JPH0964423A - Oxide superconductor/high strength ceramic laminated current lead - Google Patents

Oxide superconductor/high strength ceramic laminated current lead

Info

Publication number
JPH0964423A
JPH0964423A JP7240925A JP24092595A JPH0964423A JP H0964423 A JPH0964423 A JP H0964423A JP 7240925 A JP7240925 A JP 7240925A JP 24092595 A JP24092595 A JP 24092595A JP H0964423 A JPH0964423 A JP H0964423A
Authority
JP
Japan
Prior art keywords
oxide superconductor
laminated
ceramics
current lead
superconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7240925A
Other languages
Japanese (ja)
Other versions
JP2961240B2 (en
Inventor
Norimitsu Murayama
村山  宣光
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP7240925A priority Critical patent/JP2961240B2/en
Publication of JPH0964423A publication Critical patent/JPH0964423A/en
Application granted granted Critical
Publication of JP2961240B2 publication Critical patent/JP2961240B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Superconductor Devices And Manufacturing Methods Thereof (AREA)
  • Containers, Films, And Cooling For Superconductive Devices (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

PROBLEM TO BE SOLVED: To enhance the critical current density, to lower the contact resistance, to increase the mechanical strength and to provide an excellent impact resistance by connecting a plurality of flat plates that oxide superconductors and high strength ceramics are alternately laminated in the surface inward direction in parallel in the state that metal electrode is sandwiched between the ends in a complicated structure. SOLUTION: Oxide superconductors 2, 4 molded in a flat plate and thin plate-like high strength ceramics 1, 3, 5 are alternately laminated in the surface inward direction. Thereafter, they are simultaneously sintered and connected at a high temperature under high pressure to be integrated, and a laminate of a suitable number of layers is manufactured. Then, the plurality of flat plates that the superconductors 2, 4 and the ceramics 1, 3, 5 are alternately laminated in the surface inward direction are further connected in parallel in the state that the metal electrode is sandwiched between the ends and composited to be manufactured. Thus, a particle oriented structure in a dense state can simply be manufactured.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、酸化物超電導体と
高強度セラミックスを交互に積層して多層化した平板状
の積層体を更に金属電極と接合して複合化してなる酸化
物超電導体電流リードに関するものであり、更に詳しく
は、酸化物超電導体と高強度セラミックスを面内方向に
交互に積層化した複数の平板を、端部に金属電極を挟ん
だ状態で、更に並列に接合して複合化した構造を備えた
ことを特徴とする酸化物超電導体/高強度セラミックス
積層化電流リードに関するものである。本発明は、粒子
配向性が高く、緻密で臨界電流密度が高く、機械的強度
が顕著に高く、電流リードとしての種々の優れた特性を
有し、しかも簡便に作製することが可能な新しい構造の
酸化物超電導体/高強度セラミックス積層化電流リード
を提供するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an oxide superconductor current which is formed by alternately laminating oxide superconductors and high-strength ceramics to form a multi-layered plate-like laminated body and further bonding it to a metal electrode to form a composite. More specifically, the present invention relates to leads, and more specifically, a plurality of flat plates in which an oxide superconductor and high-strength ceramics are alternately laminated in the in-plane direction are joined in parallel with a metal electrode sandwiched between the ends. The present invention relates to an oxide superconductor / high-strength ceramics laminated current lead having a composite structure. INDUSTRIAL APPLICABILITY The present invention has a novel structure having high grain orientation, denseness, high critical current density, remarkably high mechanical strength, various excellent characteristics as a current lead, and which can be easily manufactured. The present invention provides an oxide superconductor / high-strength ceramics laminated current lead.

【0002】[0002]

【従来の技術】一般に、超電導マグネット等の極低温機
器には、極低温下で電気抵抗が小さく、熱伝導率も小さ
い酸化物高温超電導体材料を用いた電流リードが使用さ
れる。このような電流リードは、極低温機器の極低温域
への熱侵入量を最小にするように設計する必要があるこ
とから、従来、電気抵抗が小さく、熱伝導率が極めて低
い優れた特性を有する酸化物高温超電導体材料の開発と
それを用いた電流リードの開発が種々試みられており、
例えば、Bi系酸化物高温超電導電流リード(T.IE
E.Japan,Vol.115−A,No.3,30
2−307(1995))、銀被覆Bi系高温超電導線
材を用いた電流リード(T.IEE.Japan,Vo
l.115−A,No.3,251−256(199
5))、ビスマス系銅酸化物超電導体を棒状あるいは円
管状に焼結したもの(応用物理,第63巻,第4号,3
62−369(1994))等種々のものが報告されて
いる。
2. Description of the Related Art In general, a cryogenic device such as a superconducting magnet uses a current lead made of an oxide high-temperature superconductor material having a low electric resistance and a low thermal conductivity at a cryogenic temperature. Since such a current lead must be designed to minimize the amount of heat penetration into the cryogenic temperature range of cryogenic equipment, it has conventionally had excellent characteristics with low electrical resistance and extremely low thermal conductivity. Various attempts have been made to develop a high-temperature oxide superconducting material that has and a current lead using the same.
For example, Bi-based oxide high-temperature superconducting current leads (T.IE
E. FIG. Japan, Vol. 115-A, No. 3,30
2-307 (1995)), a current lead using a silver-coated Bi-based high-temperature superconducting wire (T. IEEE. Japan, Vo.
l. 115-A, No. 3,251-256 (199
5)), rod-shaped or circular-tube-shaped sintered bismuth-based copper oxide superconductor (Applied Physics, Vol. 63, No. 4, 3)
62-369 (1994)).

【0003】一般に、超電導体電流リードを作製する場
合、臨界電流値を大きくとること、低侵入熱特性を持た
せること、また、接触抵抗の小さい電極を形成するこ
と、機械強度を向上すること等が重要な要件とされる。
これまでの報告によれば、例えば、バルク電流リードの
製法としては、冷間静水圧プレスにより成形し、焼結及
び中間冷間静水圧プレスを繰り返して作る中間CIP焼
結法などが利用されている。また、従来の電流リードの
構造としては、形態的には、中空の円筒状のものの他
に、中実の円柱状のものが製作されているが、いずれに
しても、製造の最終工程は常圧焼結であり、焼結体の相
対密度は約85%、臨界電流密度は約1200A/cm
2 にとどまっている。
Generally, when a superconductor current lead is manufactured, a large critical current value is provided, low penetration heat characteristics are provided, an electrode having a small contact resistance is formed, and mechanical strength is improved. Is an important requirement.
According to the reports so far, for example, as a manufacturing method of a bulk current lead, an intermediate CIP sintering method, which is formed by cold isostatic pressing, and is repeatedly produced by sintering and intermediate cold isostatic pressing, is used. There is. In addition, as a conventional current lead structure, in addition to a hollow cylindrical shape, a solid cylindrical shape is manufactured, but in any case, the final manufacturing process is always performed. Pressure sintering, relative density of sintered body is about 85%, critical current density is about 1200 A / cm
Stays at 2 .

【0004】酸化物高温超電導体に形成する電極は、電
極部の接触抵抗を減少させ、通電時の発熱を低下させる
必要があることから、従来、接触面積の増大化を図った
り、接触抵抗率を低減させるための種々の方法が採用さ
れており、例えば、電極を超電導体内部に埋め込んで一
体化させ、接触面積を増大させる方法や、超電導体の表
面に微細な凹凸面を形成させる方法、溶射により金属を
接着させる方法など各種の方法が提案されている。更
に、超電導体に表面処理を施して改質したり、超電導体
に金属テープを巻きつけ、加圧、熱処理して密着度を高
めた電極を形成して、接触抵抗率を低く抑える方法など
も提案されている。
In the electrode formed on the high temperature oxide superconductor, it is necessary to reduce the contact resistance of the electrode portion and to reduce the heat generation during energization. Therefore, conventionally, the contact area is increased and the contact resistivity is increased. Has been adopted various methods for reducing, for example, by embedding the electrode inside the superconductor to integrate it, a method of increasing the contact area, a method of forming a fine uneven surface on the surface of the superconductor, Various methods such as a method of adhering metals by thermal spraying have been proposed. Furthermore, there is also a method of suppressing the contact resistivity by subjecting the superconductor to a surface treatment for modification, or winding a metal tape around the superconductor, and applying pressure and heat treatment to form an electrode having a higher degree of adhesion to lower the contact resistivity. Proposed.

【0005】このように、従来、各種の超電導体電流リ
ードが開発されているものの、いまだ改善すべき余地が
多々あり、例えば、中実の円柱状の超電導体の臨界電流
値を増加させるために電流リードの径を大きくすると、
円柱の内と外との加圧が不均質になり、円柱の内部の臨
界電流密度が減少し、断面積の程度に対応した臨界電流
値を得ることができなくなるという問題点がある。ま
た、円柱の径を大きくすると焼結時に温度差が生じそれ
によりワレを生じるなど、製造が困難なものとなる。複
数本の電流リードを並列に接続する場合は、電流リード
そのものが大型となり、装置を小型化することは困難と
なる。中空の円筒状の超電導体を薄肉に形成した場合、
臨界電流密度が改善され、中実の円柱状の超電導体に比
べて給電量は大きくなるが、中空部分の内部空間が必要
とされ電流リードや装置全体を小型化する上で難点があ
る。装置の小型化は、装置の性能や信頼性の上で重要な
課題とされる。中空の薄肉の円筒状超電導体は、機械的
強度が弱く、取扱いが煩雑となる欠点がある。また臨界
電流値を上げるため、あるいは強度を増すために断面積
を大きくして厚肉の円筒を作製すると、中実の円柱状の
場合と同様に、内部に不均質の部分が残り、臨界電流密
度の低い層が形成されるという問題点が生じる。
As described above, although various kinds of superconductor current leads have been conventionally developed, there is still a lot of room for improvement. For example, in order to increase the critical current value of a solid cylindrical superconductor. If you increase the diameter of the current lead,
There is a problem in that the pressurization inside and outside the cylinder becomes inhomogeneous, the critical current density inside the cylinder decreases, and it becomes impossible to obtain a critical current value corresponding to the degree of the cross-sectional area. Further, if the diameter of the cylinder is increased, a temperature difference occurs during sintering, which causes cracks, which makes manufacturing difficult. When a plurality of current leads are connected in parallel, the current leads themselves become large and it is difficult to downsize the device. When forming a thin hollow cylindrical superconductor,
Although the critical current density is improved and the amount of power supply is larger than that of a solid cylindrical superconductor, it requires a hollow internal space, which is a problem in downsizing the current leads and the entire device. Miniaturization of the device is an important issue in terms of device performance and reliability. The hollow thin cylindrical superconductor has a drawback that mechanical strength is weak and handling is complicated. In addition, when a thick cylinder is made by increasing the cross-sectional area in order to increase the critical current value or increase the strength, as in the case of a solid cylinder, an inhomogeneous portion remains inside and the critical current There is a problem that a low density layer is formed.

【0006】一方、前記のように、電極形成に関しても
接触抵抗率を下げ、接触面積を増加させるように様々な
方法が探られているが、電流リードの形状が定まってい
るため、接触面積の増大には限りがあり、接触抵抗の減
少には限度がある。電流導入部の接続抵抗の問題につい
ては、機械的強度、耐衝撃性などを含めて更に改善すべ
き課題は多々存在する。
On the other hand, as described above, various methods have been sought for reducing the contact resistivity and increasing the contact area in the electrode formation as well, but since the shape of the current lead is fixed, the contact area There is a limit to the increase and a limit to the decrease in contact resistance. Regarding the problem of the connection resistance of the current introducing portion, there are many problems to be further improved including mechanical strength and impact resistance.

【0007】このような状況の中で、本発明者らは、前
記従来技術に鑑みて、酸化物超電導材料を緻密で臨界電
流密度が高く、しかも機械的強度が高く、取扱いや冷却
負担を軽減し得る新しい構造のバルク電流リードを作製
し、更に接触抵抗を低く抑えることの可能な電極を形成
した新しい構造の酸化物超電導体電流リードを開発する
ことを目標として鋭意研究を積み重ねた結果、酸化物超
電導体と高強度セラミックスを積層して多層化した複数
の平板を、端部に金属電極を挟んだ状態で、更に接合し
て複合化することにより所期の目的を達成し得ることを
見い出し、本発明を完成するに至った。
Under these circumstances, the present inventors, in view of the above-mentioned prior art, have made the oxide superconducting material dense, have a high critical current density, and have a high mechanical strength, thus reducing the burden of handling and cooling. As a result of the earnest research that was carried out with the goal of developing a new structure bulk current lead, and further developing an oxide superconductor current lead of a new structure in which an electrode that can keep the contact resistance low is formed. It was found that the intended purpose can be achieved by joining multiple flat plates, which are laminated by stacking superconductors and high-strength ceramics, in multiple layers, with the metal electrodes sandwiched between the ends, to form a composite. The present invention has been completed.

【0008】[0008]

【発明が解決しようとする課題】本発明は、酸化物超電
導体と高強度セラミックスを積層して多層化した複数の
平板を、更に金属電極と接合して複合化してなる新しい
構造の酸化物超電導体/高強度セラミックス積層化電流
リードを提供することを目的とするものである。また、
本発明は、粒子配向性が高く均質で緻密な微細構造を有
すると共に、臨界電流密度が高く、接触抵抗が低く、機
械的強度が強く、耐衝撃性に優れた酸化物超電導体/高
強度セラミックス積層化電流リードを提供することを目
的とするものである。
DISCLOSURE OF THE INVENTION The present invention has a novel structure of an oxide superconducting device in which a plurality of flat plates obtained by laminating oxide superconductors and high-strength ceramics into a multilayer structure are further bonded to metal electrodes to form a composite. The object is to provide a body / high strength ceramics laminated current lead. Also,
INDUSTRIAL APPLICABILITY The present invention has an oxide superconductor / high-strength ceramics having a high grain orientation, a homogeneous and dense microstructure, a high critical current density, a low contact resistance, a high mechanical strength, and an excellent impact resistance. It is intended to provide a stacked current lead.

【0009】[0009]

【課題を解決するための手段】上記課題を解決するため
の本発明は、酸化物超電導体と高強度セラミックスを面
内方向に交互に積層化した複数の平板を、端部に金属電
極を挟んだ状態で、更に並列に接合して複合化した構造
を備えたことを特徴とする酸化物超電導体/高強度セラ
ミックス積層化電流リード、である。また、本発明の他
の態様は、酸化物超電導体と高強度セラミックスの積層
化を高温加圧焼結・接合で行い、積層化された平板と金
属電極の複合化を高温加圧接合で行う上記の酸化物超電
導体/高強度セラミックス積層化電流リード、である。
また、本発明の他の態様は、酸化物超電導体がBi−P
b−Sr−Ca−Cu−O系超電導体で、高強度セラミ
ックスがMgOセラミックスである上記の酸化物超電導
体/高強度セラミックス積層化電流リード、である。更
に、本発明の他の態様は、金属電極が、薄板状の銀又は
銅電極である上記の酸化物超電導体/高強度セラミック
ス積層化電流リード、である。
According to the present invention for solving the above-mentioned problems, a plurality of flat plates in which oxide superconductors and high-strength ceramics are alternately laminated in an in-plane direction are sandwiched by metal electrodes. In this state, an oxide superconductor / high-strength ceramics laminated current lead, characterized in that it is further joined in parallel and provided with a composite structure. According to another aspect of the present invention, the oxide superconductor and the high-strength ceramics are laminated by high-temperature pressure sintering and bonding, and the laminated flat plate and the metal electrode are compounded by high-temperature pressure bonding. The above oxide superconductor / high-strength ceramics laminated current lead.
In another aspect of the present invention, the oxide superconductor is Bi-P.
The b-Sr-Ca-Cu-O-based superconductor, wherein the high-strength ceramics are MgO ceramics, is the above oxide superconductor / high-strength ceramics laminated current lead. Still another aspect of the present invention is the above oxide superconductor / high-strength ceramics laminated current lead, wherein the metal electrode is a thin-plate silver or copper electrode.

【0010】[0010]

【発明の実施の形態】次に、本発明について更に詳細に
説明する。本発明の酸化物超電導体/高強度セラミック
ス積層化電流リードは、複数の酸化物超電導体と高強度
セラミックスを面内方向に交互に積層し、高温加圧焼結
・接合して一体化した多層の積層体を、更に端部に金属
電極を夾んだ状態で、並列に接合して複合化した構造を
備えたことを特徴とするものである。本発明において用
いられる酸化物超電導体は、超電導状態を実現できるも
のであれば如何なるものであっても良く、その種類の如
何を問わず使用することが可能であるが、具体的には、
例えば、Bi−Pb−Sr−Ca−Cu−O系酸化物超
電導体、Y−Ba−Cu−O系酸化物超電導体、Tl−
Ba−Ca−Cu−O系超電導体などが好適なものとし
て例示される。また、高強度セラミックスは、酸化物高
温超電導体との反応性が低いものであれば如何なるもの
であっても良く、その種類の如何を問わず使用すること
が可能であるが、具体的には、例えば、MgOセラミッ
クス、Al2 3 セラミックス、ZrO2 セラミックス
などが好適なものとして例示される。本発明において
は、まず複数の酸化物超電導体と高強度セラミックスを
面内方向に交互に積層して多層化した酸化物超電導体/
高強度セラミックス積層体を作製する。
BEST MODE FOR CARRYING OUT THE INVENTION Next, the present invention will be described in more detail. The oxide superconductor / high-strength ceramics laminated current lead of the present invention is a multilayer in which a plurality of oxide superconductors and high-strength ceramics are alternately laminated in the in-plane direction, and high-temperature pressure sintering / bonding is performed to integrate them. It is characterized in that it is provided with a structure in which the laminated body of (1) is joined in parallel in a state where a metal electrode is further included in the end portion to form a composite. The oxide superconductor used in the present invention may be any one as long as it can realize a superconducting state, and it can be used regardless of its kind.
For example, Bi-Pb-Sr-Ca-Cu-O-based oxide superconductor, Y-Ba-Cu-O-based oxide superconductor, Tl-
Ba-Ca-Cu-O-based superconductors and the like are exemplified as preferable ones. Further, the high-strength ceramics may be any one as long as it has low reactivity with the oxide high-temperature superconductor, and can be used regardless of its kind. For example, MgO ceramics, Al 2 O 3 ceramics, ZrO 2 ceramics and the like are exemplified as preferable ones. In the present invention, first, a plurality of oxide superconductors and high-strength ceramics are alternately laminated in the in-plane direction to form a multilayer oxide superconductor /
A high-strength ceramic laminate is prepared.

【0011】本発明においては、上記酸化物超電導体と
して、例えば、Bi2 3 ,PbO,SrCO3 ,Ca
CO3 ,CuOの原料粉を大気中で熱処理を施し、これ
を粉砕して得られる仮焼粉を一軸プレス成形により、平
板状に成形したものが好適なものとして用いられる。上
記平板状に成形された酸化物超電導体と、薄板状の高強
度セラミックスを面内方向に交互に積層した後、高温加
圧により焼結と接合を同時に行って一体化し、適宜の層
数の積層体を作製する。この場合、5〜10層の積層物
とすることが好ましい。上記方法によると、緻密・均質
で高粒子配向化で、臨界電流密度の高い超電導層を形成
することができる。次に、上記積層体を、必要により、
積層方向に平行に適宜幅にて切断し、面内に酸化物超電
導体と高強度セラミックスが積層化された複数の平板を
作成するが、上記成形工程において予め適宜幅に形成さ
れたものであれば、該切断工程は適宜省略し得ることは
云うまでもない。
In the present invention, examples of the oxide superconductor include Bi 2 O 3 , PbO, SrCO 3 and Ca.
It is preferable to use a calcined powder obtained by subjecting raw material powders of CO 3 and CuO to heat treatment in the atmosphere and crushing the powder to form a calcinated powder into a flat plate shape by uniaxial press molding. After the oxide superconductor formed into the flat plate and the thin plate-shaped high-strength ceramics are alternately laminated in the in-plane direction, sintering and joining are simultaneously performed by high temperature pressurization to be integrated, and an appropriate number of layers are formed. Create a laminate. In this case, it is preferable that the laminate has 5 to 10 layers. According to the above method, it is possible to form a superconducting layer that is dense and homogeneous, has a high grain orientation, and has a high critical current density. Next, if necessary, the above laminated body is
A plurality of flat plates in which the oxide superconductor and the high-strength ceramics are laminated in the plane are prepared by cutting the laminate in parallel with the laminating direction with an appropriate width. Needless to say, the cutting step can be omitted as appropriate.

【0012】次に、酸化物超電導体と高強度セラミック
スを面内方向に交互に積層化した複数の平板を、端部に
金属電極を挟んだ状態で、更に並列に接合して複合化し
て、本発明の酸化物超電導体/高強度セラミックス積層
化電流リードが作製される。金属電極としては、超電導
体の両端に電極用として、例えば銅、銀などの極低温下
で低抵抗性の金属の薄板が好適なものとして使用され
る。上記酸化物超電導体積層平板と金属電極とは、高温
加圧により接合すれば良く、また、超電導体部分の細分
化により、接触面積を適宜増大化することが可能とな
り、接触抵抗を顕著に低減することができる。最後に、
例えば、酸素中約400℃で約30時間保持してアニー
リングを行い、超電導特性を回復させる。
Next, a plurality of flat plates in which oxide superconductors and high-strength ceramics are alternately laminated in the in-plane direction are further joined in parallel with the metal electrodes sandwiched between the ends to form a composite. The oxide superconductor / high-strength ceramics laminated current lead of the present invention is produced. As the metal electrode, a thin plate of metal having a low resistance at an extremely low temperature such as copper or silver is preferably used for electrodes on both ends of the superconductor. The above oxide superconductor laminated flat plate and the metal electrode may be joined by high temperature pressurization, and by subdividing the superconductor portion, the contact area can be appropriately increased, and the contact resistance is remarkably reduced. can do. Finally,
For example, the superconducting properties are restored by annealing in oxygen at about 400 ° C. for about 30 hours.

【0013】本発明の酸化物超電導体/高強度セラミッ
クス積層化電流リードは、上記のようにして作製され、
上記のような構造を有するが、上記積層体の各層のサイ
ズ、金属電極のサイズは、特に限定されるものではな
く、目的に応じて種々変更することが可能である。本発
明の酸化物超電導体/高強度セラミックス積層化電流リ
ードは、従来の中空の円筒状あるいは中実の円柱状のも
のに比較して、多層化、複合化を容易に行うことが可能
であり、製造工程が顕著に簡便化される。また、加圧、
焼結の不均一性の問題がほとんどなく、高粒子配向で、
緻密で、均質な材料が得られ、臨界電流密度を高めるこ
とが可能であり、電流リードおよび装置を小型化するこ
とができる。また、酸化物超電導体と高強度セラミック
スを積層化することにより、機械的強度を顕著に高める
ことが可能となり、超電導体電流リードの強度を飛躍的
に増大化することができる。
The oxide superconductor / high-strength ceramics laminated current lead of the present invention is manufactured as described above,
Although it has the structure as described above, the size of each layer and the size of the metal electrode of the laminate are not particularly limited, and can be variously changed according to the purpose. The oxide superconductor / high-strength ceramics laminated current lead of the present invention can be easily multi-layered and compounded as compared with the conventional hollow cylindrical or solid cylindrical one. The manufacturing process is significantly simplified. Also, pressurization,
Almost no problem of sintering non-uniformity, high grain orientation,
A dense and homogeneous material can be obtained, the critical current density can be increased, and the current lead and the device can be downsized. Further, by laminating the oxide superconductor and the high-strength ceramics, the mechanical strength can be remarkably increased, and the strength of the superconductor current lead can be remarkably increased.

【0014】本発明の酸化物超電導体/高強度セラミッ
クス積層化電流リードは、例えば、以下のような方法に
より製造される。すなわち、まず、酸化物超電導体の平
板状の成形体を作製する。この酸化物超電導成形体とし
ては、固相反応法等によって合成された酸化物超電導体
粉末を金型に充填しプレスして、所定の長さ、幅、厚さ
の平板状に成形された圧粉体等が用いられる。次に、こ
れらの酸化物超電導成形体と、同一の外形形状を有する
高強度セラミックスを面内方向に交互に積層した後、高
温加圧焼結接合して一体化し、多層の積層体を得る。次
に、上記積層体をセラミックス用切断機により、積層方
向に平行に切断し、適宜幅に切断された酸化物超電導体
と高強度セラミックスの積層体を作製する。
The oxide superconductor / high-strength ceramics laminated current lead of the present invention is manufactured, for example, by the following method. That is, first, a flat plate-shaped compact of an oxide superconductor is produced. As this oxide superconducting compact, the oxide superconductor powder synthesized by the solid-phase reaction method or the like is filled in a mold and pressed to form a flat plate having a predetermined length, width and thickness. Powder or the like is used. Next, these oxide superconducting compacts and high-strength ceramics having the same outer shape are alternately laminated in the in-plane direction, and then high-temperature pressure sintering bonding is performed to integrate them to obtain a multilayer laminate. Next, the above-mentioned laminated body is cut in parallel with the laminating direction by a ceramic cutting machine to prepare a laminated body of the oxide superconductor and the high-strength ceramics, which is cut into an appropriate width.

【0015】次に、上記により作製した多層の積層体と
金属電極とを、その端部に金属電極が夾持されるような
状態で、交互に並列に高温加圧接合し、複合化して、酸
化物超電導体/高強度セラミックス積層化電流リードを
得る。上記多層の複合体は、上記金属電極を介して並列
に各複合体の側面を相互に接する形で、交互に並列に接
合した構造とした点に特徴を有する。
Next, the multi-layer laminate and the metal electrode produced as described above are alternately joined in parallel at a high temperature with the metal electrode being held at the ends thereof to form a composite, Obtain an oxide superconductor / high-strength ceramics laminated current lead. The multilayer composite is characterized in that it has a structure in which the side surfaces of the composites are in contact with each other in parallel via the metal electrodes, and are alternately connected in parallel.

【0016】[0016]

【作用】本発明の酸化物超電導体/高強度セラミックス
積層化電流リードは、酸化物超電導体と高強度セラミッ
クスを高温加圧焼結・接合により多層化し、それを更に
高温加圧接合で金属電極と複合化することにより製造さ
れるが、そのような多層化、複合化により、粒子配向性
が高く、臨界電流密度が高く、熱伝導率が低く、優れた
超電導特性を示す製品が簡便に得られるとともに、機械
的にも強度が高く耐衝撃性の高いものを簡便に作製する
ことが可能となる。また、平板状に成形された酸化物超
電導体を基本構成としているため、特殊な加工工程が必
要とされず、製品の生産効率を向上させることができ
る。更に、上記酸化物超電導体/高強度セラミックス積
層体と金属電極とを交互に接合し、複合化することによ
り、該超電導体積層体の間に多数の電極を適宜形成する
ことができ、その接触抵抗を著しく低減することが可能
となる。
The oxide superconductor / high-strength ceramics laminated current lead of the present invention is made into a multilayer by high-temperature pressure sintering / bonding of an oxide superconductor and high-strength ceramics, which is further metal-bonded by high-temperature pressure bonding. It is manufactured by compounding with, but by such multilayering and compounding, products with high particle orientation, high critical current density, low thermal conductivity, and excellent superconducting properties can be easily obtained. In addition, it is possible to easily manufacture a material having high mechanical strength and high impact resistance. Moreover, since the oxide superconductor formed into a flat plate has a basic structure, a special processing step is not required, and the production efficiency of products can be improved. Further, by alternately joining the above oxide superconductor / high-strength ceramics laminate and the metal electrode to form a composite, a large number of electrodes can be appropriately formed between the superconductor laminates, and their contact can be achieved. It is possible to significantly reduce the resistance.

【0017】[0017]

【実施例】次に、実施例を示して本発明を更に具体的に
説明する。 実施例 (1)平板状超電導体成形体の作製 Bi2 3 ,PbO,SrCO3 ,CaCO3 ,CuO
を原料粉とし、固相反応法により(Bi,Pb)2 Sr
2 Ca2 Cu3 y 超電導粉末を合成した。この粉末を
金型に充填し、100kgf/cm2 の条件で一軸プレ
スを行い、長さ60mm、幅10mm、厚さ約2mmの
成形体を得た。
EXAMPLES Next, the present invention will be described more specifically by showing examples. Example (1) Preparation of flat superconducting compact Bi 2 O 3 , PbO, SrCO 3 , CaCO 3 , CuO
Is used as a raw material powder, and (Bi, Pb) 2 Sr
2 Ca 2 Cu 3 O y superconducting powder was synthesized. This powder was filled in a mold and uniaxially pressed under the condition of 100 kgf / cm 2 to obtain a molded body having a length of 60 mm, a width of 10 mm and a thickness of about 2 mm.

【0018】(2)積層体の作製 本発明の電流リードの一実施例を図1〜2に示す。図1
は、平板状の酸化物超電導体成形体と高強度セラミック
スとを交互に重ねて上下方向から加圧した条件で、焼結
と接合を同時に行い、多層に積層された積層体を作製す
る一例を示したものである。図1において、酸化物超電
導体は上記(Bi,Pb)2 Sr2 Ca2 Cu3
y を、また、高強度セラミックスは厚さ約0.3mmの
MgOセラミックスを使用して、大気中で、840℃、
10kgf/cm2 、5時間の条件で、高温加圧焼結及
び接合を行い、これらが面内方向に交互に積層された酸
化物超電導体/高強度セラミックス積層体を作製した。
(2) Preparation of Laminated Body An embodiment of the current lead of the present invention is shown in FIGS. FIG.
Is an example of producing a multilayer body in which sintering and bonding are simultaneously performed under the condition that flat oxide superconductor compacts and high-strength ceramics are alternately stacked and pressed from above and below. It is shown. In FIG. 1, the oxide superconductor is the above (Bi, Pb) 2 Sr 2 Ca 2 Cu 3 O.
y , and the high-strength ceramics are MgO ceramics with a thickness of about 0.3 mm, and the
High-temperature pressure sintering and bonding were performed under the conditions of 10 kgf / cm 2 and 5 hours to prepare an oxide superconductor / high-strength ceramics laminate in which these were alternately laminated in the in-plane direction.

【0019】(3)多層体の複合体からなる電流リード
の作製 次に、上記積層平板を、銀電極を夾んで、更に並列に、
大気中、800℃、20kgf/cm2 、2時間の条件
で高圧加圧接合することにより、上記積層平板と銀電極
とを交互に接合し、複合化した多層体の複合体からなる
電流リードを作製した。最後に、酸素中、400℃、3
0時間の条件でアニールを行い、超電導特性を十分回復
させた。図2に、得られた複合体からなる電流リードの
構造を示す。この図2の例では、各々の積層体の間に金
属薄板からなる電極を設けているが、上記積層体と電極
の積層数を適宜増大させることが可能であり、これによ
り接触面積を増大化し、接触抵抗の低減化が期待され
る。
(3) Production of Current Lead Composed of Multi-Layered Complex Next, the above laminated flat plates were placed in parallel with each other, including the silver electrode.
The laminated flat plate and the silver electrode are alternately joined by high-pressure pressure joining under the conditions of 800 ° C., 20 kgf / cm 2 , and 2 hours in the atmosphere to form a current lead composed of a composite of a multilayered body. It was made. Finally, in oxygen, 400 ℃, 3
Annealing was performed under the condition of 0 hours to sufficiently recover the superconducting characteristics. FIG. 2 shows the structure of a current lead made of the obtained composite. In the example of FIG. 2, an electrode made of a thin metal plate is provided between each laminated body, but it is possible to appropriately increase the number of laminated layers of the above-mentioned laminated body and electrodes, thereby increasing the contact area. It is expected that the contact resistance will be reduced.

【0020】[0020]

【発明の効果】以上詳述したように、本発明の酸化物超
電導体/高強度セラミックス積層化電流リードは、酸化
物超電導体と高強度セラミックスを面内方向に交互に積
層化した複数の平板を、端部に金属電極を挟んだ状態
で、更に並列に接合して複合化した構造としたものであ
ることから、緻密で粒子配向化したものを簡便に作製す
ることが可能であり、高い臨界電流密度を得ることがで
きる。また、上記平板状の酸化物超電導体と高強度セラ
ミックスを多層化することにより、機械的強度を顕著に
向上させることが可能となる。また、上記個々の多層の
積層体を、それらの間に金属電極を夾んだ形で接合し、
複合化することにより、超電導体の複合化と電極の形成
を同時的に行うことができ、製造工程を簡便化すること
が可能となると共に、接触面積の増大化による接触抵抗
の低減を図ることができる。それによって、超電導体装
置への熱侵入を増大させることなしに、給電量を増加さ
せることが可能な酸化物超電導体電流リードを提供する
ことができる。
As described in detail above, the oxide superconductor / high-strength ceramics laminated current lead of the present invention comprises a plurality of flat plates in which oxide superconductors and high-strength ceramics are alternately laminated in the in-plane direction. Since it has a composite structure in which the metal electrodes are sandwiched between the end portions and is further joined in parallel, it is possible to easily prepare a dense and grain-oriented one. The critical current density can be obtained. Further, the multilayer structure of the flat oxide superconductor and the high-strength ceramics makes it possible to remarkably improve the mechanical strength. In addition, the individual multilayer laminates described above are joined together by enclosing a metal electrode between them,
By compounding, it is possible to simultaneously compound the superconductor and form the electrode, simplify the manufacturing process, and reduce the contact resistance by increasing the contact area. You can Thereby, it is possible to provide an oxide superconductor current lead capable of increasing the amount of power supply without increasing heat intrusion into the superconductor device.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の酸化物超電導体/高強度セラミックス
積層化電流リードにおける積層体作製の一例を示す説明
図である。
FIG. 1 is an explanatory view showing an example of manufacturing a laminated body in an oxide superconductor / high-strength ceramics laminated current lead of the present invention.

【図2】本発明の酸化物超電導体/高強度セラミックス
積層化電流リードの構造を示す説明図である。
FIG. 2 is an explanatory view showing the structure of an oxide superconductor / high-strength ceramics laminated current lead of the present invention.

【符号の説明】[Explanation of symbols]

1 MgOセラミックス 2 Bi−Pb−Sr−Ca−Cu−O系超電導体 3 MgOセラミックス 4 Bi−Pb−Sr−Ca−Cu−O系超電導体 5 MgOセラミックス 酸化物超電導体/高強度セラミックス積層平板 金属電極 1 MgO ceramics 2 Bi-Pb-Sr-Ca-Cu-O-based superconductor 3 MgO ceramics 4 Bi-Pb-Sr-Ca-Cu-O-based superconductor 5 MgO ceramics oxide superconductor / high-strength ceramics laminated flat plate metal electrode

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 酸化物超電導体と高強度セラミックスを
面内方向に交互に積層化した複数の平板を、端部に金属
電極を挟んだ状態で、更に並列に接合して複合化した構
造を備えたことを特徴とする酸化物超電導体/高強度セ
ラミックス積層化電流リード。
1. A structure in which a plurality of flat plates in which oxide superconductors and high-strength ceramics are alternately laminated in the in-plane direction are further joined in parallel with a metal electrode sandwiched between the ends to form a composite structure. An oxide superconductor / high-strength ceramics laminated current lead characterized by being provided.
【請求項2】 酸化物超電導体と高強度セラミックスの
積層化を高温加圧焼結・接合で行い、積層化された平板
と金属電極の複合化を高温加圧接合で行う請求項1記載
の酸化物超電導体/高強度セラミックス積層化電流リー
ド。
2. The method according to claim 1, wherein the oxide superconductor and the high-strength ceramics are laminated by high temperature pressure sintering and bonding, and the laminated flat plate and the metal electrode are compounded by high temperature pressure bonding. Oxide superconductor / high-strength ceramics laminated current lead.
【請求項3】 酸化物超電導体がBi−Pb−Sr−C
a−Cu−O系超電導体で、高強度セラミックスがMg
Oセラミックスである請求項1記載の酸化物超電導体/
高強度セラミックス積層化電流リード。
3. The oxide superconductor is Bi-Pb-Sr-C.
a-Cu-O based superconductor with high strength ceramics of Mg
The oxide superconductor according to claim 1, which is O ceramics /
High strength ceramic laminated current lead.
【請求項4】 金属電極が、薄板状の銀又は銅電極であ
る請求項1記載の酸化物超電導体/高強度セラミックス
積層化電流リード。
4. The oxide superconductor / high-strength ceramics laminated current lead according to claim 1, wherein the metal electrode is a thin plate silver or copper electrode.
JP7240925A 1995-08-25 1995-08-25 Oxide superconductor / High strength ceramic laminated current lead Expired - Lifetime JP2961240B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7240925A JP2961240B2 (en) 1995-08-25 1995-08-25 Oxide superconductor / High strength ceramic laminated current lead

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7240925A JP2961240B2 (en) 1995-08-25 1995-08-25 Oxide superconductor / High strength ceramic laminated current lead

Publications (2)

Publication Number Publication Date
JPH0964423A true JPH0964423A (en) 1997-03-07
JP2961240B2 JP2961240B2 (en) 1999-10-12

Family

ID=17066693

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7240925A Expired - Lifetime JP2961240B2 (en) 1995-08-25 1995-08-25 Oxide superconductor / High strength ceramic laminated current lead

Country Status (1)

Country Link
JP (1) JP2961240B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100460361C (en) * 2004-03-23 2009-02-11 三洋电机株式会社 Multi-layer ceramic substrate and manufacturing method thereof
JP2013240147A (en) * 2012-05-11 2013-11-28 Kyushu Univ Superconduction rotary machine

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0585724A (en) * 1991-09-30 1993-04-06 Kyocera Corp Oxide superconductive structural body
JPH0536807U (en) * 1991-10-15 1993-05-18 三井金属鉱業株式会社 Oxide superconducting current lead
JPH05167108A (en) * 1991-12-16 1993-07-02 Hitachi Chem Co Ltd Oxide superconducting current lead and manufacture thereof
JPH05243044A (en) * 1992-02-28 1993-09-21 Asahi Glass Co Ltd Current lead of oxide superconductor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0585724A (en) * 1991-09-30 1993-04-06 Kyocera Corp Oxide superconductive structural body
JPH0536807U (en) * 1991-10-15 1993-05-18 三井金属鉱業株式会社 Oxide superconducting current lead
JPH05167108A (en) * 1991-12-16 1993-07-02 Hitachi Chem Co Ltd Oxide superconducting current lead and manufacture thereof
JPH05243044A (en) * 1992-02-28 1993-09-21 Asahi Glass Co Ltd Current lead of oxide superconductor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100460361C (en) * 2004-03-23 2009-02-11 三洋电机株式会社 Multi-layer ceramic substrate and manufacturing method thereof
JP2013240147A (en) * 2012-05-11 2013-11-28 Kyushu Univ Superconduction rotary machine

Also Published As

Publication number Publication date
JP2961240B2 (en) 1999-10-12

Similar Documents

Publication Publication Date Title
JP3575004B2 (en) Intermetallic compound superconductor composed of magnesium and boron, alloy superconductor containing the intermetallic compound, and methods of producing these
JP2004517024A (en) Piezoelectric ceramic material, method for producing the same, and electric ceramic multilayer structural member
CN108028106B (en) Connection structure of superconducting wire
JP2011008949A (en) Superconductive wire rod and its manufacturing method
JPH0964423A (en) Oxide superconductor/high strength ceramic laminated current lead
JP2842537B2 (en) Oxide superconducting wire and its manufacturing method
JP3923064B2 (en) Multilayer piezoelectric element and method for manufacturing the same
WO2018211702A1 (en) Superconducting wire material and production method therefor, superconducting coil, superconducting magnet, and superconducting device
JP4462438B2 (en) Piezoelectric ceramic composition, multilayer piezoelectric element, and method for producing multilayer piezoelectric element
JP2508722B2 (en) Superconducting coil
JPH02296778A (en) Production of ceramic superconductor
JP2010044969A (en) Tape-shaped oxide superconductor, and board used for the same
JPH02247906A (en) Manufacture of oxide superconducting wire
JPH0797277A (en) Method for joining oxide superconductor
JP4930676B2 (en) Piezoelectric ceramic composition, multilayer piezoelectric element, and method for producing multilayer piezoelectric element
WO2018211700A1 (en) Superconducting wire material, superconducting coil, superconducting magnet, and superconducting device
JP3029153B2 (en) Manufacturing method of multilayer ceramic superconductor
JP3383799B2 (en) Superconducting composite and manufacturing method thereof
US20230382807A1 (en) Method for sintering ceramic materials
JPH03110806A (en) Formation of oxide superconductor
JPH09143000A (en) Joining method of oxide superconductor
JP3831307B2 (en) Low resistance conductor and method of manufacturing the same
JP3088830B2 (en) Reforming method of oxide superconductor molded body
JPH06128050A (en) Superconducting composite material and its production
JP3150718B2 (en) Superconductor lamination substrate and superconducting laminate using the same

Legal Events

Date Code Title Description
S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term