JPH02296778A - Production of ceramic superconductor - Google Patents

Production of ceramic superconductor

Info

Publication number
JPH02296778A
JPH02296778A JP1119553A JP11955389A JPH02296778A JP H02296778 A JPH02296778 A JP H02296778A JP 1119553 A JP1119553 A JP 1119553A JP 11955389 A JP11955389 A JP 11955389A JP H02296778 A JPH02296778 A JP H02296778A
Authority
JP
Japan
Prior art keywords
ceramic
fired
superconductor
superconducting
ceramic superconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1119553A
Other languages
Japanese (ja)
Inventor
Hitoshi Yoshida
均 吉田
Hitoshi Sakai
均 酒井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Original Assignee
NGK Insulators Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd filed Critical NGK Insulators Ltd
Priority to JP1119553A priority Critical patent/JPH02296778A/en
Publication of JPH02296778A publication Critical patent/JPH02296778A/en
Pending legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

PURPOSE:To produce a monolithic ceramic superconductor having uniform superconducting characteristics by calcining plural ceramic superconducting materials to be joined, temporarily joining the resulting calcined bodies with a binder contg. the same component as the superconducting materials and sintering them. CONSTITUTION:Powdery starting material for a ceramic superconductor such as YBa2Cu3O7 is molded into a pellet shape by die pressing or other method. The molded bodies are calcined, e.g. at 880 deg.C for 3hr in an atmosphere contg. oxygen to produce calcined bodies 2, 3. Polyvinyl butyral as a binder is added to YBa2Cu3O7 powder, terpineol as a solvent is further added and they are kneaded to prepare a pasty binder 4. The calcined bodies 2, 3 are superposed with the binder 4 in-between and joined together by sintering at 950 deg.C for 5hr in oxygen. A monolithically joined ceramic superconductor 1 having uniform superconducting characteristics is obtd.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は複数のセラミック超電導基材を接合して一体で
一様な特性のセラミック超電導体を製造する方法に関す
る。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a method for manufacturing an integral ceramic superconductor having uniform characteristics by bonding a plurality of ceramic superconducting substrates.

[従来の技術] 近年、セラミック超電導体は高い臨界温度を示すことで
注目を集め、電力分野、核磁気共鳴装置、磁気シールド
等の各分野ての用途か期待されている。
[Prior Art] In recent years, ceramic superconductors have attracted attention due to their high critical temperature, and are expected to be used in various fields such as electric power, nuclear magnetic resonance devices, and magnetic shielding.

これらセラミック超電導体で各種機能部品を構成する場
合、特に磁気シールド用に使用する大型部品を構成する
場合、セラミック超電導体は一体で−様な特性を保有す
ることが好ましい。しかしながら、これら大型部品ある
いは異形部品を一体的に製造することは実際には困難で
あり、通常各パーツを作製し、次いでこれら各パーツを
接合し一体物を得ることにより、大型部品あるいは異形
部品を製造することか考えられる。
When constructing various functional parts using these ceramic superconductors, especially when constructing large components used for magnetic shielding, it is preferable that the ceramic superconductor be integrated and have similar characteristics. However, it is actually difficult to manufacture these large parts or irregularly shaped parts in an integrated manner.Usually, large parts or irregularly shaped parts are manufactured by manufacturing each part and then joining these parts to obtain an integrated product. I can think of manufacturing it.

現在、セラミック超電導基材(部材)の接合においては
、被接合セラミック超電導基材と同一組成のセラミック
超電導体を接合層とすることが知られている。
Currently, in bonding ceramic superconducting substrates (members), it is known to use a ceramic superconductor having the same composition as the ceramic superconducting substrates to be bonded as a bonding layer.

さらに、被接合セラミック超電導基材とその接合層との
密着性改善のために非超電導体を一部添加することか知
られている。
Furthermore, it is known to add a portion of a non-superconductor to improve the adhesion between the ceramic superconducting substrate to be bonded and its bonding layer.

[発明か解決しようとする課題] しかしなから、前者の場合、被接合セラミック超電導基
材として超電導特性を有する焼成体を用い、これを同一
・組成の接合形成層て仮接合し、超電導特性を出現させ
る焼成条件て本焼成しているため、得られた焼成体(超
電導体)に於いては接合か良好でなく、しかも機械的強
度および臨界電流密度(Jc)か低いという問題があっ
た。
[Problem to be solved by the invention] However, in the former case, a fired body having superconducting properties is used as the ceramic superconducting base material to be joined, and this is temporarily joined with a bond forming layer of the same composition to improve the superconducting properties. Since the main firing was performed under the firing conditions to produce the superconductor, the resulting fired body (superconductor) had problems in that the bonding was not good and the mechanical strength and critical current density (Jc) were low.

又、後者においては接合層に非超電導体を含ませるため
、超電導特性か著しく劣化し実用的ではない。
In addition, in the latter case, since the bonding layer contains a non-superconductor, the superconducting properties are significantly deteriorated, making it impractical.

従って、本発明は前記従来の製造法の問題を解決した、
超電導特性が−様で、一体的に構成された接合セラミッ
ク超電導体を製造する方法を提供することを目的とする
Therefore, the present invention solves the problems of the conventional manufacturing method.
It is an object of the present invention to provide a method for manufacturing an integrally constructed bonded ceramic superconductor with -like superconducting properties.

[課題を解決するための手段] そしてその目的は、本発明によれば、複数のセラミック
超電導基材を接合して一体で−様な特性のセラミック超
電導体を製造する方法てあって、被接合セラミック超電
導基材を仮焼成し、次いてこれらの仮焼成成形体を該成
形体と同一の成分を含む接合成形層で仮接合して一体の
成形体を得た後、該成形体を焼成することにより、超電
導特性を有するセラミック超電導体を得ることを特徴と
するセラミック超電導体の製法、により達成される。
[Means for Solving the Problems] According to the present invention, there is provided a method for manufacturing a ceramic superconductor having similar characteristics by joining a plurality of ceramic superconducting substrates together. The ceramic superconducting base material is pre-fired, and then these pre-fired molded bodies are temporarily joined with a bonding layer containing the same components as the molded body to obtain an integral molded body, and then the molded body is fired. This is achieved by a method for producing a ceramic superconductor characterized by obtaining a ceramic superconductor having superconducting properties.

以下、本発明について詳細に説明する。The present invention will be explained in detail below.

本発明のセラミック超電導体は、例えばM−RaCu−
0県北合物(但し、MはSc、 Tl、Y及びha、E
u、 Gd、Er、 Yb、Lu等のランタニドから選
ばれる一種以上を表わす。)及びB1−3r−Ca−C
u系化合物等の多層ベロフスカイト構造を有するもので
ある。
The ceramic superconductor of the present invention is, for example, M-RaCu-
0 Prefecture Kitaai Mono (However, M is Sc, Tl, Y, ha, E
Represents one or more lanthanides selected from lanthanides such as u, Gd, Er, Yb, and Lu. ) and B1-3r-Ca-C
It has a multilayer belovskite structure such as a U-based compound.

例えば、YBa2Cu3O7、LaBa2Cu:+07
等M−BaJ:u−0県北合物のMかランタニド金属で
ある場合には、超電導特性を示す最適焼成温度は920
〜960°Cてあり、接合されるセラミック超電導基材
の仮焼成温度はこの温度よりも低いことが必要である。
For example, YBa2Cu3O7, LaBa2Cu: +07
Etc. M-BaJ: u-0 When M from Kenhokugoi is a lanthanide metal, the optimum firing temperature that exhibits superconducting properties is 920
~960°C, and the temporary firing temperature of the ceramic superconducting substrates to be joined must be lower than this temperature.

具体的な仮焼成温度としては、好ましくは750〜90
0℃か良い。また、この材料の場合、焼成中の酸素分圧
により臨界電流密度Jcが影響を受ける。酸素分圧か1
〜10atmのときに臨界電流密度Jcが良好となるの
で、仮焼成条件としては酸素分圧を例えばlatmに下
げて焼成することにより仮焼体を得ることもてきる。
The specific calcining temperature is preferably 750 to 90
0℃ is good. Furthermore, in the case of this material, the critical current density Jc is affected by the oxygen partial pressure during firing. Oxygen partial pressure 1
Since the critical current density Jc becomes good when the temperature is 10 atm to 10 atm, a calcined body can be obtained by lowering the oxygen partial pressure to, for example, latm as the calcining conditions.

又Bi25r2CaCuO,、Bi25r2Ca2CI
J+0+o等B1−3r−Ca−Cu系化合物、及びこ
の化合物に更にpbあるいは/及びsbを添加した化合
物の場合には、構成成分を含んで半融状態あるいは溶融
状態とする工程を経た後、溶融温度以下、酸素存在下で
熱処理すると良好なセラミック超電導体を得ることが知
られている。従って、この材料の場合の仮焼成体は半融
あるいは溶融状態になる温度以下で仮焼成することによ
り得られる。これらは融点か920°C近傍にあるため
、仮焼成温度は750°C〜900°Cか好ましい。又
、熱処理時に、上記化合物からなる超電導体か超電導特
性を生じる条件よりも酸素分圧を下げた状態で焼成する
ことによっても仮焼結体か得られる。
Also Bi25r2CaCuO, Bi25r2Ca2CI
In the case of B1-3r-Ca-Cu-based compounds such as J+0+o, and compounds in which pb or/and sb is further added to this compound, after a step of containing the constituent components and making it into a semi-molten state or a molten state, it is melted. It is known that a good ceramic superconductor can be obtained by heat treatment in the presence of oxygen at a temperature below this temperature. Therefore, a calcined body of this material can be obtained by calcining it at a temperature below which the material becomes half-molten or molten. Since these have melting points near 920°C, the pre-calcination temperature is preferably 750°C to 900°C. Further, a pre-sintered body can also be obtained by firing the superconductor made of the above compound at a lower oxygen partial pressure than the conditions under which superconducting properties are produced during heat treatment.

本発明により得られるセラミック超電導体は、全体が同
一組成から成る焼結体であっても良いし、基体の表面に
セラミック超電導体か形成された複合体でも良い。特に
B1−3r−Ca−Cu−0系材料の場合には、溶融過
程を経て焼成されるために保持基体か必要となる。この
場合には主に金属基体を使うため、接合に当っては金属
同士の接合を行なった後セラミック接合層を形成するこ
とになる。
The ceramic superconductor obtained by the present invention may be a sintered body having the same composition as a whole, or may be a composite body in which the ceramic superconductor is formed on the surface of a base. In particular, in the case of B1-3r-Ca-Cu-0 based materials, a holding base is required because they are fired through a melting process. In this case, since metal substrates are mainly used, a ceramic bonding layer is formed after the metals are bonded together.

本発明の接合は、例えばセラミック超電導体粉末を適当
な溶媒を用いてスラリー状にして、接合すべき仮焼成成
形体の各接合部に塗布し、該各接合部を合せた後最適な
焼成条件で接合部を加熱することにより、セラミック超
電導体を接合、製造することかできる。
In the joining of the present invention, for example, ceramic superconductor powder is made into a slurry using an appropriate solvent, and the slurry is applied to each joining part of the pre-fired compacts to be joined, and after the joining parts are combined, the optimal firing conditions are set. Ceramic superconductors can be bonded and manufactured by heating the bonded portion.

また、セラミック超電導体からなる成形体を挟んて被接
合板焼成成形体を配置して、加熱処理して同時に接合し
てもよい。
Alternatively, the fired molded bodies of the plates to be joined may be arranged with a molded body made of a ceramic superconductor sandwiched therebetween, and the molded bodies may be heat-treated and joined at the same time.

本発明における接合層の厚さは、接合物の使用目的に応
じ適宜選択すればよい。
The thickness of the bonding layer in the present invention may be appropriately selected depending on the intended use of the bonded product.

なお、本発明て得られるセラミック超電導体の接合構造
か強度的に強く、しかも超電導特性か良好であるのは、
被接合体が仮焼成成形体であるため本焼成時に接合界面
てのセラミック粒子同士の焼結か進み、一体位成体と同
様の焼結状態になるためと思われる。
Furthermore, the reason why the bonding structure of the ceramic superconductor obtained by the present invention is strong in strength and has good superconducting properties is as follows.
This seems to be because, since the objects to be joined are pre-fired compacts, sintering of the ceramic particles at the bonding interface progresses during the final firing, resulting in a sintered state similar to that of an integral body.

本発明に係るセラミック超電導体を磁気シールド材に適
用する場合であって、空洞を有し、その内部で磁気シー
ルドするような筒状構造物においては、両端からの磁束
侵入を防止するため接合層を軸に直角な方向に設けるよ
うに配置するのか好ましい。この場合、接合層の酸化物
超電導体の超電導特性が被接合体より低くても、シール
ドの効果か損われることがない。
When the ceramic superconductor according to the present invention is applied to a magnetic shielding material, in a cylindrical structure that has a cavity and is magnetically shielded inside, a bonding layer is used to prevent magnetic flux from penetrating from both ends. It is preferable to arrange it so that it is provided in a direction perpendicular to the axis. In this case, even if the superconducting properties of the oxide superconductor in the bonding layer are lower than those of the objects to be bonded, the shielding effect is not impaired.

[実施例] 以下、本発明を実施例により更に詳しく説明する。但し
本発明は本実施例に限定されるものてはない。
[Examples] Hereinafter, the present invention will be explained in more detail with reference to Examples. However, the present invention is not limited to this example.

(実施例1) YBa2Cu:+Oy原料粉末を金型ブレス法により、
φ30ma+X l Omm(厚さ)のベレット状に成
形した。この成形体2枚を酸素中880°Cて3時間焼
成し、仮焼体を得た。第1図に示すように、この2枚の
仮焼体2,3をYBa2Cu30.粉末ペースト4を介
して積層して積層成形体1を得た。ペーストは、原料粉
末にバインダーとしてポリビニルブチラール(PVB)
を加え、溶媒としてテルピネオールを加え混練したもの
を用いた。
(Example 1) YBa2Cu:+Oy raw material powder was molded using a mold press method.
It was molded into a pellet shape with a diameter of 30 ma+X l Omm (thickness). Two of these molded bodies were fired in oxygen at 880°C for 3 hours to obtain a calcined body. As shown in FIG. 1, these two calcined bodies 2 and 3 are made of YBa2Cu30. The laminated molded body 1 was obtained by laminating the powder paste 4 therebetween. The paste uses polyvinyl butyral (PVB) as a binder in raw material powder.
was added and kneaded with terpineol added as a solvent.

この積層体を酸素中950’Cで5hr焼成した。This laminate was fired in oxygen at 950'C for 5 hours.

焼結体の両端に金属治具を接着剤で取り付け、弓張り強
度試験機を用いて接合強度を測定した。接合強度は70
MPaてあり、Y系焼結体単体ての引張り強度MPaの
8割程度てあり、非常に高い接合強度を示した。
Metal jigs were attached to both ends of the sintered body with adhesive, and the joint strength was measured using a bow tension tester. Joint strength is 70
MPa, which was approximately 80% of the tensile strength MPa of the Y-based sintered body alone, demonstrating extremely high bonding strength.

この焼結体を接合層か中心となるように2×2×20■
に切断加工し、液体窒素温度77にでの臨界電流密度(
Jc)を四端子法て測定した。接合体のJcは260 
A/cm”てY系焼結体単体てのJc値とほぼ同じであ
った。
Place this sintered body in a 2x2x20
The critical current density at liquid nitrogen temperature of 77
Jc) was measured using the four-terminal method. Jc of zygote is 260
A/cm'' was almost the same as the Jc value of the Y-based sintered body alone.

(実施例2) 厚さ1.5mmて50mmX20n+aの5US304
の板上に厚さ0.2mmの2rO2溶射を施した基板と
、 Bi25r2(:acu208粉末のスラリーを用
意した。なおスラリーはセラミック(Bi25rzCa
Cu208)粉末100重量部に対して1重量部のPV
Bと0.2重量部の分散剤を加え、エタノールを溶媒に
して調製した。スラリーの粘度は約2000CPSてあ
った。
(Example 2) 5US304 with thickness 1.5mm and 50mm x 20n+a
A substrate with 2rO2 thermal sprayed to a thickness of 0.2 mm and a slurry of Bi25r2(:acu208 powder) were prepared.
Cu208) 1 part by weight of PV per 100 parts by weight of powder
B and 0.2 parts by weight of a dispersant were added, and ethanol was used as a solvent. The viscosity of the slurry was about 2000 CPS.

基板を80°Cに加熱し、この上にスラリーをスプレー
で塗布し乾燥しなからセラミック粉末を埋設させた。セ
ラミック層の厚さは約Innである。
The substrate was heated to 80° C., a slurry was sprayed onto the substrate, and after drying, ceramic powder was embedded. The thickness of the ceramic layer is approximately Inn.

この基板を酸素雰囲気中830°Cで5hr焼成し、小
型の仮焼成複合体を得た。次に、第2図に示すように上
記小型板焼成複合体20.30を2枚結合させた。また
結合部41は5tJS:104基体の端部を数個所煮付
て溶接した。この仮焼成複合体10の接合部40に、上
記と同様にスプレーにより接合形成層50を形成させた
。接合形成層50は小型板焼成複合体20及び30の上
に形成されている仮焼成セラミック超電導体層21.3
1とオーバーラツプするように形成させた。尚、接合形
成層50の厚さは約1+++mである。
This substrate was fired at 830°C for 5 hours in an oxygen atmosphere to obtain a small pre-fired composite. Next, as shown in FIG. 2, two of the above-mentioned small-sized fired composite plates 20 and 30 were joined together. The joint portion 41 was made by boiling and welding the ends of a 5tJS:104 substrate at several locations. A bond forming layer 50 was formed on the bonding portion 40 of this pre-fired composite 10 by spraying in the same manner as described above. The bond forming layer 50 is a pre-fired ceramic superconductor layer 21.3 formed on the small plate fired composites 20 and 30.
It was formed so as to overlap with 1. Note that the thickness of the bonding layer 50 is approximately 1+++ m.

次いて、この仮焼成複合体10を、酸素雰囲気中920
℃で10分保持した後890°Cて5hr焼成した。
Next, this pre-fired composite 10 is heated in an oxygen atmosphere for 920 minutes.
After being held at 890°C for 10 minutes, it was fired for 5 hours.

得られた焼成体について、その接合層を中心にして端部
の臨界電流密度Jcを液体窒素温度77K(但し、磁場
強度B=Oガウス)て測定したところ855 A/cm
2であり、焼結体単体てのJcとほぼ同しであった。
Regarding the obtained fired body, the critical current density Jc at the end around the bonding layer was measured at a liquid nitrogen temperature of 77 K (however, magnetic field strength B = O Gauss) and found to be 855 A/cm.
2, which was almost the same as the Jc of the sintered body alone.

(比較例) 実施例2と同し形状、同し工程で得た小型成形体2枚を
、酸素雰囲気中920°Cて10分保持した後890°
Cて5hr焼成し、焼成体を得た。得られた焼成体のJ
cは、実施例2と同条件で測定したところ、それぞれ8
20.870A/C[I+2であった。
(Comparative example) Two small molded bodies obtained in the same shape and in the same process as in Example 2 were held at 920°C for 10 minutes in an oxygen atmosphere and then heated to 890°C.
The product was fired for 5 hours at C to obtain a fired product. J of the obtained fired body
When measured under the same conditions as Example 2, c was 8.
20.870A/C [I+2.

この本焼成複合体を、実施例2と同様に金属同士を溶接
により接合し、接合層を形成して上記と回し条件で焼成
した。
In this fired composite, the metals were joined together by welding in the same manner as in Example 2, a joining layer was formed, and the composite was fired under the same conditions as described above.

この焼成体のJcを接合層を中心に含む経路て測定した
結果、25A/clI+2てあった。この原因は接金層
と本焼成セラミックスの界面で両者の良好な結合か生じ
ていないためと思われる。
The Jc of this fired body was measured along a path including the bonding layer in the center, and was found to be 25 A/clI+2. The reason for this is thought to be that a good bond between the weld layer and the fired ceramic was not formed at the interface between the two.

(実施例3) 金型ブレスを用いてYBa2Cu30.原料粉末より円
筒及び円板を成形した。円筒の形状は、長さか500m
mで内径200mm、外径220[111である。
(Example 3) Using a mold press, YBa2Cu30. A cylinder and a disk were molded from the raw material powder. The shape of the cylinder is about 500m long.
m, the inner diameter is 200 mm, and the outer diameter is 220 [111 mm].

又、円板の形状は径が220mmで厚さがIC1+mで
ある。
Further, the shape of the disc has a diameter of 220 mm and a thickness of IC1+m.

この成形体を空気中920°Cて5hr焼成した。This molded body was fired in air at 920°C for 5 hours.

このとき、同時にJCIM定用の5mmX 5mmX 
30mmの成形棒も焼成した。この棒のJcを測定した
結果〜OA/cm2であった。従って同時に焼成した円
筒および円板も同程度のJcであると推定される。
At this time, at the same time, 5mmX 5mmX for JCIM
A 30 mm shaped bar was also fired. The Jc of this rod was measured and found to be ~OA/cm2. Therefore, it is estimated that the cylinder and disk fired at the same time have the same Jc.

この円筒と円板を用いて、第3図に示すような有底円筒
成形体100を作製した。なお、円筒101と円板10
2の間には実施例1と同じペースト103か積層しであ
る。この成形体を酸素雰囲気中950°Cて5hr焼成
し、有底円筒を得た。
Using this cylinder and disc, a bottomed cylindrical molded body 100 as shown in FIG. 3 was produced. In addition, the cylinder 101 and the disk 10
2, the same paste 103 as in Example 1 is laminated. This molded body was fired for 5 hours at 950°C in an oxygen atmosphere to obtain a cylinder with a bottom.

このとき同時に焼成したJc測定サンプルのJcは23
0 A/cm2であった。従りて同時に焼成した有底円
筒も同等のJcを示すものと推定てきる。
At this time, the Jc of the Jc measurement sample fired at the same time was 23
It was 0 A/cm2. Therefore, it can be assumed that the bottomed cylinders fired at the same time also exhibit the same Jc.

[発明の効果] 以上説明したように、本発明のセラミック超電導体の製
法によれば、仮焼成して得た仮焼成成形体を、これと同
一の成分を含む接合成形層て仮接合して一体の成形体を
得た後焼成しているので、接合部においてセラミック同
士が焼結し、一体焼成物と同等の強度や超電導特性を得
ることかできる。
[Effects of the Invention] As explained above, according to the method for producing a ceramic superconductor of the present invention, a pre-fired compact obtained by pre-sintering is temporarily bonded with a bonding layer containing the same components. Since the integral molded body is fired after being obtained, the ceramics are sintered together at the joints, making it possible to obtain the same strength and superconducting properties as an integrally fired body.

また、本発明のセラミック超電導体の製法は。Furthermore, the method for manufacturing the ceramic superconductor of the present invention is as follows.

各種大型製品及び異形製品に適用でき、均一性能を有す
る大型セラミックの超電導体を容易且つ経済的に製造す
ることかできる。
The present invention can be applied to various large products and irregularly shaped products, and large ceramic superconductors with uniform performance can be manufactured easily and economically.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の製法に用いる複数の仮焼成体の接合状
態の一例を概略的に示す斜視図、第2図は本発明の製法
に用いる複数の仮焼成体の接合状態の他の例を示す断面
図、第3図は本発明の製法に用いて作製する有底円筒の
例を示す概略断面図である。 ■・・・積層成形体、2,3・・・仮焼成体、4・・・
ペースト、10・・・仮焼成複合体、20.30・・・
仮焼成複合体、21.31・・・仮焼成セラミック超電
導体層、40・・・接合部、41・・・結合部、50・
・・接合形成層、100・・・有底円筒成形体、101
・・・円筒、102・・・円板、103・・・ペースト
。 第2図
FIG. 1 is a perspective view schematically showing an example of a joined state of a plurality of pre-fired bodies used in the manufacturing method of the present invention, and FIG. 2 is another example of a joined state of a plurality of pre-fired bodies used in the manufacturing method of the present invention. FIG. 3 is a schematic cross-sectional view showing an example of a bottomed cylinder manufactured using the manufacturing method of the present invention. ■...Laminated molded body, 2, 3... Temporarily fired body, 4...
Paste, 10... Temporarily fired composite, 20.30...
Calcined composite, 21.31 Calcined ceramic superconductor layer, 40 Joint part, 41 Joint part, 50.
... Bonding forming layer, 100 ... Bottomed cylindrical molded body, 101
...Cylinder, 102...Disc, 103...Paste. Figure 2

Claims (2)

【特許請求の範囲】[Claims] (1)複数のセラミック超電導基材を接合して一体で一
様な特性のセラミック超電導体を製造する方法であって
、被接合セラミック超電導基材を仮焼成し、次いでこれ
らの仮焼成成形体を該成形体と同一の成分を含む接合成
形層で仮接合して一体の成形体を得た後、該成形体を焼
成することにより、超電導特性を有するセラミック超電
導体を得ることを特徴とするセラミック超電導体の製法
(1) A method for manufacturing an integrated ceramic superconductor with uniform characteristics by bonding a plurality of ceramic superconducting substrates, in which the ceramic superconducting substrates to be bonded are pre-sintered, and then these pre-sintered molded bodies are A ceramic characterized in that a ceramic superconductor having superconducting properties is obtained by temporarily bonding with a bonding molding layer containing the same components as the molded body to obtain an integral molded body, and then firing the molded body. Superconductor manufacturing method.
(2)仮焼成条件が、被接合セラミック超電導基材の超
電導特性を生じる条件から外れたものである請求項1記
載のセラミック超電導体の製法。
(2) The method for producing a ceramic superconductor according to claim 1, wherein the pre-firing conditions deviate from conditions that produce superconducting properties of the ceramic superconducting substrate to be joined.
JP1119553A 1989-05-12 1989-05-12 Production of ceramic superconductor Pending JPH02296778A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1119553A JPH02296778A (en) 1989-05-12 1989-05-12 Production of ceramic superconductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1119553A JPH02296778A (en) 1989-05-12 1989-05-12 Production of ceramic superconductor

Publications (1)

Publication Number Publication Date
JPH02296778A true JPH02296778A (en) 1990-12-07

Family

ID=14764164

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1119553A Pending JPH02296778A (en) 1989-05-12 1989-05-12 Production of ceramic superconductor

Country Status (1)

Country Link
JP (1) JPH02296778A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02302380A (en) * 1989-05-17 1990-12-14 Dowa Mining Co Ltd Joining of superconductor
JPH035381A (en) * 1989-05-31 1991-01-11 Ibiden Co Ltd Adhesive for ceramic blank
WO2017135387A1 (en) * 2016-02-05 2017-08-10 一般財団法人ファインセラミックスセンター Method for producing ceramic sintered body, and method and device for producing ceramic molded body
JP2017141152A (en) * 2016-02-05 2017-08-17 一般財団法人ファインセラミックスセンター Method for producing ceramic molded body and apparatus for producing the same used therefor
JP2018108666A (en) * 2016-12-28 2018-07-12 一般財団法人ファインセラミックスセンター Method of manufacturing ceramic molded body and manufacturing apparatus used therefor

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5918176A (en) * 1982-07-23 1984-01-30 株式会社東芝 Manufacture of ceramic structure
JPS60171274A (en) * 1984-02-16 1985-09-04 黒崎窯業株式会社 Ceramic bonding method
JPS63256574A (en) * 1987-04-10 1988-10-24 Sumitomo Electric Ind Ltd Process for bonding ceramic superconductive material
JPH01160877A (en) * 1987-12-17 1989-06-23 Toshiba Corp Method for bonding oxide superconductor material

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5918176A (en) * 1982-07-23 1984-01-30 株式会社東芝 Manufacture of ceramic structure
JPS60171274A (en) * 1984-02-16 1985-09-04 黒崎窯業株式会社 Ceramic bonding method
JPS63256574A (en) * 1987-04-10 1988-10-24 Sumitomo Electric Ind Ltd Process for bonding ceramic superconductive material
JPH01160877A (en) * 1987-12-17 1989-06-23 Toshiba Corp Method for bonding oxide superconductor material

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02302380A (en) * 1989-05-17 1990-12-14 Dowa Mining Co Ltd Joining of superconductor
JPH035381A (en) * 1989-05-31 1991-01-11 Ibiden Co Ltd Adhesive for ceramic blank
WO2017135387A1 (en) * 2016-02-05 2017-08-10 一般財団法人ファインセラミックスセンター Method for producing ceramic sintered body, and method and device for producing ceramic molded body
JP2017141152A (en) * 2016-02-05 2017-08-17 一般財団法人ファインセラミックスセンター Method for producing ceramic molded body and apparatus for producing the same used therefor
EP3412642A4 (en) * 2016-02-05 2019-12-11 Japan Fine Ceramics Center Method for producing ceramic sintered body, and method and device for producing ceramic molded body
US11027454B2 (en) 2016-02-05 2021-06-08 Japan Fine Ceramics Center Method for producing ceramic sintered body, and method and device for producing ceramic molded body
US11724415B2 (en) 2016-02-05 2023-08-15 Japan Fine Ceramics Center Method for producing ceramic sintered body, and method and device for producing ceramic molded body
JP2018108666A (en) * 2016-12-28 2018-07-12 一般財団法人ファインセラミックスセンター Method of manufacturing ceramic molded body and manufacturing apparatus used therefor

Similar Documents

Publication Publication Date Title
US20100028699A1 (en) Metal-ceramic composite with good adhesion and method for its production
JPH02296778A (en) Production of ceramic superconductor
EP0390517B1 (en) Superconductor joint structure
JPH0579630B2 (en)
JPH06298574A (en) Joined ceramic article and joining method
JP2000264746A (en) Production of multilayer ceramic material
JPH0829988B2 (en) Bonding structure of oxide superconductor
JP3035230B2 (en) Manufacturing method of multilayer ceramics
JPH01157469A (en) Bonding of oxide superconducting material
JPH0920572A (en) Composite material of ceramic-based fiber and its production
JPH02227249A (en) Joining method for magnetic shielding material made of bismuth oxide superconductor
JPH04104970A (en) Bonding or mending oxide superconductor
JPH058146B2 (en)
JPH0964423A (en) Oxide superconductor/high strength ceramic laminated current lead
JP3088830B2 (en) Reforming method of oxide superconductor molded body
JPH04174505A (en) Laminate type inductor and manufacture
JP3281892B2 (en) Ceramic superconducting composite and manufacturing method thereof
JPH01157468A (en) Bonding of oxide superconducting material
JPH01160877A (en) Method for bonding oxide superconductor material
JPH0518778B2 (en)
JPH04238876A (en) Composite sintered material and production thereof
JPH01242473A (en) Production of joined superconducting body
JPH01159983A (en) Jointing method for oxide superconductive material
JPS61119878A (en) Heat insulating gasket and manufacture thereof
JP2860570B2 (en) Ceramic joints and their uses