JPH02275779A - Superconducting ceramic composite material - Google Patents

Superconducting ceramic composite material

Info

Publication number
JPH02275779A
JPH02275779A JP1097200A JP9720089A JPH02275779A JP H02275779 A JPH02275779 A JP H02275779A JP 1097200 A JP1097200 A JP 1097200A JP 9720089 A JP9720089 A JP 9720089A JP H02275779 A JPH02275779 A JP H02275779A
Authority
JP
Japan
Prior art keywords
metal
superconducting
composite
ceramic
superconducting ceramic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1097200A
Other languages
Japanese (ja)
Inventor
Hitoshi Yoshida
均 吉田
Hitoshi Sakai
均 酒井
Manabu Yoshida
学 吉田
Toshio Oda
敏夫 小田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Original Assignee
NGK Insulators Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd filed Critical NGK Insulators Ltd
Priority to JP1097200A priority Critical patent/JPH02275779A/en
Publication of JPH02275779A publication Critical patent/JPH02275779A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Abstract

PURPOSE:To improve the mechanical strength a composite material without firmly bonding a ceramic with a metal by forming a superconducting ceramic on the surface and in the holes of a porous metal, etc., thereby integrating the metal with the ceramic. CONSTITUTION:A superconducting ceramic 2 is formed on the surface 4 and in the holes 5, 11 of porous metals 8, 10 or the ceramics 2 are connected with each other through the holes 6, 11. The ceramic is integrated 1 with the above porous metal 3.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は超電導セラミックスと金属との複合体に係り、
更に詳しくは、例えば磁気シールド用に好適に用いるこ
とができる金属−超電導セラミックス複合体に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a composite of superconducting ceramics and metal,
More specifically, the present invention relates to a metal-superconducting ceramic composite that can be suitably used, for example, for magnetic shielding.

[従来の技術] 近年、超電導特性を利用した核磁気共鳴コンピュータ断
層診断装置(M RI :Magnetic Re5o
nance Irnaging )やリニアモーター等
が実用化されつつあるが、これに伴ない、これらの装置
から漏れ磁界が生じ、外部に悪影響をもたらすことが問
題となっている。一方、脳磁波(α波)等の微小磁気を
測定するに際しては、地磁気などの外部磁界が影響する
と、その正確な検出が困難になるという問題も発生する
。そこで、上記のような問題を解決するため、磁気源か
らの磁気を遮蔽するための磁気シールド装置が必要とな
る。
[Prior art] In recent years, nuclear magnetic resonance computed tomography diagnostic equipment (MRI) that utilizes superconducting properties has been developed.
(Nance Irnaging), linear motors, etc. are being put into practical use, but along with this, leakage magnetic fields are generated from these devices, causing a problem in that they have an adverse effect on the outside. On the other hand, when measuring minute magnetism such as brain magnetic waves (α waves), there is a problem in that accurate detection becomes difficult when external magnetic fields such as terrestrial magnetism influence the measurement. Therefore, in order to solve the above problems, a magnetic shielding device for shielding the magnetism from the magnetic source is required.

この磁気シールドを目的とする場合には、超電導材料の
完全反磁性を利用したシールド体が適している。
If this magnetic shielding is desired, a shielding body that utilizes the perfect diamagnetism of superconducting materials is suitable.

しかしながら、従来の超電導現象は液体ヘリウム中でし
か実現できないために形状が大きく、表面積の大きいシ
ールド機器の冷却は非常に困難であり、又経済的にも大
きな制約を受けていた。特に、人体から発生する磁界を
測定する必要のある医療用磁気シールドては、外部磁気
による影響(雑音)を極力低下させる必要かあるか、現
在の技術では、強磁性体を使用して医療用磁気シールド
を作ると、重量が膨大となる等の欠点があった。
However, since the conventional superconducting phenomenon can only be realized in liquid helium, it is extremely difficult to cool shield devices that are large in shape and have a large surface area, and is also subject to significant economic constraints. In particular, with regard to medical magnetic shields that need to measure the magnetic field generated by the human body, it is necessary to reduce the influence (noise) from external magnetism as much as possible with current technology. Creating a magnetic shield had drawbacks such as an enormous weight.

[発明が解決しようとする課8] ところで、近年液体窒素温度で超電導を示す超電導セラ
ミックスが出現し、シールド機器の小型化、軽量化か可
能になるとともに、経済的にも成り立つようになってき
た。
[Question 8 that the invention seeks to solve] By the way, in recent years, superconducting ceramics that exhibit superconductivity at liquid nitrogen temperatures have appeared, making it possible to make shielding equipment smaller and lighter, as well as becoming economically viable. .

しかしながら超電導セラミックスは、十分な機械強度を
有していないため、必要な寸法の磁気シールドを構成す
るためには、金属で補強する必要かある。
However, since superconducting ceramics do not have sufficient mechanical strength, they must be reinforced with metal in order to construct a magnetic shield of the required size.

そこで、この欠点を解消する為に金属の表面に超電導セ
ラミックスを形成する方法か試みられているが、この場
合、金属と超電導セラミックスは一般に、8膨張係数が
異なるために、金属と超電導セラミックスの間には中間
の熱膨張係数を有する中間層を設置し多層構造とするの
が通常である。
Therefore, in order to overcome this drawback, attempts have been made to form superconducting ceramics on the surface of metals, but in this case, since metals and superconducting ceramics generally have different expansion coefficients, there is a difference between metals and superconducting ceramics. Usually, an intermediate layer having an intermediate coefficient of thermal expansion is provided to form a multilayer structure.

そして、中間層は金属及び超電導セラミックスの両界面
で良好な機械的強度を有する接合層を形成する必要かあ
る。
The intermediate layer needs to form a bonding layer having good mechanical strength at both interfaces between the metal and the superconducting ceramic.

しかしなから、現在知られている高温用′屯導セラミッ
クス(Y−Ba−Cu−0系、 旧−3r−(:a−C
u−0系、T旦−Ba−Ca−Cu−0系など)は他物
質との反応性に富むため、従来から知られている金属と
良好な接合を得られる中間層の殆んどは、超電導セラミ
ックスと反応し中間層の役割を果たすことはできなかっ
た。
However, currently known high-temperature conductive ceramics (Y-Ba-Cu-0 series, former -3r-(:a-C
(u-0 series, Tdan-Ba-Ca-Cu-0 series, etc.) are highly reactive with other substances, so most of the intermediate layers that can obtain good bonding with conventionally known metals are , it reacted with superconducting ceramics and could not play the role of an intermediate layer.

又、中間層として安定化ZrO2を使用すると反応が抑
えられることを見出したが、この構成て大きな製品を得
た場合、液体窒素温度←室温間の冷熱サイクルを行なう
と界面に応力か集中し、剥離か生し信頼性に乏しいもの
であった。
We also found that the reaction can be suppressed by using stabilized ZrO2 as an intermediate layer, but when a large product is obtained using this configuration, stress concentrates at the interface when a cooling/heating cycle is performed between liquid nitrogen temperature and room temperature. The film peeled off and was unreliable.

[課題を解決するための手段] 従って、本発明は必要な寸法の磁気シールド体を得るに
当り、信頼性のある金属て補強一体化された超電導セラ
ミックス複合体を提供することを目的とする。
[Means for Solving the Problems] Accordingly, an object of the present invention is to provide a superconducting ceramic composite integrally reinforced with metal, which is reliable in obtaining a magnetic shielding body of required dimensions.

そして、上記目的を達成するために、本発明によれば、
超電導セラミックスと多孔性金属とが複合一体化されて
なる超電導セラミックス複合体、か提供される。
According to the present invention, in order to achieve the above object,
A superconducting ceramic composite body is provided in which a superconducting ceramic and a porous metal are integrated into a composite body.

本発明の場合、多孔性金属と超電導セラミックスの接合
面は機械的強度を保証する必要はなく、超電導セラミッ
クスは多孔性金属に設けられた多数の孔部に侵入し、そ
の侵入部て多孔性釜底と機械的接合をしている。
In the case of the present invention, the bonding surface between the porous metal and the superconducting ceramic does not need to guarantee mechanical strength, and the superconducting ceramic penetrates into the many pores provided in the porous metal, and uses the intrusions to form a porous pot. Mechanically connected to the bottom.

又、多孔性金属と超電導セラミックスの接合は多孔性金
属の片面てあっても両面であってもよいか、多孔性金属
をはさんで両面に超電導セラミックを形成することは、
該両面のセラミックスが多孔性金属の孔部を介して互い
に連結できるため更に結合力か向上し、好ましい。
Also, is it possible to bond the porous metal and the superconducting ceramic on one or both sides of the porous metal?
Since the ceramics on both sides can be connected to each other through the pores of the porous metal, the bonding strength is further improved, which is preferable.

ここで、多孔性金属はなるべく超電導セラミックスと反
応性に乏しいもの、及び900°C以上で耐酸化性に優
れるものか好ましく、PL、 Au、 Ag及び5US
304.5US430などのステンレス鋼などが良好で
、又必要に応じてこれら基材金属表面にZrO2、Al
z03.スピネル、貴金属などが溶射などの手段で形成
されたものてあってもよい。
Here, the porous metal is preferably one that has poor reactivity with superconducting ceramics and one that has excellent oxidation resistance at 900°C or higher, such as PL, Au, Ag, and 5US.
Stainless steel such as 304.5US430 is suitable, and if necessary, ZrO2 or Al may be applied to the surface of these base metals.
z03. Spinel, precious metal, or the like may be formed by means such as thermal spraying.

更に、多孔性金属は板状あるいは円筒状基材金属に機械
加Tにより多数の孔が形成されたもの、又、線状素材を
加工した網状多孔質体ても良い。
Furthermore, the porous metal may be a plate-like or cylindrical base metal in which many holes are formed by mechanical processing, or a network-like porous material obtained by processing a linear material.

また、ここて用いられる超電導セラミックスの組成とし
ては特に制限されず、例えばYBa2CuzOxBi2
Sr2CaCu20.、Bi2Ca5rCu20x$を
用いることがてきる。
Further, the composition of the superconducting ceramic used here is not particularly limited, and for example, YBa2CuzOxBi2
Sr2CaCu20. , Bi2Ca5rCu20x$ can be used.

[実施例] 以下、本発明を実施例に基づいて更に詳細に説明するか
、本発明はこれらの実施例に限られるものではない。
[Examples] Hereinafter, the present invention will be explained in more detail based on Examples, but the present invention is not limited to these Examples.

(実施例1) 第2図に示すような、多孔性金属として300x300
xl (厚さ) (m+n)の5US430を用意した
(Example 1) 300x300 as a porous metal as shown in Figure 2
5US430 of xl (thickness) (m+n) was prepared.

この金属板lOにはφ3111[I+の穴11か開口率
約35%てほぼ均一に開けられている。なお、この板の
両面にはY2O3て部分安定化させた2rO,、か厚さ
200μ]て溶射形成されている。
Holes 11 of φ3111 [I+ are substantially uniformly drilled in this metal plate IO with an aperture ratio of about 35%. Note that 2rO, partially stabilized with Y2O3, was thermally sprayed on both sides of this plate to a thickness of 200 μm.

一方、超電導セラミックスとして組成かBi25r2C
aCu20.となるように3!20:+、5rCO:、
、 CaCO3、Cu0を調合し、蒸留水を用いて湿式
混合し、この混合物を750°Cて10hr仮焼して、
Bi25r2CaCu206合成粉末を得た。
On the other hand, the composition of superconducting ceramics is Bi25r2C.
aCu20. So that 3!20:+, 5rCO:,
, CaCO3, and Cu0 were prepared, wet-mixed using distilled water, and this mixture was calcined at 750°C for 10 hours.
A Bi25r2CaCu206 synthetic powder was obtained.

ついて、合成した粉末をエタノールを溶媒とし、結合剤
としてPVA(ポリビニルアルコール)を8wt%添加
して混合し、粘度4000cpsのスラリーを作製して
ドクターブレード装置て厚さ0.8mmのシートを得た
Then, the synthesized powder was mixed with ethanol as a solvent and 8 wt% of PVA (polyvinyl alcohol) was added as a binder to prepare a slurry with a viscosity of 4000 cps, and a sheet with a thickness of 0.8 mm was obtained using a doctor blade device. .

このシート21を2枚用意し、第3図に示すように、上
記金属板lOの両面に温度80°C1圧力200 kg
/cm2で貼り付け、成形体20を得た。
Two of these sheets 21 are prepared, and as shown in FIG.
/cm2 to obtain a molded body 20.

この成形体をAg平板上にセットし、酸素雰囲気て加熱
し、脱バインダーのために850°Cで20hr保持し
た後、930℃に温度を上昇させて10分保持し1次に
900℃まて下げて5hr保持し、さらに炉冷して酸化
物超電導複合体1を得た。
This molded body was set on an Ag flat plate, heated in an oxygen atmosphere, and held at 850°C for 20 hours to remove the binder.Then, the temperature was raised to 930°C and held for 10 minutes, and then heated to 900°C. The temperature was lowered and maintained for 5 hours, and the furnace was further cooled to obtain an oxide superconducting composite 1.

この複合体lの要部構造断面を第1図に示す。A cross-sectional view of the main structure of this composite I is shown in FIG.

第1図に示すように、超電導セラミックス2は金属3の
両面に形成され、両面の超電導セラミックス2は金属の
孔部5で連結していた。なお、超電導セラミックス2と
金属3の界面4は剥離している部分もあった。
As shown in FIG. 1, the superconducting ceramics 2 were formed on both sides of the metal 3, and the superconducting ceramics 2 on both sides were connected by holes 5 in the metal. Note that there were some parts of the interface 4 between the superconducting ceramic 2 and the metal 3 that were peeled off.

(比較例1) 孔を有しない金属板を用い、他は実施例1と全く同一の
製法にて超電導セラミックス複合体Aを得た。
(Comparative Example 1) A superconducting ceramic composite A was obtained in the same manner as in Example 1 except that a metal plate without holes was used.

この複合体Aは見掛は上不具合はなかった。This composite A had no apparent defects.

(実施例2) 上記の実施例1の複合体1及び比較例の複合体Aは、温
度が90に以下で電気抵抗が0となり、マイスナー効果
が観察され超電導特性を示すことを確認した。
(Example 2) Composite 1 of Example 1 and Composite A of Comparative Example have an electrical resistance of 0 at a temperature of 90°C or lower, and the Meissner effect was observed, confirming that they exhibit superconducting properties.

又、これらについても初期磁気シールド能を測定した。In addition, the initial magnetic shielding ability of these materials was also measured.

本実施例て使用する磁気シールド能測定装置30は、第
4図にその一例を示すように、液体窒素容器31、電磁
石32、ガウスメータ(磁束密度測定装置)33からな
り、試料34を電磁石32とガウスメータ33との間に
挿入し、液体窒素の存在下て電磁石32により定磁場を
発生してガウスメータ33により漏洩磁場を測定する装
置である。
The magnetic shielding ability measuring device 30 used in this example is composed of a liquid nitrogen container 31, an electromagnet 32, and a Gauss meter (magnetic flux density measuring device) 33, as shown in FIG. This device is inserted between the gauss meter 33 and the electromagnet 32 to generate a constant magnetic field in the presence of liquid nitrogen, and the gauss meter 33 measures the leakage magnetic field.

磁気シールド能測定装置30において、電磁石32とガ
ウスメータ33との間に、測定試料34として実施例1
の複合体1及び比較例の複合体Aを挿入し、漏洩磁束が
0.01ガウス以下の完全磁場シールドが可能な最大印
加磁場を測定した。このときの複合体lの完全シールド
能は25ガウスてあり、複合体Aの完全シールド能は2
8ガウスであった。
In the magnetic shielding ability measuring device 30, the sample of Example 1 was placed between the electromagnet 32 and the Gaussmeter 33 as the measurement sample 34.
Composite 1 of Example 1 and Composite A of Comparative Example were inserted, and the maximum applied magnetic field capable of complete magnetic field shielding with a leakage magnetic flux of 0.01 Gauss or less was measured. At this time, the complete shielding ability of complex L is 25 Gauss, and the complete shielding ability of complex A is 25 Gauss.
It was 8 Gauss.

その後、これら複合体について液体窒素10分浸漬0室
温放置20分の冷熱サイクルを実施した。
Thereafter, these composites were subjected to a cooling/heating cycle in which they were immersed in liquid nitrogen for 10 minutes and left at room temperature for 20 minutes.

その結果、サイクル数N=5で複合体Aは金属部から片
面の超電導セラミックスが剥離し脱落した。一方、複合
体lは特に異常はなく、N=50で上記と同様にシール
ド能を測定した結果、26ガウスで特性の劣化は認めら
れなかった。
As a result, at the number of cycles N=5, the superconducting ceramic on one side of composite A peeled off from the metal part and fell off. On the other hand, there was no particular abnormality in the composite 1, and as a result of measuring the shielding ability in the same manner as above at N=50, no deterioration of the characteristics was observed at 26 Gauss.

(実施例3) 金属板の片面のみにセラミックスシートを圧着した以外
は全〈実施例1と同じ製造工程で、第5図に示す複合体
50を得た。
(Example 3) A composite body 50 shown in FIG. 5 was obtained using the same manufacturing process as in Example 1 except that the ceramic sheet was pressure-bonded to only one side of the metal plate.

第5図に示すように、超電導セラミックス51は金属板
52の上面に形成され、セラミックス51の凸部53が
金属板52の孔部54の中に入り込んだ構造となってい
た。なお、セラミックス51と金属板52の界面55の
接合は不完全なものであった。
As shown in FIG. 5, a superconducting ceramic 51 was formed on the upper surface of a metal plate 52, and a convex portion 53 of the ceramic 51 entered into a hole 54 of the metal plate 52. Note that the bonding at the interface 55 between the ceramic 51 and the metal plate 52 was incomplete.

この複合体50について実施例2と同様の冷熱サイクル
試験を実施した。N=50サイクル後、シールド能を測
定したが特性劣化は観察されなかった・ 信頼性がある理由は、セラミ、ツクス51と金属板52
の界面での接合が不充分でも、セラミックスの凸部53
と金属板の孔部54か機械的な引掛かりによりセラミッ
クス51が金属板52に保持された構造となるためと推
定される。
A thermal cycle test similar to that in Example 2 was conducted on this composite 50. After N = 50 cycles, the shielding ability was measured and no deterioration of the characteristics was observed.The reason for the reliability is the ceramic, Tux 51 and metal plate 52.
Even if the bonding at the interface is insufficient, the convex portion 53 of the ceramic
This is presumed to be due to the structure in which the ceramic 51 is held by the metal plate 52 due to the mechanical catch of the hole 54 of the metal plate.

(実施例4) φ0.5mmのSO3:104の線材を互いに絡ませた
網状金属成形体を用意し、この金属成形体に無電解メツ
キでAgをコーティングした。Agは線材に均一コーテ
ィングされ、厚さは2μmであった。また外形寸法は、
S OOmmX 500mmで厚さか2+Imである。
(Example 4) A net-like metal molded body in which SO3:104 wire rods of φ0.5 mm were entwined with each other was prepared, and this metal molded body was coated with Ag by electroless plating. Ag was uniformly coated on the wire, and the thickness was 2 μm. In addition, the external dimensions are
S OOmm x 500mm and thickness is 2+Im.

 次に、実施例1と同じBtzSr2CaCu20a合
成粉末を用意し、これに結合剤としてPVA l wt
$、溶媒としてエタノールを混合し、粘度7000cp
sの粘土を得た。
Next, the same BtzSr2CaCu20a synthetic powder as in Example 1 was prepared, and PVA l wt was added to it as a binder.
$, mixed with ethanol as solvent, viscosity 7000cp
s clay was obtained.

次いで、上記の金属成形体61を、第6図に示す成形金
型62.63にセットし、金型内に上記粘土64を注入
口65から加圧注入した後150℃で乾燥し、成形体を
得た。もちろん図示はしないが金型には空気抜きのベン
トロが形成してあり又、離型が容易なように離型剤が形
成されている。
Next, the metal molded body 61 is set in the molding molds 62 and 63 shown in FIG. 6, and the clay 64 is injected into the mold through the injection port 65 under pressure, and then dried at 150° C. to form a molded body. I got it. Of course, although not shown in the drawings, the mold is provided with a vent for air removal, and a mold release agent is also formed to facilitate mold release.

この成形体を実施例1と同じ方法で焼成した。This molded body was fired in the same manner as in Example 1.

得られた複合体70の断面を第7図に示す。第7図に示
すように、複合体70は超電導セラミックス71の中に
網状金属72か形成された複合体となっている。
A cross section of the obtained composite 70 is shown in FIG. As shown in FIG. 7, the composite body 70 is a composite body in which a mesh metal 72 is formed within a superconducting ceramic 71.

この複合体70はセラミックス71が形成されていない
網状金属72の端部73を液体窒素容器に固定する端子
として使用された。
This composite 70 was used as a terminal for fixing the end 73 of the mesh metal 72 on which the ceramic 71 was not formed to a liquid nitrogen container.

[発明の効果] 以上説明した通り、本発明では超電導セラミックスと金
属の複合体を得るに当って金属を多孔質にすることによ
り、超電導セラミックスと金属の界面が強固な結合層を
形成しなくても十分信傾性のある複合体を提供すること
がてきる。
[Effects of the Invention] As explained above, in the present invention, when obtaining a composite of superconducting ceramics and metal, by making the metal porous, the interface between the superconducting ceramics and metal does not have to form a strong bonding layer. can also provide a sufficiently reliable complex.

又、本発明では、金属とセラミックスが接合面で充分な
接合をしていないために、両者の熱膨張差で生じる熱応
力を吸収できる。さらに、本発明の複合体ではセラミッ
クスをハンドリングせずに金属をハンドリングすること
になるため、機械的損傷の心配かないなど多くの長所を
有するものてあり、安価で信頼性のある超電導セラミッ
クス製品を提供することができる。
Further, in the present invention, since the metal and ceramic are not sufficiently bonded at the joint surface, thermal stress caused by the difference in thermal expansion between the two can be absorbed. Furthermore, since the composite of the present invention handles metal without handling ceramics, it has many advantages such as no need to worry about mechanical damage, and provides inexpensive and reliable superconducting ceramic products. can do.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の複合体の一実施例を示す要部断面図、
第2図は第1図の複合体を構成する金属を示す斜視図、
第3図は第1図の複合体を得るための成形体の断面図、
第4図は磁気シールド能測定装置の一例を示す一部破断
斜視図、第5図は本発明の複合体の他の実施例を示す要
部断面図、第6図は本発明の複合体の成形方法の例を示
す断面説明図、第7図は第6図の成形方法で得られた複
合体を示す断面図である。 1.50.70・・・複合体、2,51,7I・・・超
電導セラミックス、3,10,52.72・・・多孔性
金属、4・・・超電導セラミックスと多孔性金属の界面
、5,54・・・多孔性金属の孔部、11・・・穴、3
0・−・磁気シールド能測定装置、31・・・液体窒素
容器、32・・・電磁石、33−・ガウスメータ、34
・・・試料、53・・・超電導セラミックスの凸部、6
1・・・金属成形体、62.63・−・成形金型、64
・・・粘土、65・・・注入口。 第1図 第2図 】1 第3図
FIG. 1 is a sectional view of essential parts showing an embodiment of the composite of the present invention;
FIG. 2 is a perspective view showing the metals constituting the composite shown in FIG.
FIG. 3 is a sectional view of a molded body for obtaining the composite shown in FIG. 1;
FIG. 4 is a partially cutaway perspective view showing an example of a magnetic shielding ability measuring device, FIG. 5 is a cross-sectional view of main parts showing another embodiment of the composite of the present invention, and FIG. FIG. 7 is a cross-sectional view showing an example of the molding method, and FIG. 7 is a cross-sectional view showing a composite obtained by the molding method of FIG. 1.50.70...Composite, 2,51,7I...Superconducting ceramics, 3,10,52.72...Porous metal, 4...Interface between superconducting ceramics and porous metal, 5 , 54... Porous metal hole, 11... Hole, 3
0...Magnetic shielding ability measuring device, 31...Liquid nitrogen container, 32...Electromagnet, 33--Gauss meter, 34
...Sample, 53...Protrusion of superconducting ceramics, 6
1... Metal molded body, 62.63... Molding die, 64
...Clay, 65...Inlet. Figure 1 Figure 2] 1 Figure 3

Claims (3)

【特許請求の範囲】[Claims] (1)超電導セラミックスと多孔性金属とが複合一体化
されていることを特徴とする超電導セラミックス複合体
(1) A superconducting ceramic composite characterized in that a superconducting ceramic and a porous metal are integrated into one.
(2)多孔性金属の表面及び孔部に超電導セラミックス
が形成されている請求項1記載の超電導セラミックス複
合体。
(2) The superconducting ceramic composite according to claim 1, wherein the superconducting ceramic is formed on the surface and pores of the porous metal.
(3)多孔性金属の孔部を介して超電導セラミックスが
連結している請求項1記載の超電導セラミックス複合体
(3) The superconducting ceramic composite according to claim 1, wherein the superconducting ceramics are connected through the pores of the porous metal.
JP1097200A 1989-04-17 1989-04-17 Superconducting ceramic composite material Pending JPH02275779A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1097200A JPH02275779A (en) 1989-04-17 1989-04-17 Superconducting ceramic composite material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1097200A JPH02275779A (en) 1989-04-17 1989-04-17 Superconducting ceramic composite material

Publications (1)

Publication Number Publication Date
JPH02275779A true JPH02275779A (en) 1990-11-09

Family

ID=14185963

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1097200A Pending JPH02275779A (en) 1989-04-17 1989-04-17 Superconducting ceramic composite material

Country Status (1)

Country Link
JP (1) JPH02275779A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07122128A (en) * 1993-10-21 1995-05-12 Chodendo Hatsuden Kanren Kiki Zairyo Gijutsu Kenkyu Kumiai Tl type oxide superconducting wire rod and manufacture thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61215269A (en) * 1985-03-22 1986-09-25 居上 英雄 Composite sintered body of porous metal and ceramic materialand manufacture
JPS63258098A (en) * 1987-04-15 1988-10-25 Fujikura Ltd Superconducting electromagnetic shield
JPS63276297A (en) * 1987-05-07 1988-11-14 Mitsubishi Electric Corp Copper clad substrate

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61215269A (en) * 1985-03-22 1986-09-25 居上 英雄 Composite sintered body of porous metal and ceramic materialand manufacture
JPS63258098A (en) * 1987-04-15 1988-10-25 Fujikura Ltd Superconducting electromagnetic shield
JPS63276297A (en) * 1987-05-07 1988-11-14 Mitsubishi Electric Corp Copper clad substrate

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07122128A (en) * 1993-10-21 1995-05-12 Chodendo Hatsuden Kanren Kiki Zairyo Gijutsu Kenkyu Kumiai Tl type oxide superconducting wire rod and manufacture thereof

Similar Documents

Publication Publication Date Title
EP0393932B1 (en) Superconducting structure for magnetic shielding
US5079226A (en) Superconductor jointed structure
JPH02275779A (en) Superconducting ceramic composite material
JPH02296778A (en) Production of ceramic superconductor
JP3383799B2 (en) Superconducting composite and manufacturing method thereof
JPH02302379A (en) Cylindrical unit structure of oxide superconductor
JP3281892B2 (en) Ceramic superconducting composite and manufacturing method thereof
JPH0446083A (en) Superconducting pipe and its production
JPH0661682A (en) Supperconducting magnetic shield
JP2540655B2 (en) Bismuth-based superconducting-metal composite
JP3150718B2 (en) Superconductor lamination substrate and superconducting laminate using the same
JPH0518778B2 (en)
JPS63313897A (en) Magnetic shielding body
JPH0514383B2 (en)
JPH0269997A (en) Ceramic superconductive magnetic shield and manufacture of the same
JP2595274B2 (en) Method of forming oxide-based superconductor layer
JPH038777A (en) Bond structure of oxide superconductor
JPS63261763A (en) Superconducting magnetic shield
JPH0477347A (en) Oxide superconducting laminate and its production
Soylu et al. Textured joints for conductors and complex shaped components using the composite reaction texturing method
JP2506225B2 (en) Precious metal-bismuth superconducting laminate
JPH03265576A (en) Oxide superconducting laminated body and its production
JPH03235088A (en) Bismuth based superconductor composite
JPH02228099A (en) Manufacture of magnetic shielding member
JPH01292871A (en) Manufacture of oxide superconductive molding with electrode layer