP2502098B2 (en) Superconducting magnetic shield
EP0290271B1 (en) Superconducting circuit board and process of manufacturing it
JPS63303813A (en) Superconducting compound oxide material
US5286713A (en) Method for manufacturing an oxide superconducting circuit board by printing
JP2577061B2 (en) Method for producing composite oxide superconductor thin film
JP2713343B2 (en) Superconducting circuit fabrication method
JP3205996B2 (en) Superconductor
JP3049739B2 (en) Superconducting composition
JPH01126284A (en) Stabilized ceramics superconductive at high temperature
JPS6427116A (en) Superconductor device
EP0406006A2 (en) Oxide superconductor
JP2645730B2 (en) Superconducting thin film
JPH084199B2 (en) Superconducting magnetic shield
JPS63318722A (en) Magnetic circuit
JPS63318015A (en) Oxide superconductor and its manufacture
JP2778119B2 (en) Composite oxide superconducting thin film and method for forming the same
JP2817257B2 (en) Superconductor
JPS63276820A (en) Manufacture of oxide superconductor
JPH04114917A (en) Superconductor
JPS63234569A (en) Magnetic shielding material
JPH04108609A (en) Superconductor
JPH04119917A (en) Superconductor
JP2730043B2 (en) Superconductor