JP2013240147A - Superconduction rotary machine - Google Patents

Superconduction rotary machine Download PDF

Info

Publication number
JP2013240147A
JP2013240147A JP2012109760A JP2012109760A JP2013240147A JP 2013240147 A JP2013240147 A JP 2013240147A JP 2012109760 A JP2012109760 A JP 2012109760A JP 2012109760 A JP2012109760 A JP 2012109760A JP 2013240147 A JP2013240147 A JP 2013240147A
Authority
JP
Japan
Prior art keywords
superconductor
rotor
superconducting
rotating machine
magnetic field
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012109760A
Other languages
Japanese (ja)
Other versions
JP5974278B2 (en
Inventor
Masataka Iwakuma
成卓 岩熊
Yu Shiobara
融 塩原
Teruo Izumi
輝郎 和泉
Kazuya Daimatsu
一也 大松
Akira Tomioka
章 富岡
Masayuki Konno
雅行 今野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyushu University NUC
International Superconductivity Technology Center
Fuji Electric Co Ltd
Sumitomo Electric Industries Ltd
Original Assignee
Kyushu University NUC
International Superconductivity Technology Center
Fuji Electric Co Ltd
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyushu University NUC, International Superconductivity Technology Center, Fuji Electric Co Ltd, Sumitomo Electric Industries Ltd filed Critical Kyushu University NUC
Priority to JP2012109760A priority Critical patent/JP5974278B2/en
Publication of JP2013240147A publication Critical patent/JP2013240147A/en
Application granted granted Critical
Publication of JP5974278B2 publication Critical patent/JP5974278B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Superconductive Dynamoelectric Machines (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a new superconduction rotary machine which skillfully utilizes superconduction characteristics to achieve a small and lightweight structure and high efficiency without supplying power from the exterior to a superconductor incorporated in a rotor.SOLUTION: A superconduction rotary machine is composed of: an armature coil 2 provided at a stator 1; a plate like superconductor 4 that is housed and disposed in a hollow rotation part 3a of a rotor so as to be aligned with a rotation center of the rotor 3 and is formed by a rectangular thin film superconductor. An electromagnetic force is generated by mutual action of a shield current, induced on the plate like superconductor 4 by applying a magnetic field (a rotary magnetic field) that is generated by the armature coil 2 with the superconductor 4 cooled in a superconduction state, and the armature magnetic field. Rotation torque is generated in the rotor 3 on the basis of the electromagnetic force to rotationally drive the rotor.

Description

本発明は、船舶用,自動車用,各種産業機械用などの動力源に適用する超電導回転機に関する。   The present invention relates to a superconducting rotating machine applied to power sources for ships, automobiles, various industrial machines and the like.

近年になり、液体窒素温度近傍(77K)で超電導に転移する高温酸化物超電導体(イットリウム系(Y系),ビスマス系(Bi系)の出現,開発に伴い、回転機の分野でも小型,軽量化、高効率化を目指した超電導回転機に関するさまざまな研究,開発が国内外で進められている。   In recent years, along with the advent and development of high-temperature oxide superconductors (yttrium-based (Y-based) and bismuth-based (Bi-based)) that transition to superconductivity near the temperature of liquid nitrogen (77K), they are small and light in the field of rotating machines. Various researches and developments related to superconducting rotating machines aiming for higher efficiency and higher efficiency are underway in Japan and overseas.

なお、回転機への超電導体の適用については、回転機の回転子を超電導化して固定子は常電導とするものや、回転子,固定子を共に超電導化するものなどが考えられるが、
交流回転機では電機子コイルに交流を流すために電機子コイルに採用する超電導体には交流損失が発生する問題があり、かつそのコイル形状も複雑であることから、現在では回転子に超電導体を適用する超電導回転機の開発が主流になっており、既に公表されている研究,開発の事例として次記のような先行技術文献が知られている。
As for the application of the superconductor to the rotating machine, the rotor of the rotating machine is made superconductive and the stator is made normal conducting, or the rotor and stator are both made superconductive.
In an AC rotating machine, there is a problem that an AC loss occurs in the superconductor employed in the armature coil in order to cause an alternating current to flow through the armature coil, and the coil shape is also complicated. The development of superconducting rotating machines that apply the above has become the mainstream, and the following prior art documents are known as examples of research and development that have already been published.

特許文献1に示される超電導同期回転機では、超電導線で構成した界磁コイルを回転子の円筒形遮蔽体(クライオスタット構造)に収容し、液体窒素などの冷媒で界磁コイルを臨界温度以下に冷却させるようにし、この界磁コイルに外部から直流を給電して強い界磁磁界を発生させるようにすることで、回転機の小型,軽量化を図るようにしている。   In the superconducting synchronous rotating machine shown in Patent Document 1, a field coil composed of superconducting wires is housed in a cylindrical shield (cryostat structure) of a rotor, and the field coil is brought to a critical temperature or lower with a refrigerant such as liquid nitrogen. The rotating machine is reduced in size and weight by cooling and generating a strong field magnetic field by feeding a direct current to the field coil from the outside.

ところで、この超電導同期回転機は、回転子に配した超電導界磁コイルの支持構造が複雑となるほか、超電導の臨界温度以下に冷却された超電導界磁コイルに直流の界磁電流を外部(常温)から給電するための電流リード、およびスリップリング/ブラシが必要であり、さらに同期電動機では起動時に界磁コイルにスリップリング/ブラシを介して始動抵抗を外部接続し、二次抵抗始動法などにより回転機を誘導電動機として始動する起動手段も必要である。   By the way, this superconducting synchronous rotating machine has a complicated support structure for the superconducting field coil arranged on the rotor, and a DC field current is externally applied to the superconducting field coil cooled below the superconducting critical temperature. ) Requires a current lead and a slip ring / brush to supply power. In addition, a synchronous motor is connected to a field coil via a slip ring / brush at the time of startup, and a secondary resistance starting method is used. A starting means for starting the rotating machine as an induction motor is also required.

また、特許文献2には誘導回転機と同じ構造で同期運転が可能な超電導回転機(電動機)が開示されている。この超電導回転機は、回転子を高温超電導体と常電導材のトルクシールドとの積層体で構成しており、常温での起動時には固定子に配した電機子コイル(1次巻線)の通電により生成した交番磁界(回転磁界)の印加を受けて回転子のトルクシールドに誘起する誘導電流と前記交番磁界との相互作用による誘導トルクで回転機を誘導モードで始動し、起動開始から回転子が所定回転速度に達したところで超電導体を臨界温度以下の超電導状態に冷却して前記交番磁界を超電導体に磁束捕捉させて同期回転させるようにしている。   Patent Document 2 discloses a superconducting rotating machine (electric motor) capable of synchronous operation with the same structure as an induction rotating machine. In this superconducting rotating machine, the rotor is composed of a laminated body of a high-temperature superconductor and a torque shield made of a normal conducting material, and energization of an armature coil (primary winding) placed on the stator is started at room temperature. The rotating machine is started in the induction mode by the induction torque generated by the interaction between the alternating magnetic field and the induced current induced in the torque shield of the rotor upon application of the alternating magnetic field (rotating magnetic field) generated by the rotor. When the rotation speed reaches a predetermined rotational speed, the superconductor is cooled to a superconducting state below the critical temperature, and the alternating magnetic field is captured by the superconductor and is synchronously rotated.

この超電導回転機によれば、回転子に外部から電力を供給すること無しに運転することが可能で、先記特許文献1の超電導同期回転機と比べて構造が簡略化できるものの、一方では回転機の起動時における誘導モードから同期運転に移行させるには、超電導体の臨界温度を判定して超電導体を臨界温度以下に冷却させる必要があり、その温度昇降のプロセスには比較的長い時間を要して回転機の運転応答性が低下する問題がある。このために、電気自動車のように起動と停止を頻繁に繰り返す用途に適用する回転機では、トルクシールドに大きなジュール熱(銅損)が発生して超電導体を臨界温度以下に保持することが困難と考えられるほか、銅損が増して回転機の効率が低下する要因となる。   According to this superconducting rotating machine, it is possible to operate without supplying electric power to the rotor from the outside, and although the structure can be simplified as compared with the superconducting synchronous rotating machine described in Patent Document 1, it can be rotated on the other hand. In order to shift from induction mode to synchronous operation at the start-up of the machine, it is necessary to determine the critical temperature of the superconductor and cool the superconductor below the critical temperature, and the temperature raising and lowering process takes a relatively long time. In short, there is a problem that the operation response of the rotating machine is lowered. For this reason, in a rotating machine that is used for applications that frequently start and stop like an electric vehicle, it is difficult to maintain a superconductor below the critical temperature due to the generation of large Joule heat (copper loss) in the torque shield. In addition, copper loss increases and the efficiency of the rotating machine decreases.

一方、前記特許文献2の問題を改善するようにした超電導回転機が特許文献3で提案されている。この超電導回転機は、かご形誘導回転機のロータコアに常電導線材で作られたロータバー,およびその両端にエンドリングを接続した常電導かご形巻線と、超電導線材で作られたロータバーにエンドリングを接続した超電導かご形巻線とを組み合わせてロータコアの周面に形成したスロットに収容した構成になる。   On the other hand, Patent Document 3 proposes a superconducting rotating machine that improves the problem of Patent Document 2. This superconducting rotating machine consists of a rotor bar made of normal conducting wire to the rotor core of a squirrel-cage induction rotating machine, a normal conducting lead winding with end rings connected to both ends, and an end ring to a rotor bar made of superconducting wire. Are combined with a superconducting lead-shaped winding connected to each other and accommodated in a slot formed on the peripheral surface of the rotor core.

この超電導回転機によれば、常電導状態では常電導かご形巻線に流れる誘導電流と固定子側に配した電機子コイルの通電により生成した回転磁界との相互作用による誘導トルクの主導で起動,回転し、超電導状態では超電導かご形巻線が固定子の電機子コイルから印加される回転磁界の磁束を捕捉して同期運転させるようにして、回転機を超電導の臨界温度に依存しない運転が行えるようにしている。   According to this superconducting rotating machine, in the normal conducting state, the induction torque is initiated by the interaction between the induced current flowing in the normal conducting lead winding and the rotating magnetic field generated by energizing the armature coil arranged on the stator side. In the superconducting state, the superconducting cage winding captures the magnetic flux of the rotating magnetic field applied from the armature coil of the stator and operates synchronously, so that the rotating machine does not depend on the superconducting critical temperature. I can do it.

特開2003−158867号公報JP 2003-158867 A 特表平8−505515号公報Japanese National Patent Publication No. 8-505515 再公表特許2009/116219号公報Republished patent 2009/116219

ところで、先記した特許文献2の問題点を改善するようにした特許文献3の超電導回転機においても、実用化には次記のような課題がある。   By the way, also in the superconducting rotating machine of Patent Document 3 which improves the problem of Patent Document 2 described above, there are the following problems in practical use.

すなわち、特許文献3の超電導回転機では、その回転子コアに常電導かご形巻線と超電導かご形巻線を併設したかご形回転子で構成したことから、超電導かご形巻線の臨界温度以上の常温で回転機を起動する際には、特許文献2の超電導回転機におけるトルクシールドと同様に常電導かご形巻線に誘導電流が流れて大きなジュール熱,銅損が発生する。   In other words, the superconducting rotating machine disclosed in Patent Document 3 is composed of a cage rotor in which a normal conducting lead-shaped winding and a superconducting lead-shaped winding are provided in the rotor core, so that it exceeds the critical temperature of the superconducting lead winding. When starting the rotating machine at room temperature, an induction current flows through the normal conducting lead-shaped winding as in the case of the torque shield in the superconducting rotating machine disclosed in Patent Document 2, causing large Joule heat and copper loss.

また、超電導かご形巻線についても、そのロータバーの両端とエンドリングとを電気的に接続する必要があって巻線構造が複雑化するし、さらにロータバーとエンドリングとの電気的接続には半田付けによる接続法が一般的であってその接合強度に問題が生じることが多く、耐遠心荷重,長期間使用に対して高い信頼性を確保することが困難であると考えられる。そのほか、前記の常電導,超電導のかご形巻線は重量の重い回転子コアのスロットに収容した構成になるため、超電導回転機の軽量,小型化が困難である。   Also, for superconducting lead-type windings, it is necessary to electrically connect both ends of the rotor bar and the end ring, complicating the winding structure, and soldering is also required for the electrical connection between the rotor bar and the end ring. It is considered that it is difficult to ensure high reliability for anti-centrifugal load and long-term use because the connection method by attaching is common and often causes problems in the joining strength. In addition, since the normal conducting and superconducting squirrel-cage windings are housed in the heavy rotor core slots, it is difficult to reduce the weight and size of the superconducting rotating machine.

本発明は上記の点に鑑みなされたものであり、その目的は回転子に組み込んだ超電導体に外部から電力を供給する必要が無く、かつ回転子には特許文献2におけるトルクシールド,特許文献3における常電導かご形巻線などのジュール発熱を伴う常電導金属体、および重量物である回転子コアを併設する必要無しに、超電導体の超電導特性を巧みに利用して小型,軽量化に加えて高効率の回転機能が発揮できるように構成した従来にない新規な超電導回転機を提供することにある。   The present invention has been made in view of the above points, and the object thereof is not to supply power to the superconductor incorporated in the rotor from the outside, and the rotor includes a torque shield in Patent Document 2, and Patent Document 3 In addition to reducing the size and weight of the superconductor by skillfully utilizing the superconducting properties of the superconductor, there is no need to install a normal conducting metal body with Joule heating, such as a normal conducting lead-type winding, and a rotor core that is heavy. It is another object of the present invention to provide a novel superconducting rotating machine that has been configured so as to exhibit a highly efficient rotating function.

前記の目的を達成するために、本発明の超電導回転機は、固定子側に設けた電機子コイルと、平板状の超電導体を有する超電導回転子とを備え、前記電機子コイルからの磁界を前記平板状の超電導体に印加することによって超電導体に誘起される遮蔽電流と前記磁界との相互作用によって生じる電磁力に基づいて、前記超電導回転子に回転力を発生させるように構成するものとし(請求項1)、具体的には次記のような態様で構成することができる。
(1)前記平板状の超電導体は、その外形輪郭が矩形状になる少なくとも1枚の薄膜超電導体からなり、該薄膜超電導体を回転子の軸中心に合わせて配置する(請求項2)。
(2)前記平板状の超電導体は、超電導材料と安定化材としての常電導材料との複合体からなる(請求項3)。
(3)前記平板状の超電導体は、複数の矩形状超電導体からなり、前記複数の矩形状超電導体を超電導体の主面と垂直な方向に重ねて配設している(請求項4)。
(4)前記重ねて配設した複数の矩形状超電導体は、各超電導体の間に電気絶縁材を備えている(請求項5)。
(5)前記重ねて配設した複数の矩形状超電導体は、矩形状の磁性材と交互に重ねて配設する(請求項6)。
(6)前記平板状の超電導体は複数個に分割してなり、分割された超電導体の分割ラインと直角方向の端部相互間を電気的に接続する(請求項7)。
(7)前記超電導回転子の軸端部に設けた回転角度位置検出器と、前記検出器により検出した回転子の回転角度に基づいて前記電機子コイルの発生磁界の角度制御を行う制御装置とを備えている(請求項8)。
In order to achieve the above object, a superconducting rotating machine of the present invention includes an armature coil provided on a stator side and a superconducting rotor having a flat superconductor, and generates a magnetic field from the armature coil. The superconducting rotor is configured to generate a rotational force based on an electromagnetic force generated by the interaction between the shielding current induced in the superconductor and the magnetic field when applied to the flat superconductor. (Claim 1) Specifically, it can be configured in the following manner.
(1) The flat superconductor is composed of at least one thin film superconductor whose outer contour is rectangular, and the thin film superconductor is arranged in alignment with the axial center of the rotor.
(2) The flat superconductor is composed of a composite of a superconducting material and a normal conducting material as a stabilizing material.
(3) The flat superconductor is composed of a plurality of rectangular superconductors, and the plurality of rectangular superconductors are arranged in a direction perpendicular to the main surface of the superconductor (claim 4). .
(4) The plurality of rectangular superconductors arranged in an overlapping manner include an electrical insulating material between the superconductors (Claim 5).
(5) The plurality of rectangular superconductors arranged in an overlapping manner are arranged alternately with a rectangular magnetic material (Claim 6).
(6) The flat superconductor is divided into a plurality of parts, and the divided superconductor division lines are electrically connected to the ends in the perpendicular direction.
(7) a rotation angle position detector provided at a shaft end of the superconducting rotor, and a control device that performs angle control of the magnetic field generated by the armature coil based on the rotation angle of the rotor detected by the detector; (Claim 8).

上記したこの発明によれば、次記の効果を奏することができる。
(1)まず、回転子に平板状の超電導体を用い、この超電導体を超電導状態に冷却した状態で固定子の電機子コイルに通電して生成した適度な磁界強さ(臨界磁界未満)の交番磁界(回転磁界)を印加すると、平板状の超電導体には遮蔽電流が誘起してループ状に流れ、この遮蔽電流と前記交番磁界との相互作用により平板状の超電導体に電磁力(ローレンツ力)が発生し、この電磁力が回転子の軸中心に対して回転力(偶力)となって電機子磁界に同期して回転子が回転する。
According to the present invention described above, the following effects can be obtained.
(1) First, a plate-shaped superconductor is used for the rotor, and an appropriate magnetic field strength (less than the critical magnetic field) generated by energizing the armature coil of the stator with the superconductor cooled to the superconducting state. When an alternating magnetic field (rotating magnetic field) is applied, a shielding current is induced in the flat superconductor and flows in a loop shape, and an electromagnetic force (Lorentz) is applied to the flat superconductor due to the interaction between the shielding current and the alternating magnetic field. Force) is generated, and this electromagnetic force becomes a rotational force (couple) with respect to the axial center of the rotor, and the rotor rotates in synchronization with the armature magnetic field.

ここで、前記平板状の超電導体として外形輪郭が矩形状の薄膜超電導体を用いることで、電機子コイルから印加する磁界が小さくても大きな遮蔽電流を誘起させることができる。
(2)また、本発明の回転子には先記した特許文献2,特許文献3におけるトルクシールド,常電導かご形巻線などの常電導金属体を備えてないので、起動時に大きなジュール熱,銅損が発生することがなく、また平板状の超電導体を収容した回転子をコアレスの空心回転子で構成することができるので、特許文献3のかご形回転子構造と比べて回転機の小型,軽量化が図れる。
(3)さらに、前記の平板状超電導体を、複数の薄膜超電導体をその主面と垂直方向に重ねて一体化した積層体で構成した上で、この積層体を回転子の軸中心と対称位置に配置することにより、電機子磁界との相互作用に発生する回転力を増強することができるほか、積層体の実効的な機械的強度を高めて回転機の遠心荷重による薄膜超電導体の変形,破損を防ぐ効果も期待できる。
(4)また、前項(3)において、各枚の薄膜超電導体の相互間に磁性材を配置することで、回転子に印加される空隙磁界を超電導体に集中させて、大きな回転力を効率よく発生することが可能となる。
(5)そのほか、現在の製造技術では幅広な大面積の薄膜超電導体を製作することが困難であるが、かかる点、平板状の超電導体を複数個に分割して並置し、かつ分割された超電導体の分割ラインと直角方向の端部を電気的に相互接続した構成を採用することにより、比較的小面積の薄膜超電導体を複数枚組み合わせて高出力の回転機を構成することが可能となる。
(6)さらに、回転子の軸端部に回転角度位置検出機構を設け、その位置検出信号を基に電機子側から回転子の超電導体に印加する交番磁界の磁界強さ,位相,周波数などを調整することで、超電導回転機を適正,かつ安定よく運転制御することができる。
Here, by using a thin film superconductor having a rectangular outline as the flat superconductor, a large shielding current can be induced even if the magnetic field applied from the armature coil is small.
(2) Further, since the rotor of the present invention does not include the normal conducting metal body such as the torque shield and the normal conducting lead-shaped winding in Patent Document 2 and Patent Document 3 described above, Copper loss does not occur, and a rotor containing a flat superconductor can be constituted by a coreless air-core rotor, so that the rotating machine is smaller than the cage rotor structure of Patent Document 3. , Weight reduction can be achieved.
(3) Further, the above-described flat superconductor is composed of a laminated body in which a plurality of thin film superconductors are stacked in a direction perpendicular to the main surface, and the laminated body is symmetrical with the axial center of the rotor. In addition to being able to enhance the rotational force generated in the interaction with the armature magnetic field, the effective mechanical strength of the laminate is increased and the thin film superconductor is deformed by the centrifugal load of the rotating machine. , It can also be expected to prevent damage.
(4) Also, in the previous item (3), by arranging a magnetic material between the thin film superconductors of each sheet, the air gap magnetic field applied to the rotor is concentrated on the superconductor, and a large rotational force is efficiently obtained. It can occur well.
(5) In addition, it is difficult to manufacture a wide-area thin-film superconductor with the current manufacturing technology. However, in this respect, the flat superconductors are divided into a plurality of pieces and juxtaposed. By adopting a configuration in which the ends of the superconductor dividing lines and the ends perpendicular to each other are electrically interconnected, it is possible to configure a high-power rotating machine by combining multiple thin-film superconductors with a relatively small area. Become.
(6) Further, a rotational angle position detection mechanism is provided at the shaft end of the rotor, and the magnetic field strength, phase, frequency, etc. of the alternating magnetic field applied to the rotor superconductor from the armature side based on the position detection signal By adjusting the, the superconducting rotating machine can be controlled appropriately and stably.

本発明の実施例1による超電導回転機の模式構成図であって、(a),(b)はそれぞれ回転子の軸と直角方向,および軸方向に沿った断面図である。BRIEF DESCRIPTION OF THE DRAWINGS It is a schematic block diagram of the superconducting rotary machine by Example 1 of this invention, Comprising: (a), (b) is sectional drawing along the direction orthogonal to the axis | shaft of a rotor, respectively, and an axial direction. 図1(a)における電機子コイルの通電により生成して回転子の超電導体に印加する交番磁界を表す模式図である。It is a schematic diagram showing the alternating magnetic field produced | generated by the energization of the armature coil in Fig.1 (a), and applying to the superconductor of a rotor. 平板状の超電導体に図2の磁界を印加した状態で誘起される遮蔽電流、および遮蔽電流と磁界との相互作用によるローレンツ力を表す模式説明図である。FIG. 3 is a schematic explanatory diagram showing a shielding current induced in a state where a magnetic field of FIG. 2 is applied to a flat superconductor, and a Lorentz force due to an interaction between the shielding current and the magnetic field. 図1に示した超電導回転機の回転動作原理を表す模式説明図である。It is a schematic explanatory drawing showing the rotation operation principle of the superconducting rotary machine shown in FIG. 本発明の実施例2に係わる超電導回転機の模式断面図である。It is a schematic cross section of the superconducting rotating machine according to the second embodiment of the present invention. 図5における回転子の動作原理を表す模式説明図である。FIG. 6 is a schematic explanatory diagram illustrating the operation principle of the rotor in FIG. 5. 本発明の実施例3に係わる超電導回転子の模式断面図である。It is a schematic cross section of the superconducting rotor concerning Example 3 of this invention. 図7の変形実施例を表す超電導回転子の模式断面図である。FIG. 8 is a schematic cross-sectional view of a superconducting rotor that represents a modified example of FIG. 7. 本発明の実施例4に係わる超電導回転子の模式構成図であって、(a)は平面図、(b)は(a)の矢視X−X断面図である。It is a schematic block diagram of the superconducting rotor concerning Example 4 of this invention, Comprising: (a) is a top view, (b) is arrow XX sectional drawing of (a). 本発明の実施例5に係わる超電導回転子の模式構成図であって、(a)は平面図、(b)は(a)の矢視X−X断面図である。It is a schematic block diagram of the superconducting rotor concerning Example 5 of this invention, Comprising: (a) is a top view, (b) is arrow XX sectional drawing of (a). 本発明の実施例6に係わる超電導回転子の制御システム図である。It is a control system figure of the superconducting rotor concerning Example 6 of the present invention.

以下、本発明による超電導回転機の実施の形態を図1〜図11に示す実施例に基づいて説明する。   DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of a superconducting rotating machine according to the present invention will be described below based on the examples shown in FIGS.

まず、本発明の超電導回転機の基本構造,および動作原理を図1〜図4に基づいて説明する。各図において、1は固定子、2は固定子1の内周に配した電機子コイル、3は回転子、4は回転子3に搭載した平板状の超電導体である。   First, the basic structure and operating principle of the superconducting rotating machine of the present invention will be described with reference to FIGS. In each figure, 1 is a stator, 2 is an armature coil disposed on the inner periphery of the stator 1, 3 is a rotor, and 4 is a flat superconductor mounted on the rotor 3.

ここで、電機子コイル2は、通常の3相誘導回転機と同様に固定子1の内周側に沿って6個のコイルを並置配列した上で、隣り合うコイル同士の間に電気的位相を120°ずらして三相交流電力を供給し、後記のように回転子3の超電導体4に印加する交番磁界(回転磁界)を生成する。   Here, the armature coil 2 has six coils arranged in parallel along the inner peripheral side of the stator 1 in the same manner as a normal three-phase induction rotating machine, and an electrical phase between adjacent coils. Are shifted by 120 ° and three-phase AC power is supplied to generate an alternating magnetic field (rotating magnetic field) to be applied to the superconductor 4 of the rotor 3 as described later.

一方、回転子3はクライオスタット構造になる中空回転部3aと回転軸3b(回転機の出力軸)からなり、回転軸3bが軸受(不図示)を介して固定子のブラケットに軸支されている。そして、前記中空回転部3aの内部中央には回転子の軸中心Oに合わせて1枚の平板状の超電導体4が収容配置されており、この超電導体4は非磁性の支持部材(不図示)を介して中空回転部3aに結合支持されるようにしている。   On the other hand, the rotor 3 includes a hollow rotating portion 3a having a cryostat structure and a rotating shaft 3b (an output shaft of a rotating machine), and the rotating shaft 3b is pivotally supported by a stator bracket via a bearing (not shown). . A single flat superconductor 4 is accommodated in the center of the hollow rotating portion 3a in accordance with the axial center O of the rotor. The superconductor 4 is a non-magnetic support member (not shown). ) To be supported by the hollow rotating portion 3a.

また、前記平板状の超電導体4は、例えばイットリウム系(Y系)などの高温酸化物超電導材で作られ、その外形輪郭が矩形状(ないしは矩形と類似な小判形状)になる幅広な薄膜超電導体であり、ここで超電導体4の幅をD、軸方向の長さをLとする。なお、よく知られているようにこの薄膜超電導体は、例えば銀,ハステロイなどの基板(常電導金属)を安定材としてその上に中間層を介して超電導薄膜を成膜した複合体になる。   The flat superconductor 4 is made of a high-temperature oxide superconducting material such as yttrium-based (Y-based), and has a wide thin film superconducting shape whose outer contour is rectangular (or an oblong shape similar to a rectangle). Here, D is the width of the superconductor 4 and L is the length in the axial direction. As is well known, this thin film superconductor is a composite in which a superconducting thin film is formed on an intermediate layer on a substrate (normal conducting metal) such as silver or hastelloy as a stabilizer.

次に、図1に示した超電導回転機の動作原理を説明する。まず、平板状の超電導体4を収容した回転子3の中空回転部3aに液体窒素などの冷媒を導入して超電導体4を臨界温度以下の超電導状態に冷却した上で、固定子1に配した電機子コイル2に三相交流を通電すると、図2で示すように回転子3(不図示)を配置する空間には図示矢印で表す交番磁界B(回転磁界)が発生し、この電機子磁界Bが回転子3に配した平板状の超電導体4(図1参照)に印加される。   Next, the operating principle of the superconducting rotating machine shown in FIG. 1 will be described. First, a refrigerant such as liquid nitrogen is introduced into the hollow rotating portion 3a of the rotor 3 containing the flat superconductor 4 to cool the superconductor 4 to a superconducting state below the critical temperature, and then disposed on the stator 1. When a three-phase alternating current is applied to the armature coil 2, the alternating magnetic field B (rotating magnetic field) indicated by the illustrated arrow is generated in the space in which the rotor 3 (not shown) is arranged as shown in FIG. A magnetic field B is applied to a flat superconductor 4 (see FIG. 1) disposed on the rotor 3.

そして、この電機子磁界Bの印加により、平板状の超電導体4には図3で表すように遮蔽電流Isが誘起し、矩形状の超電導体4の周域に沿ってループ状に流れる。これにより、遮蔽電流Isと電機子磁界Bとの相互作用によって平板状の超電導体4には図示のような電磁力(ローレンツ力)F(F=Is×B×L)が発生する。この場合に、磁界Bが図示のように超電導体4の主面に対して垂直方向に印加されている状態では、回転子の軸中心Oに対して超電導体4の左側領域に発生する電磁力Fと右側領域に発生する電磁力Fの方向は互いに向きが反対で電磁力F同士が相殺し合うので、超電導体4は回転しない。   By applying this armature magnetic field B, a shielding current Is is induced in the flat superconductor 4 as shown in FIG. 3 and flows in a loop along the peripheral area of the rectangular superconductor 4. Thereby, an electromagnetic force (Lorentz force) F (F = Is × B × L) as shown in the figure is generated in the flat superconductor 4 due to the interaction between the shielding current Is and the armature magnetic field B. In this case, when the magnetic field B is applied in a direction perpendicular to the main surface of the superconductor 4 as shown in the figure, the electromagnetic force generated in the left region of the superconductor 4 with respect to the axial center O of the rotor. Since the directions of F and the electromagnetic force F generated in the right region are opposite to each other and the electromagnetic forces F cancel each other, the superconductor 4 does not rotate.

これに対して、図4で表すように電機子磁界Bの向きに対して平板状の超電導体4がある角度傾斜していると、前記電磁力Fが偶力となって超電導体4が回転軸中心Oの回りに回転する。なお、図2で述べた電機子磁界Bは回転磁界でその磁界の向きが周期的に変化するので、超電導体4を支持した回転子3は連続的に回転することになる。   On the other hand, as shown in FIG. 4, when the flat superconductor 4 is inclined at an angle with respect to the direction of the armature magnetic field B, the electromagnetic force F becomes a couple and the superconductor 4 rotates. It rotates around the axis center O. Note that the armature magnetic field B described in FIG. 2 is a rotating magnetic field, and the direction of the magnetic field changes periodically, so that the rotor 3 supporting the superconductor 4 rotates continuously.

上記した構造,動作原理の説明から明らかなように、本発明の超電導回転機は回転子3の中空回転部3aの中央に平板状の超電導体4を設置しただけの簡易な構造であり、特許文献3に開示されているかご形巻線のように回転子コアのスロットに収めたロータバーの両端をエンドリングに電気的に接続する必要もなく、また回転子3には特許文献2におけるトルクシールド,特許文献3における常電導かご形巻線などのジュール発熱が大なき常電導金属体、および重量物の回転子コアも必要ない。   As is apparent from the above description of the structure and operation principle, the superconducting rotating machine of the present invention has a simple structure in which a flat superconductor 4 is simply installed at the center of the hollow rotating portion 3a of the rotor 3, Unlike the squirrel-cage winding disclosed in Document 3, it is not necessary to electrically connect both ends of the rotor bar accommodated in the rotor core slot to the end ring. In addition, a normal conductive metal body with a large Joule heat generation such as a normal conductive lead-shaped winding in Patent Document 3 and a heavy rotor core are not required.

これにより、回転機の小型,軽量化が図れるとともに、超電導体を超電導状態に保冷する冷却装置の冷却負荷も大幅に軽減できる。また、回転機の運転開始当初からの超電導体を常時超電導状態に冷却維持しておくことで、特許文献2,特許文献3の超電導回転機のように起動から定常運転に移行する過程で行う超電導臨界温度の判定,制御も必要なく運転できる。   As a result, the rotating machine can be reduced in size and weight, and the cooling load of the cooling device that keeps the superconductor in a superconducting state can be greatly reduced. In addition, by maintaining the superconductor from the beginning of operation of the rotating machine in a superconducting state at all times, superconducting performed in the process of shifting from startup to steady operation like the superconducting rotating machines of Patent Document 2 and Patent Document 3. It can be operated without critical temperature judgment and control.

なお、先記した回転機の動作原理から、図示の実施例では平板状の超電導体4として、幅広で厚さが薄い薄膜超電導体を用いているがこれに限定されるものではなく、例えばバルク材の超電導体を採用することも可能である。また、平板状の超電導体には、必要に応じてその板面に回転軸方向に沿ったスリットを形成することも可能である。   In the illustrated embodiment, a thin and thin thin-film superconductor is used as the flat superconductor 4 in the illustrated embodiment, but the present invention is not limited to this. It is also possible to use a superconductor made of a material. Moreover, it is also possible to form a slit along the rotation axis direction on the plate surface of the flat superconductor as necessary.

また、回転子3に配置した超電導体4の冷却についても、図示実施例の冷却方式に限定されるものではなく、例えば固定子1の電機子コイル2を含めて超電導回転機全体を円筒状の外囲容器で囲み、この外囲容器の外周面に布設した冷媒の通流配管に外部から極低温冷媒を流して伝熱、対流により超電導回転機全体を冷却するようにしてもよい。さらに、極低温冷媒として、液体窒素のほかにHe,Neの気体又は液体も使用できる。   Further, the cooling of the superconductor 4 arranged in the rotor 3 is not limited to the cooling method of the illustrated embodiment. For example, the entire superconducting rotating machine including the armature coil 2 of the stator 1 is cylindrical. The entire superconducting rotating machine may be cooled by heat transfer and convection by flowing a cryogenic refrigerant from the outside through a refrigerant flow pipe provided on the outer peripheral surface of the envelope surrounded by an outer container. In addition to liquid nitrogen, He or Ne gas or liquid can be used as the cryogenic refrigerant.

次に、先記実施例1を改良して超電導回転機の出力トルクを増強するようにした本発明の実施例2の回転機構成,およびその回転動作を図5,図6で説明する。   Next, a description will be given of a rotating machine configuration of the second embodiment of the present invention in which the output torque of the superconducting rotating machine is enhanced by improving the first embodiment, and the rotating operation thereof with reference to FIGS.

すなわち、この実施例では超電導体4を、複数(N枚)の矩形状薄膜超電導体4-1,4-2,・・・4-Nをその主面と垂直な方向に重ね合わせて積層一体化した構成とし、この積層形の超電導体4を図示のように回転軸中心Oに合わせて回転子3の中央に収容している。なお、図示していないが前記薄膜超電導体4-1,4-2,・・・4-Nは電気絶縁材を介して導体相互間を電気的に絶縁し、各枚の薄膜超電導体に流れる遮蔽電流Isの干渉を避けるようしている。   That is, in this embodiment, the superconductor 4 is laminated and integrated by superimposing a plurality (N pieces) of rectangular thin film superconductors 4-1, 4-2,..., 4-N in a direction perpendicular to the main surface. The laminated superconductor 4 is accommodated in the center of the rotor 3 in accordance with the rotation axis center O as shown in the drawing. Although not shown, the thin film superconductors 4-1, 4-2,..., 4-N electrically insulate between the conductors through an electrical insulating material and flow to each thin film superconductor. The interference of the shielding current Is is avoided.

そして、先記の実施例1と同様に、積層形の超電導体4を臨界温度以下の超電導状態に冷却した状態で、固定子1の電機子コイル2で生成した電機子磁界(回転磁界)Bを回転子3の超電導体4に印加すると、図6で表すように超電導体4には各枚の薄膜超電導体4-1,4-2,・・・4-Nに誘起した遮蔽電流Isと電機子磁界Bとの相互作用により、超電導体4にはローレンツ力F'(F'=F×N(但しN:薄膜超電導体の積層数))が発生する。ここで、電機子磁界Bの印加方向と超電導体4とのなす角度をθとすれば、超電導体4は回転トルクT(T=F'×cosθ×r (但し、rは回転軸中心Oから導体両端までの回転半径)を受けて回転軸中心Oの回りで回転する。これにより、平板状の超電導体4を一枚で構成した先記実施例1と比べて超電導回転機の出力トルクを大幅に増強できる。そのほか、この積層形の超電導体4の実効的な機械的強度(剛性)を高めて回転機の遠心荷重による薄膜超電導体の変形,破損を防ぐ効果も期待できる。   As in the first embodiment, the armature magnetic field (rotating magnetic field) B generated by the armature coil 2 of the stator 1 in a state where the laminated superconductor 4 is cooled to a superconducting state below the critical temperature. Is applied to the superconductor 4 of the rotor 3, as shown in FIG. 6, the superconductor 4 has a shielding current Is induced in each of the thin film superconductors 4-1, 4-2,. Due to the interaction with the armature magnetic field B, a Lorentz force F ′ (F ′ = F × N (where N is the number of stacked thin film superconductors)) is generated in the superconductor 4. Here, if the angle formed between the direction in which the armature magnetic field B is applied and the superconductor 4 is θ, the superconductor 4 has a rotational torque T (T = F ′ × cos θ × r (where r is the rotational axis center O). And rotating around the rotation axis O. Thereby, the output torque of the superconducting rotating machine can be increased as compared with the first embodiment in which the flat superconductor 4 is composed of a single sheet. In addition, it can be expected to increase the effective mechanical strength (rigidity) of the laminated superconductor 4 to prevent deformation and breakage of the thin film superconductor due to the centrifugal load of the rotating machine.

次に、前記実施例2の積層形回転子をさらに改良した本発明の実施例3を図7,図8に示す。   Next, FIG. 7 and FIG. 8 show a third embodiment of the present invention in which the laminated rotor of the second embodiment is further improved.

すなわち、この実施例においては、複数の薄膜超電導体4-1,4-2,・・・4-Nをその主面と垂直な方向に重ね合わせた積層体になる超電導体4について、その薄膜超電導体の外形輪郭に合わせて形成した矩形状の磁性材5を各枚の薄膜超電導体4-1,4-2,・・・4-Nと交互に重ね合わせて積層するようにしている。この構成により、固定子の電機子コイル(不図示)で生成した交番磁界を回転子3に収容した複数の薄膜超電導体4-1,4-2,・・・4-Nへ集中的に印加させて遮蔽電流Isを効果的に発生させることができる。   That is, in this embodiment, the thin film superconductor 4, 4-2,..., 4-N is stacked on the superconductor 4 in the direction perpendicular to the main surface. A rectangular magnetic material 5 formed in conformity with the outer contour of the superconductor is alternately stacked on each thin film superconductor 4-1, 4-2,. With this configuration, an alternating magnetic field generated by an armature coil (not shown) of the stator is intensively applied to a plurality of thin film superconductors 4-1, 4-2,. Thus, the shielding current Is can be generated effectively.

なお、図7は隣接する薄膜超電導体の間に磁性材5を介挿して積層し、図8は図7と逆に磁性材5の間に薄膜超電導体を介挿しており、いずれの構成でも同等な効果を発揮させることができる。   In FIG. 7, the magnetic material 5 is interposed between adjacent thin film superconductors, and in FIG. 8, the thin film superconductor is interposed between the magnetic materials 5 contrary to FIG. An equivalent effect can be exhibited.

次に、比較的小面積の超電導体を組み合わせて大面積な超電導体を構成できるようにした本発明の実施例4を図9(a),(b)に示す。   Next, FIG. 9A and FIG. 9B show Embodiment 4 of the present invention in which a superconductor having a large area can be configured by combining superconductors having a relatively small area.

すなわち、現在の製造技術で大面積の薄膜超電導体を製造するには、その製造設備を大型化する必要があることから製品コストが高価格になるのは明白である。さらに問題となる点は、大面積の薄膜超電導体における超電導特性を均一化する技術が非常に難しいことである。薄膜超電導体の製造には幾つかの製造方法が実用化されているが、配向性をもった安定材の基板上に超電導層を成膜する際の成膜条件によって超電導特性が大きく変わるため、大面積で品質の高い薄膜超電導体を製造することは非常に困難であるのが現状である。   In other words, in order to manufacture a thin-film superconductor having a large area with the current manufacturing technology, it is obvious that the manufacturing cost is high because the manufacturing equipment needs to be enlarged. A further problem is that a technique for making the superconducting characteristics uniform in a large-area thin film superconductor is very difficult. Several manufacturing methods have been put to practical use in the manufacture of thin film superconductors, but the superconducting properties vary greatly depending on the film forming conditions when forming a superconducting layer on a substrate of an orientationally stable material. It is very difficult to manufacture a thin film superconductor with a large area and high quality.

かかる問題に対して、図9の実施例では回転子3に収容した平板状の超電導体4を矩形状になる左右二枚の分割超電導体4a-1と4a-2に分割し、かつ各分割超電導体4a-1,4a-2を回転子2の軸中心Oと軸対称位置に並置した上で、その分割ラインと直角方向の両端部を、接続導体4bを介して電気的に相互接続している。   In order to deal with such a problem, in the embodiment of FIG. 9, the flat superconductor 4 accommodated in the rotor 3 is divided into two rectangular superconductors 4a-1 and 4a-2 which are rectangular and each divided. The superconductors 4a-1 and 4a-2 are juxtaposed in an axially symmetric position with the axial center O of the rotor 2, and both end portions in the direction perpendicular to the dividing line are electrically connected to each other through the connecting conductor 4b. ing.

上記構成の超電導体4に先記の実施例1と同様に電機子コイル2で生成した回転磁界を印加すると、分割超電導体4a-1,4a-2に誘起した遮蔽電流が接続導体4bを経由してループ状に流れ、この遮蔽電流と電機子磁界との相互作用により超電導体4に発生した回転力で回転子3が回転軸中心Oの回りに回転する。なお、超電導体4の分割数は二枚に限定されるものではなくそれ以上に分割してもよい。また、分割超電導体4a-1,4a-2の両端に跨がって接続した接続導体4bは、超電導材でも常電導材でもよい。   When the rotating magnetic field generated by the armature coil 2 is applied to the superconductor 4 having the above-described configuration in the same manner as in the first embodiment, the shielding current induced in the divided superconductors 4a-1 and 4a-2 passes through the connecting conductor 4b. Then, the rotor 3 rotates around the rotation axis O by the rotational force generated in the superconductor 4 due to the interaction between the shield current and the armature magnetic field. Note that the number of divisions of the superconductor 4 is not limited to two and may be divided more than that. Further, the connecting conductor 4b connected across both ends of the divided superconductors 4a-1 and 4a-2 may be a superconducting material or a normal conducting material.

この構成によれば、幅広,大面積の超電導体を用いなくても、比較的小面積の超電導体を組み合わせて高出力の回転機を構成することが可能となる。   According to this configuration, a high-output rotating machine can be configured by combining a relatively small area superconductor without using a wide and large area superconductor.

次に、前記した実施例4の応用実施例を図10に示す。すなわち、図9の実施例では分割超電導体を回転子の軸中心Oに対し左右に分けて並置配列しているのに対して、この実施例では複数に分けた矩形状の分割超電導体4a-1,4a-2,4a-3を、図示のように回転子3の回転軸方向に沿って並置配列した上で、各分割超電導体4a-1,4a-2,4a-3の相互間をその左右両端部に配した接続導体4bを介して相互接続するようにしている。   Next, an application example of the above-described Example 4 is shown in FIG. That is, in the embodiment of FIG. 9, the divided superconductors are arranged side by side with respect to the axial center O of the rotor, whereas in this embodiment, the divided divided superconductors 4a- 1, 4a-2, 4a-3 are arranged side by side along the direction of the rotation axis of the rotor 3 as shown in the figure, and the divided superconductors 4a-1, 4a-2, 4a-3 are connected to each other. The connection is made through the connection conductors 4b arranged at the left and right ends.

この実施例でも、先記実施例4と同様に比較的小面積の超電導体を組み合わせて高出力の回転機を構成することができる。なお、図示実施例では超電導体4を三枚の分割超電導体4a-1,4a-2,4a-3に分けているが、分割数はこれに限定されるものではない。   Also in this embodiment, a high output rotating machine can be configured by combining superconductors having a relatively small area as in the fourth embodiment. In the illustrated embodiment, the superconductor 4 is divided into three divided superconductors 4a-1, 4a-2, 4a-3, but the number of divisions is not limited to this.

次に、本発明の超電導回転機の運転システムを図11で説明する。すなわち、先記実施例で説明した超電導回転機の構成,動作原理から判るように、固定子1の電機子コイル2で生成した磁界(回転磁界)Bを回転子3に収容配置した平板状の超電導体4に印加した状態で、超電導体4に流れる遮蔽電流Isと電機子磁界Bとの相互作用により発生する回転力で回転子3を回転させるには、超電導体4と電機子磁界との間に或る角度θ(図4,図6参照)を保持する必要があり、また回転子3に負荷をかけた運転状態では負荷の大きさによって適正な角度θも変わる。   Next, the operation system of the superconducting rotating machine of the present invention will be described with reference to FIG. That is, as can be seen from the configuration and operating principle of the superconducting rotating machine described in the previous embodiment, a flat magnetic field (rotating magnetic field) B generated by the armature coil 2 of the stator 1 is accommodated in the rotor 3. In order to rotate the rotor 3 by the rotational force generated by the interaction between the shield current Is flowing through the superconductor 4 and the armature magnetic field B in the state of being applied to the superconductor 4, the superconductor 4 and the armature magnetic field It is necessary to maintain a certain angle θ (see FIGS. 4 and 6) between them, and in an operating state in which a load is applied to the rotor 3, the appropriate angle θ also changes depending on the magnitude of the load.

そこで、図11に示す運転システムでは、回転子3の駆動軸3bに対し、運転側と反対側の軸端に対向して回転子角度位置検出器6を配置した上で、この検出器6の検知信号を電機子コイル電力制御装置7に出力し、電機子コイル電力供給装置(インバータ)8を介して電機子コイル2に供給する電力を制御するようにしている。   Therefore, in the operation system shown in FIG. 11, the rotor angular position detector 6 is disposed opposite to the shaft end opposite to the operation side with respect to the drive shaft 3 b of the rotor 3. The detection signal is output to the armature coil power control device 7 to control the power supplied to the armature coil 2 via the armature coil power supply device (inverter) 8.

これにより、超電導回転機の起動,運転時に回転子3に配置した平板状超電導体4の回転角度を検知し、この検知信号を基に電機子コイル2の通電により生成する回転磁界の強さ,位相,周波数,回転方向などを制御して回転機を安定よく運転することが可能になる。なお、この制御法を活用することにより、超電導回転機を電動機以外に制動機(ブレーキ)として使用することも可能である。   Thereby, the rotation angle of the flat superconductor 4 arranged on the rotor 3 during the start-up and operation of the superconducting rotating machine is detected, and the strength of the rotating magnetic field generated by energization of the armature coil 2 based on this detection signal, It becomes possible to operate the rotating machine stably by controlling the phase, frequency, rotation direction, and the like. By utilizing this control method, the superconducting rotating machine can be used as a brake (brake) in addition to the electric motor.

1 固定子
2 電機子コイル
3 回転子
3a 中空回転部
3b 回転軸
4 平板状の超電導体
4a-1〜4a-3 分割超電導体
4b 接続導体
5 磁性材
6 回転子角度位置検出器
7 電機子コイル電力制御装置
8 電機子コイル電力供給装置
DESCRIPTION OF SYMBOLS 1 Stator 2 Armature coil 3 Rotor 3a Hollow rotating part 3b Rotating shaft 4 Flat superconductor 4a-1 to 4a-3 Split superconductor 4b Connection conductor 5 Magnetic material 6 Rotor angular position detector 7 Armature coil Power control device 8 Armature coil power supply device

Claims (8)

固定子側に設けた電機子コイルと、平板状の超電導体を有する超電導回転子とを備えた超電導回転機であって、前記電機子コイルからの磁界を前記平板状の超電導体に印加することによって誘起される遮蔽電流と前記磁界とによって生じる電磁力に基づいて、前記超電導回転子に回転力を発生させるようにしたことを特徴とする超電導回転機。   A superconducting rotating machine including an armature coil provided on a stator side and a superconducting rotor having a flat superconductor, and applying a magnetic field from the armature coil to the flat superconductor. A superconducting rotating machine characterized in that a rotating force is generated in the superconducting rotor based on an electromagnetic force generated by a shielding current induced by the magnetic field and the magnetic field. 前記平板状の超電導体は、その外形輪郭が矩形状になる少なくとも1枚の薄膜超電導体からなり、該薄膜超電導体を回転子の軸中心に合わせて配置したことを特徴とする請求項1に記載の超電導回転機。   The flat plate-shaped superconductor is composed of at least one thin film superconductor whose outer contour is rectangular, and the thin film superconductor is arranged in accordance with the axial center of the rotor. The superconducting rotating machine described. 前記平板状の超電導体は、超電導材料と安定化材としての常電導材料との複合体からなることを特徴とする請求項1または2に記載の超電導回転機。   The superconducting rotating machine according to claim 1 or 2, wherein the flat superconductor is composed of a composite of a superconducting material and a normal conducting material as a stabilizing material. 前記平板状の超電導体は、複数の矩形状超電導体からなり、前記複数の矩形状超電導体を超電導体の主面と垂直な方向に重ねて配設したことを特徴とする請求項1ないし3のいずれかの項に記載の超電導回転機。   The flat plate-like superconductor is composed of a plurality of rectangular superconductors, and the plurality of rectangular superconductors are arranged so as to overlap each other in a direction perpendicular to the main surface of the superconductor. A superconducting rotating machine according to any one of the above. 前記重ねて配設した複数の矩形状超電導体は、各超電導体間に電気絶縁材を備えたことを特徴とする請求項4に記載の超電導回転機。   The superconducting rotating machine according to claim 4, wherein the plurality of rectangular superconductors arranged in an overlapping manner include an electrical insulating material between the superconductors. 前記重ねて配設した複数の矩形状超電導体は、矩形状の磁性材と交互に重ねて配設したことを特徴とする請求項4に記載の超電導回転機。   The superconducting rotating machine according to claim 4, wherein the plurality of superposed rectangular superconductors are alternately superposed with a rectangular magnetic material. 前記平板状の超電導体は複数個に分割してなり、分割された超電導体の分割ラインと直角方向の端部相互間を電気的に接続してなることを特徴とする請求項1ないし6のいずれかの項に記載の超電導回転機。   7. The flat superconductor is divided into a plurality of parts, and the divided superconductor division lines are electrically connected to the ends in the perpendicular direction. The superconducting rotating machine according to any one of the items. 前記超電導回転子の軸端部に設けた回転角度位置検出器と、前記検出器により検出した回転子の回転角度に基づいて前記電機子コイルの発生磁界の角度制御を行う制御装置とを備えたことを特徴とする請求項1ないし7のいずれかの項に記載の超電導回転機。   A rotation angle position detector provided at a shaft end of the superconducting rotor, and a control device for controlling the angle of the magnetic field generated by the armature coil based on the rotation angle of the rotor detected by the detector. The superconducting rotating machine according to any one of claims 1 to 7, wherein
JP2012109760A 2012-05-11 2012-05-11 Superconducting rotating machine Active JP5974278B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012109760A JP5974278B2 (en) 2012-05-11 2012-05-11 Superconducting rotating machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012109760A JP5974278B2 (en) 2012-05-11 2012-05-11 Superconducting rotating machine

Publications (2)

Publication Number Publication Date
JP2013240147A true JP2013240147A (en) 2013-11-28
JP5974278B2 JP5974278B2 (en) 2016-08-23

Family

ID=49764724

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012109760A Active JP5974278B2 (en) 2012-05-11 2012-05-11 Superconducting rotating machine

Country Status (1)

Country Link
JP (1) JP5974278B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018096214A (en) * 2016-12-08 2018-06-21 株式会社神戸製鋼所 Pump
CN108809052A (en) * 2018-06-22 2018-11-13 华北电力大学 A kind of superconducting motor using track type superconductive pellet stacked coils
CN111046539A (en) * 2019-11-27 2020-04-21 上海电气电站设备有限公司 Water-cooled rotor forced excitation temperature rise calculation method based on instantaneous movement method
WO2020218525A1 (en) 2019-04-24 2020-10-29 国立大学法人九州大学 Superconducting induction rotating machine, and superconducting drive force generating system using said superconducting induction rotating machine

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52133512A (en) * 1976-05-04 1977-11-09 Hitachi Ltd Rotor for superconductive rotary machine
JPS63265560A (en) * 1987-04-22 1988-11-02 Hitachi Ltd Motor
JPS63305745A (en) * 1987-06-03 1988-12-13 Hiroshi Kubota Motor using superconductor
JPH04206579A (en) * 1990-11-30 1992-07-28 Hitachi Ltd Magnetic shielding device
JPH0964423A (en) * 1995-08-25 1997-03-07 Agency Of Ind Science & Technol Oxide superconductor/high strength ceramic laminated current lead
JP2010273498A (en) * 2009-05-25 2010-12-02 Kyoto Univ Superconducting rotating machine and superconducting rotating machine system
JP2011091094A (en) * 2009-10-20 2011-05-06 Sumitomo Electric Ind Ltd Oxide superconducting coil, oxide superconducting coil object and rotary device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52133512A (en) * 1976-05-04 1977-11-09 Hitachi Ltd Rotor for superconductive rotary machine
JPS63265560A (en) * 1987-04-22 1988-11-02 Hitachi Ltd Motor
JPS63305745A (en) * 1987-06-03 1988-12-13 Hiroshi Kubota Motor using superconductor
JPH04206579A (en) * 1990-11-30 1992-07-28 Hitachi Ltd Magnetic shielding device
JPH0964423A (en) * 1995-08-25 1997-03-07 Agency Of Ind Science & Technol Oxide superconductor/high strength ceramic laminated current lead
JP2010273498A (en) * 2009-05-25 2010-12-02 Kyoto Univ Superconducting rotating machine and superconducting rotating machine system
JP2011091094A (en) * 2009-10-20 2011-05-06 Sumitomo Electric Ind Ltd Oxide superconducting coil, oxide superconducting coil object and rotary device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018096214A (en) * 2016-12-08 2018-06-21 株式会社神戸製鋼所 Pump
CN108809052A (en) * 2018-06-22 2018-11-13 华北电力大学 A kind of superconducting motor using track type superconductive pellet stacked coils
WO2020218525A1 (en) 2019-04-24 2020-10-29 国立大学法人九州大学 Superconducting induction rotating machine, and superconducting drive force generating system using said superconducting induction rotating machine
KR20220003515A (en) 2019-04-24 2022-01-10 고쿠리쓰다이가쿠호진 규슈다이가쿠 Superconducting induction rotating machine and superconducting driving force generating system using the same
CN111046539A (en) * 2019-11-27 2020-04-21 上海电气电站设备有限公司 Water-cooled rotor forced excitation temperature rise calculation method based on instantaneous movement method
CN111046539B (en) * 2019-11-27 2023-09-26 上海电气电站设备有限公司 Water-cooled rotor forced excitation temperature rise calculation method based on instantaneous movement method

Also Published As

Publication number Publication date
JP5974278B2 (en) 2016-08-23

Similar Documents

Publication Publication Date Title
JP4308308B2 (en) Superconducting electric motor
JP5576246B2 (en) Axial gap type brushless motor
US7492073B2 (en) Superconducting rotating machines with stationary field coils
US20080161189A1 (en) Superconducting Electrical Machines
US11502590B2 (en) Radial-gap type superconducting synchronous machine, magnetizing apparatus, and magnetizing method
JP5974278B2 (en) Superconducting rotating machine
GB2462532A (en) Brushless motor/generator with trapped-flux superconductors
WO2020218525A1 (en) Superconducting induction rotating machine, and superconducting drive force generating system using said superconducting induction rotating machine
JP5043955B2 (en) Superconducting synchronous motor
US7109425B2 (en) Low alternating current (AC) loss superconducting cable
JP5278907B2 (en) Superconducting rotating machine and superconducting rotating machine system
WO2019004847A1 (en) Flywheel energy storage system
JP6462490B2 (en) Superconducting motor and superconducting generator
US11303194B1 (en) Wound field synchronous machine
US6794970B2 (en) Low alternating current (AC) loss superconducting coils
WO2007013206A1 (en) Axial motor
US20230135926A1 (en) Superconducting rotating machine
WO2023037834A1 (en) Superconducting rotating machine, and ship, automobile, aircraft, and pump using same
US20190296629A1 (en) High temperature superconducting synchronous machine with rotating armature
JP2019030153A (en) Superconducting rotary machine
US20210375541A1 (en) Electrical machine and method for fabrication of a coil of an electrical machine
JP6800475B2 (en) Superconducting rotating machine
CA2709819C (en) Electric motor comprising an inductor with a superconducting element incorporated between coils

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150217

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150420

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20150420

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20150420

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20151225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160126

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160318

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20160331

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20160331

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160524

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20160607

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20160607

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160620

R150 Certificate of patent or registration of utility model

Ref document number: 5974278

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250