JPH0797277A - Method for joining oxide superconductor - Google Patents

Method for joining oxide superconductor

Info

Publication number
JPH0797277A
JPH0797277A JP6178227A JP17822794A JPH0797277A JP H0797277 A JPH0797277 A JP H0797277A JP 6178227 A JP6178227 A JP 6178227A JP 17822794 A JP17822794 A JP 17822794A JP H0797277 A JPH0797277 A JP H0797277A
Authority
JP
Japan
Prior art keywords
oxide superconductors
orientation
superconductors
oxide
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6178227A
Other languages
Japanese (ja)
Inventor
Hiromi Fujioka
ひろみ 藤岡
Takayuki Inoue
貴之 井上
Gentaro Kaji
源太郎 梶
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP6178227A priority Critical patent/JPH0797277A/en
Publication of JPH0797277A publication Critical patent/JPH0797277A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N60/00Superconducting devices
    • H10N60/80Constructional details

Landscapes

  • Superconductor Devices And Manufacturing Methods Thereof (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)
  • Ceramic Products (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

PURPOSE:To join two highly oriented oxide superconductors without deteriorating the characteristics of the superconductive at the joined part by bringing the end surfaces of the two oxide superconductors having the same orientation directions of crystals into contact with each other, and subsequently pressing and heating the contacting superconductors under a prescribed pressure at a prescribed temperature. CONSTITUTION:Two oxide superconductors 1, 2 (e.g. Bi-Sr-Ca-Cu-O superconductor) containing at least Cu and having an orientation degree of >=2.5 in the C-axial direction are prepared. The end surfaces 3, 4 of the two oxide superconductors 1, 2 having the same crystal orientation directions are brought into contact with each other, and the contacted parts are pressed with press punches 5, 6 under a pressure of >=0.05ton/cm<2> and simultaneously heated at 500-900 deg.C to join the oxide superconductors 1, 2 to each other. Since the mutual diffusion and sintering of the end surfaces and simultaneously the orientation of the joined part due to the pressing are thereby advanced, the superconductors can be joined to each other without damaging the mutual orientation characteristics, thus the structural article having the large area and the homogeneous superconductive characteristics is obtained.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、2つの酸化物超電導体
を特性の劣化を抑制しつつ接合するための方法に関する
ものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for joining two oxide superconductors while suppressing deterioration of characteristics.

【0002】[0002]

【従来技術】近年、超電導体として従来から用いられて
きた金属系超電導体よりも高い臨界温度Tc(抵抗がゼ
ロになる温度)を有する材料として酸化物超電導体が発
見され、その実用化が期待されている。現在、酸化物超
電導体としては、主としてY−Ba−Cu−O系、Bi
−Sr−Ca−Cu−O系およびTl−Ba−Ca−C
u−O系の3種が主流である。これらの酸化物超電導体
は、その実用化に際しては高い臨界温度を有するととも
に臨界電流密度(抵抗ゼロにおける電流値)が大きいこ
とが必要とされている。また、一方では、酸化物超電導
体の利用価値を高めるための1つの手法として接合技術
の開発が望まれている。特に、酸化物超電導体は磁気シ
ールドなどへの応用が期待されている。
2. Description of the Related Art In recent years, oxide superconductors have been discovered as a material having a higher critical temperature Tc (temperature at which resistance becomes zero) than metal superconductors conventionally used as superconductors, and their practical application is expected. Has been done. At present, as oxide superconductors, mainly Y-Ba-Cu-O-based materials and Bi
-Sr-Ca-Cu-O system and Tl-Ba-Ca-C
The three main types are uO. These oxide superconductors are required to have a high critical temperature and a large critical current density (current value at zero resistance) when they are put into practical use. On the other hand, it is desired to develop a joining technique as one method for increasing the utility value of oxide superconductors. In particular, oxide superconductors are expected to be applied to magnetic shields and the like.

【0003】そこで、従来より酸化物超電導体を接合す
るための方法としては、酸化物超電導体を積層し貼り合
わせたり、その後、熱処理を施すなどの方法が提案され
ている。
Therefore, conventionally, as a method for joining oxide superconductors, a method has been proposed in which oxide superconductors are laminated and bonded together, and then heat treatment is performed.

【0004】[0004]

【発明が解決しようとする問題点】しかしながら、従来
の接合方法によれば、積層部での超電導特性が極端に低
下したり、積層後に熱処理する方法でも積層部端部での
超電導特性が他の部分に比べて低下するという問題は免
れない。特に、接合部において臨界電流密度が大きく低
下したり、超電導特性が非連続的となるなどの問題があ
り、超電導特性の劣化なしに接合するのが非常に難しい
のが現状であった。
However, according to the conventional joining method, the superconducting property at the laminated portion is extremely deteriorated, and even if the heat treatment is performed after the laminating, the superconducting property at the end portion of the laminated portion may be deteriorated. The problem of deterioration compared to the part is unavoidable. In particular, there are problems such as a significant decrease in critical current density at the joint and a discontinuous superconducting property, and it has been very difficult to join without deterioration of the superconducting property.

【0005】また、最近では臨界電流密度の高い特性の
優れた超電導焼結体を作製することも提案されている
が、一般的な方法では作製できる焼結体の大きさに限界
があり、例えば大型の磁気シールド体を製造する場合に
は、個々の超電導体を接合せざる得ないものの、接合に
より特性が劣化するために良好な超電導特性が発揮でき
ないという問題があった。
Recently, it has been proposed to produce a superconducting sintered body having a high critical current density and excellent characteristics, but there is a limit to the size of the sintered body that can be produced by a general method. When manufacturing a large-sized magnetic shield body, although it is unavoidable to join individual superconductors, there is a problem that good superconducting characteristics cannot be exhibited because the characteristics deteriorate due to the joining.

【0006】[0006]

【問題点を解決するための手段】本発明者等は、上記問
題点に対して、特に接合部での超電導特性を向上させる
方法について検討を重ねた結果、少なくともCuを含有
し、C軸方向への配向度が0.5以上の2つの酸化物超
電導体の結晶の配向方向が同じである端面同士を当接
し、前記当接部に対して0.05ton/cm2 以上の
圧力を付与しつつ、500〜900℃の温度に加熱して
接合することを特徴とするもので、他の態様として加熱
加圧処理に際し、該当接部を延性を有する金属により挟
持して処理するか、あるいは端面同士を酸化物超電導体
の粉末を介して当接して処理するものであり、特にこの
加熱加圧処理時2つの超電導体を枠体内に固定して処理
を行うものである。
With respect to the above problems, the inventors of the present invention have repeatedly studied a method for improving superconducting characteristics particularly at the joint, and as a result, the present invention contains at least Cu and has a C-axis direction. End faces of the two oxide superconductors having the same crystal orientation direction with an orientation degree of 0.5 or more are brought into contact with each other, and a pressure of 0.05 ton / cm 2 or more is applied to the contact portion. Meanwhile, the invention is characterized by heating and joining at a temperature of 500 to 900 ° C., and in another embodiment, in heating and pressurizing treatment, the corresponding contact portion is sandwiched by a ductile metal for treatment, or the end surface is treated. The two are contacted with each other through the powder of the oxide superconductor, and the two superconductors are fixed in the frame during the heat and pressure treatment.

【0007】更に本発明によれば、当接部を820〜9
00℃の温度に加熱して部分溶融させることにより2つ
以上の焼結体を接合するもので、これより均質な超電導
特性を有する接合構造体が得られることを知見した。
Further, according to the present invention, the abutting portion is provided with 820-9.
It has been found that two or more sintered bodies are joined by heating to a temperature of 00 ° C. and partial melting, and a joined structure having homogeneous superconducting properties can be obtained from this.

【0008】以下、本発明を詳述する。本発明の酸化物
超電導体の接合方法によれば、まず、接合すべき酸化物
超電導体として、少なくともCuを含有し、C軸方向へ
の配向度が0.5以上の2つの酸化物超電導体を準備す
る。このような酸化物超電導体としては、例えば、Bi
−Pb−Sr−Ca−Cu−O系酸化物超電導体とし
て、特願平3−154530号、特願平4−10710
2号などに記載されるような方法で高密度で、C軸配向
度が0.5以上の高配向の酸化物超電導体を得ることが
できる。望ましい酸化物超電導体の組成としては、モル
比でSrを2とした時、Biが1.8〜2.2、Caが
2.0〜3.5、Cuが3.0〜4.5、Pbを0.1
〜0.5のモル比で含む超電導複合酸化物で、場合によ
りK、Li、NaをSrが2に対して、0.05〜0.
6の割合で含有し、配向後0.5以上、密度5.5g/
cm3以上のものが望ましい。
The present invention will be described in detail below. According to the method for joining oxide superconductors of the present invention, first, as the oxide superconductors to be joined, two oxide superconductors containing at least Cu and having a degree of orientation in the C-axis direction of 0.5 or more. To prepare. Examples of such oxide superconductors include Bi
As the -Pb-Sr-Ca-Cu-O-based oxide superconductor, Japanese Patent Application No. 3-154530 and Japanese Patent Application No. 4-10710.
By the method described in No. 2 etc., it is possible to obtain a highly-oriented oxide superconductor having a high density and a C-axis orientation degree of 0.5 or more. As a desirable composition of the oxide superconductor, when Sr is 2 in molar ratio, Bi is 1.8 to 2.2, Ca is 2.0 to 3.5, Cu is 3.0 to 4.5, Pb is 0.1
A superconducting complex oxide containing a molar ratio of 0.5 to 0.5, and optionally K, Li and Na in an amount of 0.05 to 0.
It is contained in a ratio of 6, 0.5 or more after orientation, and a density of 5.5 g /
cm 3 or more is desirable.

【0009】次に、図1に示すように、C軸方向への配
向度が0.5以上の酸化物超電導体1,2を、配向方向
が同じである端面3,4同士を当接して、500〜90
0℃、0.05ton/cm2 以上の圧力で当接面と平
行方向に、例えばプレスパンチ5,6で高温一軸加圧す
ることにより2つ以上の焼結体を接合することができ
る。また、加熱加圧方法として、図1に示した構成に対
して、図2に示すように、加圧加熱処理するにあたりプ
レスパンチと接合部の間に厚み0.02mm以上の銀な
どの延性を有する金属7、8を介して前記条件で加圧加
熱処理したり、図3に示すように、酸化物超電導体の端
面間に酸化物超電導粉末9を介在させて加圧加熱処理を
行う事もできる。
Next, as shown in FIG. 1, oxide superconductors 1 and 2 having a degree of orientation in the C-axis direction of 0.5 or more are brought into contact with end surfaces 3 and 4 having the same orientation direction. , 500-90
Two or more sintered bodies can be joined by uniaxially pressing at a high temperature of 0 ° C. and a pressure of 0.05 ton / cm 2 or more in a direction parallel to the contact surface, for example, with the press punches 5 and 6. Further, as a heating and pressing method, as shown in FIG. 2, a ductility of silver or the like having a thickness of 0.02 mm or more is applied between the press punch and the joint portion in the heating and pressurizing process, as shown in FIG. Pressurization and heat treatment may be performed under the above conditions through the metals 7 and 8 that are included, or as shown in FIG. 3, pressure and heat treatment may be performed by interposing oxide superconducting powder 9 between the end faces of the oxide superconductor. it can.

【0010】さらには、本発明の他の態様としては、少
なくともその接合部を820〜900℃の温度に加熱す
ることにより接合部を部分溶融することにより、接合を
行うことも可能である。さらに、かかる構成において、
端面を当接する際に端面間に酸化物超電導粉末を介在さ
せてもよい。
Further, as another aspect of the present invention, it is possible to perform the joining by heating at least the joining portion to a temperature of 820 to 900 ° C. to partially melt the joining portion. Furthermore, in such a configuration,
An oxide superconducting powder may be interposed between the end faces when the end faces are brought into contact with each other.

【0011】又、前記図1、2、3の加熱加圧処理に際
しては図4に示すように2つの超電導体を枠体10内に
固定してい行うことが望ましい。これは、処理により超
電導体が塑性変形しそれに伴い特性が劣化する可能性が
あるためで、図4に示す様に枠体内に固定して処理する
ことにより接合体における超電導特性をより均一化する
ことができる。かかる枠体内への固定はいわゆるホット
プレスを用いれは容易に行うことができる。また、2つ
の超電導体の当接させる端面は図5に示すように傾斜面
であってもよい。
Further, it is preferable that the two heating and pressing processes of FIGS. 1, 2 and 3 are carried out by fixing two superconductors in the frame body 10 as shown in FIG. This is because the superconductor may be plastically deformed by the treatment and the characteristics may be deteriorated accordingly. Therefore, by fixing the superconductor in the frame and treating it as shown in FIG. 4, the superconducting characteristics in the joined body are made more uniform. be able to. The fixing in the frame can be easily performed by using a so-called hot press. Further, the end surfaces of the two superconductors that are brought into contact with each other may be inclined surfaces as shown in FIG.

【0012】本発明において、加熱温度を500〜90
0℃に限定したのは、温度が500℃より低いと接合部
での元素拡散や焼結が進行せず、900℃を越えると、
酸化物超電導体が分解変質して、超電導特性が劣化する
ためである。また、部分溶融させる場合には、その加熱
温度の下限値は酸化物超電導体の材質にもよるが、82
0℃程度であり、これより低いと溶融は生じない。しか
しながら、Agなどのように酸化物超電導体と反応しな
いような金属を接合部にて共存させると、溶融温度が低
下するために、酸化物超電導特性に影響を及ぼさない温
度での接合が可能となる。
In the present invention, the heating temperature is 500 to 90.
The reason for limiting the temperature to 0 ° C. is that if the temperature is lower than 500 ° C., element diffusion or sintering at the joint does not proceed, and if it exceeds 900 ° C.
This is because the oxide superconductor is decomposed and deteriorated and the superconducting characteristics are deteriorated. In the case of partial melting, the lower limit of the heating temperature depends on the material of the oxide superconductor.
It is about 0 ° C., and if it is lower than this, melting does not occur. However, when a metal such as Ag which does not react with the oxide superconductor is allowed to coexist in the joint, the melting temperature is lowered, so that it is possible to join at a temperature that does not affect the oxide superconducting properties. Become.

【0013】なお、部分溶融を伴わない場合には、圧力
を付与することが必要であるが、圧力が0.05ton
/cm2 より低いと、接合部での反応が進行しないため
に接合が不十分となるため、圧力は0.05ton/c
2 以上に設定される。なお、圧力の上限は特別に限定
されるものではないが、圧力が高すぎると加圧加熱処理
時の装置が大型化するため、10ton/cm2 以下が
適当である。
If partial melting is not involved, it is necessary to apply pressure, but the pressure is 0.05 ton.
If the pressure is lower than / cm 2 , the reaction will not proceed at the joint and the joining will be insufficient. Therefore, the pressure will be 0.05 ton / c.
It is set to m 2 or more. The upper limit of the pressure is not particularly limited, but if the pressure is too high, the apparatus for pressurizing and heating becomes large, so 10 ton / cm 2 or less is appropriate.

【0014】[0014]

【作用】本発明によれば、少なくともCuを含有し、C
軸方向への配向度が0.5以上の2つの酸化物超電導体
の結晶の配向方向が同じである端面同士を当接し、所定
の条件で加圧加熱処理を行うことにより、端面間での相
互拡散とともに焼結が進行すると同時に加圧により接合
部における配向が進行することにより、互いの配向特性
を阻害することなく、また超電導特性が端面で劣化する
ことなく、接合することができる。
According to the present invention, at least Cu is contained and C
The two oxide superconductors having the same degree of orientation in the axial direction and having the same crystal orientation direction of the oxide superconductors are brought into contact with each other, and pressure heating treatment is performed under a predetermined condition. Since the sintering progresses along with the mutual diffusion and the orientation in the joint portion progresses due to the pressure at the same time, the joining can be performed without disturbing the orientation characteristics of each other and the deterioration of the superconducting characteristics at the end faces.

【0015】また、本発明によれば、図2に示したよう
に延性を有する金属を介して加圧加熱処理することによ
り、金属7、8が、金属自身の延性効果により加圧加熱
処理した際に、酸化物超電導体中の鱗片状結晶粒子が配
向されるとともに圧縮され、酸化物超電導体の密度を高
くすることが出来る。また、延性金属の超電導体への拡
散により接合する2つの焼結体を局部的に溶融させ拡散
速度を向上させるため、接合が強化され接合部の特性が
更に向上する。
Further, according to the present invention, as shown in FIG. 2, the metal 7 and 8 are pressure-heated through a ductile metal, so that the metals 7 and 8 are pressure-heated by the ductility effect of the metal itself. At this time, the scale-like crystal particles in the oxide superconductor are oriented and compressed, and the density of the oxide superconductor can be increased. Further, since the two sintered bodies that are joined by diffusion of the ductile metal into the superconductor are locally melted to improve the diffusion rate, the joining is strengthened and the characteristics of the joined portion are further improved.

【0016】また、雰囲気温度がオフセット温度(Tc
e)以上になった時や、臨界電流(Ic)より大きい電
流が流れた時、あるいは雰囲気磁界が臨界磁界(Hc)
より大きくなった時に超電導特性が破壊されてしまう
(クエンチ)が、酸化物超電導体と金属層が接触してい
るため、接触する金属層がこれにとって代わり電流伝播
の機能を奏する。この金属層の電流伝播は、酸化物超電
導体のそれよりは劣るが、一時的なクエンチの間はこれ
で充分補うことが出来る。また、延性金属はそれ自体、
熱伝導性がよいことから、金属の放熱作用により電流の
増大に伴う酸化物超電導体自体の発熱が押さえられて超
伝導特性の破壊が未然に防止される。
Further, the ambient temperature is the offset temperature (Tc
e) or more, a current larger than the critical current (Ic) flows, or the atmospheric magnetic field is the critical magnetic field (Hc).
When it becomes larger, the superconducting property is destroyed (quenching). However, since the oxide superconductor and the metal layer are in contact with each other, the contacting metal layer replaces this and plays a function of current propagation. The current propagation of this metal layer is inferior to that of the oxide superconductor, but this can be sufficiently compensated for during the temporary quench. Also, the ductile metal itself
Since the heat conductivity is good, the heat dissipation of the metal suppresses the heat generation of the oxide superconductor itself due to the increase of the current, thereby preventing the destruction of the superconducting characteristics.

【0017】また、図3に示したように、接合部に酸化
物超電導体粉末を介在させると、酸化物超電導体1間に
隙間がある場合に、粉末がこの隙間を埋めるために接合
が強化され接合部の特性を更に向上させることができ
る。
Further, as shown in FIG. 3, when oxide superconductor powder is interposed in the joint portion, when there is a gap between the oxide superconductors 1, the powder fills this gap, so that the bonding is strengthened. The characteristics of the joint can be further improved.

【0018】更に、本発明によれば加熱加圧処理の際、
2つの超電導体を枠体内に固定することにより超電導体
の極端な変形を防止し、しかも加圧方向のみでなく、加
圧面において周囲から中心方向に圧力がかかる為、接合
部における接着度をさらに高めることができる。
Further, according to the present invention, during the heat and pressure treatment,
By fixing the two superconductors inside the frame, the superconductor is prevented from being extremely deformed, and moreover, not only in the pressing direction, but also from the periphery to the center of the pressing surface, the adhesion at the joint is further improved. Can be increased.

【0019】さらに、接合部を部分溶融させながら接合
を行うことにより、接合部での焼結性を向上させること
が可能となり、また、部分溶融時に金属を共存させると
溶融温度が低下するために、超電導特性に影響を及ぼさ
ない温度にて接合が可能となり、それと同時に接合部で
の配向性も高くすることができる。
Further, by performing the joining while partially melting the joint, it becomes possible to improve the sinterability at the joint, and when the metal coexists during the partial melting, the melting temperature lowers. In addition, the bonding can be performed at a temperature that does not affect the superconducting property, and at the same time, the orientation at the bonded portion can be increased.

【0020】このように、本発明の構成によれば、超電
導特性を劣化させることなく、接合することが可能とな
るために、大面積で且つ試料内で均質な超電導特性を有
する構造体が得られ、これにより大型の磁気シールド体
などを製造を容易に行うことができる。
As described above, according to the structure of the present invention, since it is possible to perform the bonding without deteriorating the superconducting property, a structure having a large area and having a uniform superconducting property in the sample is obtained. As a result, it is possible to easily manufacture a large magnetic shield body or the like.

【0021】[0021]

【実施例】【Example】

実施例1 原料粉末としてBi2 3 、PbO、SrCO3 、Ca
CO3 、CuOの各粉末を各金属のモル比がBi:P
b:Sr:Ca:Cu=1.93:0.36:2:3.
17:4.25となるように秤量後、750〜810℃
で20時間仮焼し、粉砕して平均粒径5μmの低Tc相
を多量に含む仮焼粉末を得た。この仮焼粉末をφ12m
mの金型を用いて成形圧1ton/cm2 で成形して厚
み約1mmの円板状成形体を得た。そして、上記成形体
を大気中で840℃の温度で150時間焼成したとこ
ろ、比重2.0(アルキメデス法に基づく)の焼結体が
得られた。また、組織観察したところ、高Tc相の燐片
状の結晶がランダムに配列していた。
Example 1 Bi 2 O 3 , PbO, SrCO 3 and Ca as raw material powders
The CO 3 and CuO powders are mixed with each metal in a molar ratio of Bi: P.
b: Sr: Ca: Cu = 1.93: 0.36: 2: 3.
Weighed to 17: 4.25, then 750-810 ° C
Was calcined for 20 hours and pulverized to obtain a calcined powder containing a large amount of low Tc phase having an average particle size of 5 μm. This calcination powder is φ12m
Molding was performed at a molding pressure of 1 ton / cm 2 using a m mold to obtain a disk-shaped molded body having a thickness of about 1 mm. When the molded body was fired in the atmosphere at a temperature of 840 ° C. for 150 hours, a sintered body having a specific gravity of 2.0 (based on the Archimedes method) was obtained. Further, when the structure was observed, scaly crystals of high Tc phase were randomly arranged.

【0022】次に、この焼結体を平均粒径5μmとなる
ように粉砕し、この粉末に有機バインダ−を添加してト
ルエン中にて混合し、後にスプレ−ドライにより造粒し
て平均粒径が100μmの顆粒を得た。この顆粒を一対
のロ−ル間に供給して厚み400μmのシ−トを得た。
このシ−トから一辺が80mmの四角形の切り出し成形
体とした。
Next, this sintered body was pulverized to have an average particle size of 5 μm, an organic binder was added to this powder, and the mixture was mixed in toluene. Granules with a diameter of 100 μm were obtained. The granules were fed between a pair of rolls to obtain a sheet having a thickness of 400 μm.
From this sheet, a rectangular cut-out molded body having a side of 80 mm was formed.

【0023】この成形体を大気中で200〜400℃、
10時間脱脂した後、840〜860℃の温度10〜1
00時間焼成し、厚み450μmの平板状の超電導焼結
体を得た。
This molded body was heated in the atmosphere at 200 to 400 ° C.
After degreasing for 10 hours, a temperature of 840 to 860 ° C 10 to 1
It was fired for 00 hours to obtain a flat superconducting sintered body having a thickness of 450 μm.

【0024】次に、酸化物超電導体を5枚重ね、焼結体
の上下面にアルミナ質焼結体の厚み0.5mmのプレー
トを配置し、このプレートを介して焼結体に対して5t
on/cm2 の圧力で845℃の温度でホットフォージ
ング処理を施した。
Next, five oxide superconductors are stacked, a 0.5 mm-thick plate of an alumina-based sintered body is arranged on the upper and lower surfaces of the sintered body, and 5 t are attached to the sintered body through this plate.
Hot forging treatment was performed at a pressure of on / cm 2 and a temperature of 845 ° C.

【0025】さらに、上記のようにして得た焼結体を2
つ準備し、端面の結晶の配向方向が上記ホットフォ−ジ
ング処理での加圧方向と垂直な面同士を当接し、845
℃で、1ton/cm2 の圧力で当接面と平行方向に、
即ち、すなわち上記ホットフォ−ジング処理時の加圧方
向と同じ方向で高温一軸加圧による接合を行った。
Further, the sintered body obtained as described above is
Prepared, and the planes in which the orientation direction of the crystal of the end face is perpendicular to the pressing direction in the hot fusing treatment are contacted with each other.
At a pressure of 1 ton / cm 2 in parallel with the contact surface at
That is, that is, joining was performed by high temperature uniaxial pressing in the same direction as the pressing direction during the hot fogging treatment.

【0026】最終的に得られた焼結体に対してアルキメ
デス法により比重を調べるとともにX線回折測定を行
い、X線回折のチャートデータに基づき、下記数1から
(001)面の配向度fを求めた。
The specific gravity of the finally obtained sintered body was examined by the Archimedes method and X-ray diffraction measurement was carried out. Based on the chart data of X-ray diffraction, the degree of orientation f of the (001) plane from the following equation 1 I asked.

【0027】[0027]

【数1】 [Equation 1]

【0028】さらに、上記接合体に対して抵抗法に基づ
き、試料を液体窒素中で電流を徐々に高め、高圧端子に
1μV/cmの電圧が生じた時の電流値を臨界電流密度
Jcとして求め、同時に臨界温度Tcも測定した。な
お、臨界電流密度については、接合部を含まない場合
と、接合部を挟んで電極を形成して測定した場合につい
てそれぞれ測定した。結果は表1に示した。また、得ら
れた焼結体の接合部での磁気シールド特性を測定するた
めに図6に示すような方法で評価した。即ち、接合部1
2を有する接合体13の片面からマグネット14により
磁場を印加し、反対側に磁気センサ11を配置して徐々
に印加磁場を高め磁気センサ11により磁気が検出され
た時の印加された磁場の強さを測定した。結果は、表1
に示した。
Further, based on the resistance method for the above-mentioned joined body, the current value when the current was gradually increased in the sample in liquid nitrogen and a voltage of 1 μV / cm was generated at the high voltage terminal was obtained as the critical current density Jc. At the same time, the critical temperature Tc was also measured. The critical current densities were measured in the case where the junction was not included and in the case where the electrodes were formed with the junction in-between. The results are shown in Table 1. Further, in order to measure the magnetic shield characteristics at the joint portion of the obtained sintered body, evaluation was performed by the method as shown in FIG. That is, the joint part 1
The magnetic field is applied by the magnet 14 from one surface of the bonded body 13 having 2 and the magnetic sensor 11 is arranged on the opposite side to gradually increase the applied magnetic field and increase the strength of the applied magnetic field when the magnetism is detected by the magnetic sensor 11. Was measured. The results are shown in Table 1.
It was shown to.

【0029】実施例2 実施例1において作製した焼結体2枚の端面を、図2に
示すように当接し酸化物超電導体とプレスパンチとの間
に銀製の厚み0.1mmのプレートを配置し、このプレ
ートを介して焼結体に対して1ton/cm2 の圧力で
845℃の温度で加圧加熱処理した。得られた構造体に
対して、実施例1と同様に特性の評価を行った。結果は
表1に示した。
Example 2 The end faces of the two sintered bodies produced in Example 1 were brought into contact with each other as shown in FIG. 2, and a silver plate having a thickness of 0.1 mm was placed between the oxide superconductor and the press punch. Then, the sintered body was pressure-heated through the plate at a pressure of 1 ton / cm 2 and a temperature of 845 ° C. The characteristics of the obtained structure were evaluated in the same manner as in Example 1. The results are shown in Table 1.

【0030】実施例3 実施例1における平均粒径5μmの超電導仮焼粉末を介
在して当接し、1ton/cm2 の圧力で845℃の温
度で加圧加熱処理した。得られた構造体に対して、実施
例1と同様に特性の評価を行った。結果は表1に示し
た。
Example 3 The superconducting calcined powder having an average particle size of 5 μm in Example 1 was interposed and abutted, and pressure heating treatment was performed at a pressure of 1 ton / cm 2 and a temperature of 845 ° C. The characteristics of the obtained structure were evaluated in the same manner as in Example 1. The results are shown in Table 1.

【0031】実施例4 実施例1において作製した焼結体2枚の端面を互いの端
面の結晶の配向方向が同じとなるように当接し、レーザ
ーを用いて850℃に加熱し接合した。この時、接合部
では部分的に溶融していることを確認した。得られた構
造体に対して実施例1と同様に特性の評価を行った。結
果は表1に示した。
Example 4 The end faces of the two sintered bodies produced in Example 1 were brought into contact with each other so that the crystal orientation directions of the end faces were the same, and heated at 850 ° C. with a laser to bond them. At this time, it was confirmed that the joint was partially melted. The characteristics of the obtained structure were evaluated in the same manner as in Example 1. The results are shown in Table 1.

【0032】実施例5 実施例1において作製した焼結体2枚の端面を互いの端
面の結晶の配向方向が同じとなるようにして平均粒径5
μmの超電導粉末を介在して当接し、レーザーを用いて
850℃に加熱し接合した。この時、接合部では部分的
に溶融していることを確認した。得られた構造体に対し
て実施例1と同様に特性の評価を行った。結果は表1に
示した。
Example 5 The end faces of the two sintered bodies produced in Example 1 were made so that the crystal orientation directions of the end faces were the same and the average grain size was 5
A superconducting powder having a size of μm was contacted with each other and heated to 850 ° C. with a laser for bonding. At this time, it was confirmed that the joint was partially melted. The characteristics of the obtained structure were evaluated in the same manner as in Example 1. The results are shown in Table 1.

【0033】実施例6 実施例5において、レーザーにより加熱接合する際に、
酸化物超電導体の接合部に0.1mmのAgプレートを
配置して、このプレートを介してレーザーで845℃の
温度で溶接した。得られた構造体に対して実施例1と同
様に特性の評価を行った。結果は表1に示した。
Example 6 In Example 5, when heating and joining with a laser,
A 0.1 mm Ag plate was placed at the junction of the oxide superconductor, and a laser was welded through this plate at a temperature of 845 ° C. The characteristics of the obtained structure were evaluated in the same manner as in Example 1. The results are shown in Table 1.

【0034】実施例7 実施例1において焼結体2枚の端面を図5に示すように
斜めにカットして当接し、1ton/cm2 の圧力で8
45℃の温度で加圧加熱処理した。得られた構造体に対
して、実施例1と同様に特性の評価を行った。結果は表
1に示した。
Example 7 In Example 1, the end faces of the two sintered bodies were obliquely cut as shown in FIG. 5 and brought into contact with each other, and the pressure was set to 8 at a pressure of 1 ton / cm 2.
Pressure heat treatment was performed at a temperature of 45 ° C. The characteristics of the obtained structure were evaluated in the same manner as in Example 1. The results are shown in Table 1.

【0035】実施例8 実施例1において作製した焼結体2枚の端面を互いの端
面の結晶の配向方向が同じとなるように当接し、図4に
示すように1ton/cm2 の圧力で845℃の温度で
試料の周囲を枠で囲むいわゆるホットプレス処理を行っ
た。得られた構造体に対して実施例1と同様に特性の評
価を行った。結果は表1に示した。
Example 8 The end faces of the two sintered bodies produced in Example 1 were brought into contact with each other so that the crystal orientation directions of the end faces were the same, and a pressure of 1 ton / cm 2 was applied as shown in FIG. At a temperature of 845 ° C., a so-called hot press treatment was performed in which the sample was surrounded by a frame. The characteristics of the obtained structure were evaluated in the same manner as in Example 1. The results are shown in Table 1.

【0036】更に磁気遮蔽能についてその分布について
実施例1とともに測定し、その結果を図7、8に示し
た。
Further, the distribution of the magnetic shielding ability was measured together with that of Example 1, and the results are shown in FIGS.

【0037】比較例1 実施例1において作製した2つの焼結体の端部を有機系
接着剤により重ね合わせて積層体を作製し、実施例1と
同様にして特性の評価を行い、結果は表1に示した。
Comparative Example 1 A laminate was prepared by laminating the ends of the two sintered bodies prepared in Example 1 with an organic adhesive, and the characteristics were evaluated in the same manner as in Example 1. The results are shown in Table 1.

【0038】比較例2 比較例1において、積層後に840℃の酸化雰囲気中で
熱処理して積層体を得、これに対して実施例1と同様に
して特性の評価を行った。結果は表1に示した。
Comparative Example 2 In Comparative Example 1, after lamination, heat treatment was performed in an oxidizing atmosphere at 840 ° C. to obtain a laminated body, and the characteristics of the laminated body were evaluated in the same manner as in Example 1. The results are shown in Table 1.

【0039】比較例3 実施例1において得た2つの焼結体の端面を、端面の結
晶の配向方向が互いに垂直となる関係の異なる面同士を
当接し、端面と平行方向に845℃で、1ton/cm
2 の圧力で高温一軸加圧して接合を行った。得られた構
造体に対して、実施例1と同様に特性の評価を行った。
結果は表1に示した。
Comparative Example 3 The end faces of the two sintered bodies obtained in Example 1 were brought into contact with each other at different faces in which the crystal orientation directions of the end faces were perpendicular to each other, and at 845 ° C. in the direction parallel to the end faces. 1 ton / cm
A high temperature uniaxial pressure was applied at a pressure of 2 for joining. The characteristics of the obtained structure were evaluated in the same manner as in Example 1.
The results are shown in Table 1.

【0040】比較例4 実施例1において、燐片状の結晶がランダムに配列した
2つの焼結体を用いて、これらの端面を当接し、845
℃でレーザーにより加熱して溶接した。得られた構造体
に対して実施例1と同様に特性の評価を行い、結果は表
1に示した。
Comparative Example 4 In Example 1, two sintered bodies in which scaly crystals were randomly arranged were used, and their end faces were brought into contact with each other to obtain 845.
Welded by heating with a laser at ℃. The characteristics of the obtained structure were evaluated in the same manner as in Example 1, and the results are shown in Table 1.

【0041】実施例1と実施例8の試料については得ら
れた焼結体の磁気シールド分布を測定するために図6に
示すような方法で評価した。即ち、接合体15にマグネ
ット16により均一な磁場50ガウスを印加し磁気セン
サー17を接合体表面を移動させて各点における磁場の
強さを測定した。結果は表1に示した。
The samples of Examples 1 and 8 were evaluated by the method shown in FIG. 6 in order to measure the magnetic shield distribution of the obtained sintered body. That is, a uniform magnetic field of 50 gauss was applied to the bonded body 15 by the magnet 16, the magnetic sensor 17 was moved on the surface of the bonded body, and the strength of the magnetic field at each point was measured. The results are shown in Table 1.

【0042】[0042]

【表1】 [Table 1]

【0043】表1から明らかなように、酸化物超電導体
を同じ配向方向を有する端面を当接させて加圧加熱処理
した実施例1〜6は、臨界電流密度において接合部を挟
んで測定しても、接合前の酸化物超電導体単体と特性か
らの低下が他の比較例よりも小さいことがわかる。しか
も、磁気シールド特性においても、優れた特性を示し
た。また、図7、8の結果から明らかなように枠体内に
固定して加熱加圧処理する方が磁気シールド特性の均一
性に優れていることがわかる。
As is clear from Table 1, in Examples 1 to 6 in which the oxide superconductor was subjected to pressure and heat treatment by bringing the end faces having the same orientation into contact with each other, the measurement was carried out at the critical current density while sandwiching the joint. However, it is understood that the deterioration from the characteristics of the oxide superconductor alone before joining and the characteristics is smaller than that of the other comparative examples. Moreover, it also showed excellent magnetic shield characteristics. Further, as is clear from the results shown in FIGS. 7 and 8, it is understood that the magnetic shield characteristics are more uniform when they are fixed in the frame and heated and pressed.

【0044】[0044]

【発明の効果】以上、詳述した通り、本発明によれば、
高C軸配向の酸化物超電導体を同じ配向方向を有する端
面同士を接合することにより、接合部での超伝導特性の
低下を防止し、高臨界温度、高臨界電流密度を有する大
面積で且つ均質な超電導特性を有する構造体を得ること
ができる。これにより、磁気シールド体などのあらゆる
大型品を製造することができる。
As described above in detail, according to the present invention,
By bonding end faces having the same orientation direction to the oxide superconductor having a high C-axis orientation, it is possible to prevent the deterioration of the superconducting property at the joint portion and to provide a large area having a high critical temperature and a high critical current density. A structure having uniform superconducting properties can be obtained. As a result, it is possible to manufacture any large product such as a magnetic shield body.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例を説明するための図である。FIG. 1 is a diagram for explaining an embodiment of the present invention.

【図2】本発明の他の実施例を説明するための図であ
る。
FIG. 2 is a diagram for explaining another embodiment of the present invention.

【図3】本発明のさらに他の実施例を説明するための図
である。
FIG. 3 is a diagram for explaining still another embodiment of the present invention.

【図4】本発明のさらに他の実施例を説明するための図
である。
FIG. 4 is a diagram for explaining still another embodiment of the present invention.

【図5】本発明の接合方法において端面の当接の他の例
を示す図である。
FIG. 5 is a diagram showing another example of abutting of the end faces in the joining method of the present invention.

【図6】磁気シールド特性の測定方法を説明するための
図である。
FIG. 6 is a diagram for explaining a method of measuring magnetic shield characteristics.

【図7】実施例で得られた接合体の磁気シールド分布を
示す図である。
FIG. 7 is a diagram showing a magnetic shield distribution of a bonded body obtained in an example.

【図8】実施例1で得られた接合体の磁気シールド分布
を示す図である。
8 is a diagram showing a magnetic shield distribution of the bonded body obtained in Example 1. FIG.

【符号の説明】[Explanation of symbols]

1,2 酸化物超電導体 3,4 端面 5,6 プレスパンチ 7,8 延性を有する金属 9 酸化物超電導粉末 10 枠体 1, 2 Oxide superconductor 3, 4 End face 5, 6 Press punch 7, 8 Ductile metal 9 Oxide superconducting powder 10 Frame body

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 C30B 29/22 501 M 8216−4G H01B 13/00 565 D 7244−5G H01L 39/24 ZAA 9276−4M ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Internal reference number FI Technical display location C30B 29/22 501 M 8216-4G H01B 13/00 565 D 7244-5G H01L 39/24 ZAA 9276- 4M

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】少なくともCuを含有し、C軸方向への配
向度が0.5以上の2つの酸化物超電導体の結晶の配向
方向が同じである端面同士を当接し、該当接部に対して
0.05ton/cm2 以上の圧力を付与しつつ、50
0〜900℃の温度に加熱することにより前記酸化物超
電導体同士を接合することを特徴とする酸化物超電導体
の接合方法。
1. An end face having the same crystal orientation direction of two oxide superconductors containing at least Cu and having a degree of orientation in the C-axis direction of 0.5 or more is brought into contact with each other and the corresponding contact portion is contacted. While applying a pressure of 0.05 ton / cm 2 or more,
A method for joining oxide superconductors, wherein the oxide superconductors are joined together by heating to a temperature of 0 to 900 ° C.
【請求項2】少なくともCuを含有し、C軸方向への配
向度が0.5以上の2つの酸化物超電導体の結晶の配向
方向が同じである端面同士を当接し、該当接部に対して
延性を有する金属を介して0.05ton/cm2 以上
の圧力を付与しつつ、500〜900℃の温度に加熱す
ることにより前記焼結体同士を接合することを特徴とす
る酸化物超電導体の接合方法。
2. An end face having the same crystal orientation direction of two oxide superconductors containing at least Cu and having a degree of orientation in the C-axis direction of 0.5 or more is brought into contact with each other, and the corresponding contact portion is contacted. Oxide superconductor, wherein the sintered bodies are joined together by heating to a temperature of 500 to 900 ° C. while applying a pressure of 0.05 ton / cm 2 or more through a metal having ductility. How to join.
【請求項3】少なくともCuを含有し、C軸方向への配
向度が0.5以上の2つの酸化物超電導体の結晶の配向
方向が同じである端面同士を酸化物超電導体の粉末を介
して当接し、該当接部に対して0.05ton/cm2
以上の圧力を付与しつつ500〜900℃の温度に加熱
することにより前記焼結体同士を接合することを特徴と
する酸化物超電導体の接合方法。
3. Two oxide superconductors containing at least Cu and having an orientation degree in the C-axis direction of 0.5 or more and having the same crystal orientation direction are provided with an oxide superconductor powder. Abutted against each other and 0.05 ton / cm 2 against the contact
A method for joining oxide superconductors, wherein the sintered bodies are joined together by heating to a temperature of 500 to 900 ° C. while applying the above pressure.
【請求項4】前記追加加圧処理を前記2つの酸化物超電
導体を枠体内に固定して行うことを特徴とする請求項
1、2、3記載の酸化物超電導体の接合方法。
4. The method for joining oxide superconductors according to claim 1, 2, or 3, wherein the additional pressurizing treatment is performed by fixing the two oxide superconductors in a frame.
【請求項5】少なくともCuを含有し、C軸方向への配
向度が0.5以上の2つの酸化物超電導体の結晶の配向
方向が同じである端面同士を当接し、該当接部を820
℃〜900℃の温度に加熱することにより少なくとも前
記当接部分を部分溶融させて接合することを特徴とする
酸化物超電導体の接合方法。
5. An end surface having the same crystal orientation direction of two oxide superconductors containing at least Cu and having a degree of orientation in the C-axis direction of 0.5 or more is brought into contact with each other, and the corresponding contact portion is provided with 820.
A method for joining oxide superconductors, characterized in that at least the abutting portion is partially melted and joined by heating to a temperature of ℃ to 900 ℃.
【請求項6】少なくともCuを含有し、C軸方向への配
向度が0.5以上の2つの酸化物超電導体の結晶の配向
方向が同じである端面同士を当接し、該当接部を金属の
共存下で820℃〜900℃の温度に加熱することによ
り少なくとも前記当接部分を部分溶融させて接合するこ
とを特徴とする酸化物超電導体の接合方法。
6. Two oxide superconductors containing at least Cu and having a degree of orientation in the C-axis direction of 0.5 or more are brought into contact with each other with their end faces having the same orientation direction of crystals, and the corresponding contact portions are made of metal. The method for joining oxide superconductors, characterized in that at least the abutting portion is partially melted and joined by heating to a temperature of 820 ° C. to 900 ° C. in the coexistence of.
JP6178227A 1993-08-02 1994-07-29 Method for joining oxide superconductor Pending JPH0797277A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6178227A JPH0797277A (en) 1993-08-02 1994-07-29 Method for joining oxide superconductor

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP19115793 1993-08-02
JP5-191157 1993-08-02
JP6178227A JPH0797277A (en) 1993-08-02 1994-07-29 Method for joining oxide superconductor

Publications (1)

Publication Number Publication Date
JPH0797277A true JPH0797277A (en) 1995-04-11

Family

ID=26498474

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6178227A Pending JPH0797277A (en) 1993-08-02 1994-07-29 Method for joining oxide superconductor

Country Status (1)

Country Link
JP (1) JPH0797277A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0827217A2 (en) * 1996-08-30 1998-03-04 Hitachi, Ltd. Oxide superconductor wire material and method for jointing the same together
US6490503B1 (en) 1999-05-10 2002-12-03 Sony Corporation Control device and method therefor, information processing device and method therefor, and medium
EA007667B1 (en) * 2003-03-21 2006-12-29 Эр Продактс Энд Кемикалз, Инк. Method for joining itm materials using partially or fully transient liquid phase
JP2007012582A (en) * 2005-05-30 2007-01-18 Internatl Superconductivity Technology Center Re-based oxide superconductive wire rod joining method
WO2009142284A1 (en) * 2008-05-23 2009-11-26 株式会社ニコン Method for production of molded fluoride crystal article, optical member produced by the method, and optical device and ultraviolet ray washing device each comprising the optical member
JP2018127381A (en) * 2017-02-08 2018-08-16 新日鐵住金株式会社 Method for producing superconductive bulk conjugate

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0827217A2 (en) * 1996-08-30 1998-03-04 Hitachi, Ltd. Oxide superconductor wire material and method for jointing the same together
EP0827217A3 (en) * 1996-08-30 1999-12-08 Hitachi, Ltd. Oxide superconductor wire material and method for jointing the same together
US6490503B1 (en) 1999-05-10 2002-12-03 Sony Corporation Control device and method therefor, information processing device and method therefor, and medium
EA007667B1 (en) * 2003-03-21 2006-12-29 Эр Продактс Энд Кемикалз, Инк. Method for joining itm materials using partially or fully transient liquid phase
JP2007012582A (en) * 2005-05-30 2007-01-18 Internatl Superconductivity Technology Center Re-based oxide superconductive wire rod joining method
WO2009142284A1 (en) * 2008-05-23 2009-11-26 株式会社ニコン Method for production of molded fluoride crystal article, optical member produced by the method, and optical device and ultraviolet ray washing device each comprising the optical member
KR101330974B1 (en) * 2008-05-23 2013-11-18 가부시키가이샤 니콘 Method for production of molded fluoride crystal article, optical member produced by the method, and optical device and ultraviolet ray washing device each comprising the optical member
KR101394781B1 (en) * 2008-05-23 2014-05-15 가부시키가이샤 니콘 Method for production of molded fluoride crystal article, optical member produced by the method, and optical device and ultraviolet ray washing device each comprising the optical member
JP2018127381A (en) * 2017-02-08 2018-08-16 新日鐵住金株式会社 Method for producing superconductive bulk conjugate

Similar Documents

Publication Publication Date Title
EP0634379A1 (en) Bonded element of superconductive oxide materials and its manufacture
JPH0797277A (en) Method for joining oxide superconductor
JPH09306256A (en) Bulk oxide superconductor, and production of wire rod and plate thereof
JPH0514384B2 (en)
US3140172A (en) Production of alloy materials
JPH09143000A (en) Joining method of oxide superconductor
JPH0640775A (en) Joined body of oxide superconducting material and its production
JP3187089B2 (en) Oxide superconducting structure
JPH06648B2 (en) Meltable superconductor and manufacturing method thereof
JP3088830B2 (en) Reforming method of oxide superconductor molded body
WO2023047739A1 (en) Superconducting bulk body, and production method for superconducting bulk body
JPH07232960A (en) Production of oxide superconductor
JP2922740B2 (en) Oxide superconducting magnetic shield
JPH04104970A (en) Bonding or mending oxide superconductor
JP3527845B2 (en) Oxide superconductor joint, method of manufacturing the same, and superconducting magnetic shield material
JPH0717774A (en) Bonding structure of oxide superconductor, bonding method and magnetic shielding material
JPS63259980A (en) Oxide superconductor film
JPH02227249A (en) Joining method for magnetic shielding material made of bismuth oxide superconductor
JP3285646B2 (en) Manufacturing method of oxide superconducting structure
JP3314102B2 (en) Manufacturing method of oxide superconductor
JP2817181B2 (en) Manufacturing method of Bi-based superconducting ceramics sheet with high critical current density
JPH0950718A (en) Rare earth oxide superconducting material and its manufacture
JPH0829988B2 (en) Bonding structure of oxide superconductor
JPH03237073A (en) Joining method for ceramics superconductive material
JPH08148725A (en) Peltier element and manufacture of thermoelectric material