JPH03237073A - Joining method for ceramics superconductive material - Google Patents

Joining method for ceramics superconductive material

Info

Publication number
JPH03237073A
JPH03237073A JP2033348A JP3334890A JPH03237073A JP H03237073 A JPH03237073 A JP H03237073A JP 2033348 A JP2033348 A JP 2033348A JP 3334890 A JP3334890 A JP 3334890A JP H03237073 A JPH03237073 A JP H03237073A
Authority
JP
Japan
Prior art keywords
ceramics
ceramic
superconductor
amorphous substance
shape
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2033348A
Other languages
Japanese (ja)
Inventor
Sukeyuki Kikuchi
菊地 祐行
Masanao Mimura
三村 正直
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP2033348A priority Critical patent/JPH03237073A/en
Publication of JPH03237073A publication Critical patent/JPH03237073A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Abstract

PURPOSE:To join the ceramics superconductive materials without deteriorating the superconductive characteristics by interposing the specified amorphous substance between the ceramics superconductive materials to be joined and heat-treating them. CONSTITUTION:In the case of joining the superconductive materials 1 consisting of a ceramics superconductor with each other, amorphous substance 2 described hereunder is interposed between the superconductive materials 1 and the prescribed heat treatment is performed for these. The amorphous substance 2 has composition wherein at least a metallic component is same as the above- mentioned ceramics superconductor and its melting temp. is lower than the ceramics superconductor. The amorphous substance 2 is produced by melting substance for a raw material capable of being formed into the ceramics superconductor, quenching and coagulating this. As the quenching and coagulating method, various methods such as a single roll method, a twin roll method, a piston anvil method, a rotational submerged spinning method and an atomization method are utilized. Further as the shape, an arbitrary shape such as a sheet shape, a fibrous shape and a powdery shape is applied.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、セラミックス超電導材料の接合方法に関する
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for joining ceramic superconducting materials.

〔従来の技術とその課題〕[Conventional technology and its issues]

近年、液体窒素温度で超電導を示すY−Ba−Cu−0
系やB1−3r−Ca−Cu−0系等のセラミックス超
電導体が見出され、各分野で実用化研究が進められてい
る。
In recent years, Y-Ba-Cu-0, which exhibits superconductivity at liquid nitrogen temperature, has been developed.
Ceramic superconductors such as the B1-3r-Ca-Cu-0 series and the B1-3r-Ca-Cu-0 series have been discovered, and research on their practical application is progressing in various fields.

ところで、これらのセラミックス超電導材料同士を接合
する方法としては、例えば第3図イ2ロ田3を接合媒体
として介在させる方法によりなきれている。
By the way, as a method of joining these ceramic superconducting materials, for example, a method of interposing a plate 3 as a joining medium in FIG. 3A2 has been used.

しかしながら、この方法によると半田は常電導体の為、
接続部の抵抗が大きくなり、セラ友ツクス超電導々体全
体として高い超電導特性が得られないという問題があっ
た。
However, according to this method, since solder is a normal conductor,
There was a problem in that the resistance of the connection part increased and high superconducting properties could not be obtained as a whole of the ceramic superconductor.

このようなことから、セラミックス超電導材料同士を押
圧しながら、加熱溶融して接合する方法が提案されたが
、この方法によるとセラごツクス超電導体に組成変動が
生じて超電導特性が低下してしまうという問題があった
For this reason, a method has been proposed in which ceramic superconducting materials are pressed together and heated and melted to join them, but this method causes compositional fluctuations in the ceramic superconductor and deteriorates its superconducting properties. There was a problem.

〔課題を解決する為の手段〕[Means to solve problems]

本発明はかかる状況に鑑み鋭意研究を行った結果、セラ
くツクス超電導体組威のアモルファス状物質は超電導を
示す結晶性物質に較べて溶融温度(融点)が最大100
°C程度低く、このアモルファス状物質を半田の代わり
に接合媒体として用いると接合温度を低くできるのでセ
ラ4ツクス超電導体が劣化することがなく、又このアモ
ルファス状物質は溶接後結晶化して超電導体となること
を知見し、更に研究を進めて本発明を完成させるに到っ
たものである。
The present invention has been made in view of this situation, and as a result of intensive research, it has been found that the amorphous material of the Cerax superconductor composition has a melting temperature (melting point) of up to 100% higher than that of a crystalline material exhibiting superconductivity.
If this amorphous material is used as a bonding medium instead of solder, the bonding temperature can be lowered so that the Cera4Tx superconductor will not deteriorate, and this amorphous material will crystallize after welding and become a superconductor. After discovering that, the present invention was completed by further research.

即ち、本発明′、:、セラミックス超電導体からなる超
電導材料同士を接合する方法において、前記超電導材料
同士間に、前記セラミックス超電導体と少なくとも金属
成分が同じ組成で、且つ溶融温度が前記セラミックス超
電導体より低いアモルファス状物質を介在させて、これ
に所定の加熱処理を施すことを特徴とするセラミックス
超電導材料の接合方法である。
That is, the present invention': In a method for joining superconducting materials made of ceramic superconductors, the superconducting materials have at least the same composition of metal components as the ceramic superconductor and a melting temperature of the ceramic superconductor. This is a method for joining ceramic superconducting materials, which is characterized by interposing a lower amorphous material and subjecting it to a predetermined heat treatment.

本発明方法において、アモルファス状物質の組成は、接
合しようとするセラミックス超電導材料を構成するセラ
ミックス超電導体と同じ組成のものか、少なくとも金属
成分が同一組成のものであればよく、接合時の加熱処理
によって結晶化して超電導体となるものである。 又、
上記アモルファス状物質は、セラミックス超電導体とな
し得る原料物質を溶融し、これを急冷凝固して作製され
るもので、急冷凝固法としては、単ロール法、双ロール
法、ピストンアンビル法、回転液中紡糸法、アトマイズ
法等の種々の方法が用いられ、その形状はシート状、繊
維状、粉末状等任意の形状のものが適用される。
In the method of the present invention, the composition of the amorphous substance may be the same as that of the ceramic superconductor constituting the ceramic superconducting material to be bonded, or at least the metal component may have the same composition. It crystallizes and becomes a superconductor. or,
The above-mentioned amorphous material is produced by melting a raw material that can be made into a ceramic superconductor and rapidly solidifying it. Rapid solidification methods include the single roll method, twin roll method, piston anvil method, and rotating liquid method. Various methods such as the intermediate spinning method and the atomization method are used, and any shape such as sheet, fiber, powder, etc. can be used.

本発明方法において、セラミックス超電導材料間にアモ
ルファス状物質を介在させ、これを加熱処理して接合す
る際、上記超電導材料同士を押圧しながら加熱処理する
と接合強度等が改善されて好ましい。
In the method of the present invention, when an amorphous substance is interposed between the ceramic superconducting materials and the materials are heat-treated and bonded, it is preferable to heat-treat the superconducting materials while pressing them together, as this improves bonding strength and the like.

〔作用〕[Effect]

本発明方法においては、セラミックス超電導材料間に上
記超電導材料と組成が同等で、融点が上記超電導材料よ
り低いアモルファス状物質を介在させ、これを上記アモ
ルファス状物質が溶融し、上記超電導材料が溶融しない
温度に加熱して接合するので接合時の加熱によってセラ
ミックス超電導材料が劣化したすせず、又アモルファス
状物質は接合後超電導体となるので接合部分の抵抗が増
加するようなことがない。
In the method of the present invention, an amorphous substance having the same composition as the superconducting material and having a lower melting point than the superconducting material is interposed between the ceramic superconducting materials, and the amorphous substance melts and the superconducting material does not melt. Since the ceramic superconducting material is bonded by heating to a high temperature, the heating during bonding will not deteriorate the ceramic superconducting material, and since the amorphous material becomes a superconductor after bonding, the resistance of the bonded portion will not increase.

〔実施例〕〔Example〕

以下に本発明を実施例により詳細に説明する。 The present invention will be explained in detail below using examples.

実施例l Bi2O3、SrCO3、Ca CO3、CuOをモル
比で2:2’:1:2になるように配合し、混合し、次
いでこれを大気中で仮焼成したのち、粉砕分級して仮焼
成粉体となした。次にこの仮焼成粉体を5X5X50m
mの棒材に圧粉成形し、次いでこれを大気中で融点(8
50°C)直下の840°Cで30時間加熱焼結してセ
ラミックス超電4棒材料となした。
Example 1 Bi2O3, SrCO3, CaCO3, and CuO are blended and mixed in a molar ratio of 2:2':1:2, and then calcined in the atmosphere, then pulverized and classified, and calcined. It was made into powder. Next, this calcined powder is 5x5x50m
It is compacted into a bar with a diameter of
The material was heated and sintered at 840°C (just below 50°C) for 30 hours to form a ceramic superelectric 4-bar material.

他方、上記セラミックス超電4棒材料を接合するアモル
ファス状物質として、上記仮焼成粉体を工200°Cに
加熱溶融し、次いでこれを双ロール法により急冷凝固し
て厚さ30μmのシートを作製した。
On the other hand, as an amorphous substance for bonding the ceramic superelectric four-bar material, the pre-sintered powder was heated and melted at 200°C, and then rapidly solidified by a twin roll method to produce a sheet with a thickness of 30 μm. did.

而して前記セラミックス超電4棒材料を2本用意し、第
1図に示したように、超電導棒材料1間に前記シート2
を介在させ、これを800°Cに加熱して超電導棒材料
同士を接合した。接合に当たり棒材材間に押圧力を種々
変えて付与した。
Then, two of the ceramic superconducting rod materials are prepared, and as shown in FIG. 1, the sheet 2 is placed between the superconducting rod materials 1
was placed in between and heated to 800°C to join the superconducting rod materials together. For joining, various pressing forces were applied between the bars.

実施例2 実施例1で製造したのと同じ仮焼成粉体を1200゛C
に加熱溶融し、これをアトマイズ法により平均粒径10
μmの粉体となし、次いでこれを0.2mmの板材に圧
粉成形して板状となし、これをセラミックス超電導棒材
材間に介在させた他は、実施例1と同じ方法によりセラ
ごツクス超電導棒材料同士の接合を行った。
Example 2 The same pre-calcined powder as produced in Example 1 was heated to 1200°C.
The average particle size is 10 by the atomization method.
The same method as in Example 1 was used except that the powder was made into a powder of μm in size, then compacted into a plate of 0.2 mm to form a plate, and this was interposed between the ceramic superconducting bars. Tux superconducting rod materials were joined together.

尚、実施例1及び2において、シート及び粉体がアモル
ファス状であることは、X線回折法によりW1認した。
In Examples 1 and 2, it was confirmed by X-ray diffraction that the sheet and powder were amorphous.

又融点は双方とも780°Cであった。The melting points of both were 780°C.

比較例工 実施例1で作製したセラミックス超電4棒材料を2本文
合わせ、この突合わせ部分を両側から押圧しながら大気
中で860°CX2時間加熱処理して上記超電導棒材料
同士を接合した。
Comparative Example Work Two pieces of the ceramic superconducting rod materials produced in Example 1 were brought together, and the abutted portions were heated at 860° C. for 2 hours in the atmosphere while being pressed from both sides to join the superconducting rod materials.

比較例2 セラミックス超電導棒材料同士をIn−3n系半田を用
いて第1図に示した形状に半田接合した。
Comparative Example 2 Ceramic superconducting rod materials were soldered together in the shape shown in FIG. 1 using In-3n solder.

斯くのごとくして得られた各々のセラミックス超電4棒
材料の接合体の臨界電流密度(Jc )を、接合部を含
む部分と含まない部分の2通りについて測定した。又接
合部を含む部分の接合強度を引張試験により測定した。
The critical current density (Jc) of each of the thus obtained joined bodies of four ceramic superconductor materials was measured in two ways: a part including the joint and a part not including the joint. In addition, the bonding strength of the portion including the bonded portion was measured by a tensile test.

Jcは液体窒素(77K)中にて、無磁場下で測定した
。結果は第1表に示した。
Jc was measured in liquid nitrogen (77K) without a magnetic field. The results are shown in Table 1.

第1表より明らかなように、本発明方法品(No1〜6
)は、接合部を含む部分が接合部を含まない部分と殆ど
同じ高いJc値を示した。又接合部の強度も実用上差支
えない程度の高い値のものであった。
As is clear from Table 1, the products manufactured by the method of the present invention (Nos. 1 to 6)
) showed that the part containing the joint had almost the same high Jc value as the part not containing the joint. In addition, the strength of the joint was high enough to be practically acceptable.

上記において接合時に圧力を付与したものは、全般にJ
c及び接合強度とも高い値を示した。
In the above cases, pressure is applied during bonding in general.
c and bonding strength both showed high values.

これに対し、接合媒体を用いず直接接合したもの(No
7)は、接合部のみならず超電導棒材料全体が融点を越
えた為、組成変動を生してJcが全体的に低下し、又接
合媒体として半田を用いたもの(No8)は半田が常電
導体の為接合部の、ICが低下した。
In contrast, those bonded directly without using a bonding medium (No.
In case 7), not only the joint but also the entire superconducting rod material exceeded the melting point, resulting in compositional fluctuations and an overall decrease in Jc.In addition, in the case where solder was used as the joining medium (No. 8), solder was always used. Since it is a conductor, the IC of the joint has decreased.

以」1第1図に示した接合構造のものについて説明した
が、第2図イ〜ハに示し、たまうに、接合面を斜めにし
たり(図イ)、はめ合いにして(図口)接合面積を広げ
て接合強度を高めることも、更に接合部分を導電性のよ
い金属材料や半田で被覆し補強して(図へ)用いること
も可能である。
1. We have explained the joint structure shown in Figure 1, but as shown in Figure 2 A to C, it is possible to make the joint surface oblique (Figure A) or fit it (Figure 2). It is also possible to increase the bonding strength by increasing the area, or to cover and reinforce the bonded portion with a highly conductive metal material or solder (see figure).

又本発明方法は、上記実施例で用いたBi系超超電導体
他、前述のY系、或いはTl−Ba−CaCu−0系等
任意のセラミンクス超電導体に適用し得るものである。
Furthermore, the method of the present invention can be applied to any ceramic superconductor such as the Bi-based superconductor used in the above embodiments, as well as the aforementioned Y-based or Tl-Ba-CaCu-0 based superconductors.

〔効果〕〔effect〕

以上述べたように本発明方法によれば、セラミックス超
電導材料同士をJc等の超電導特性を損なうことなく接
合することができて、工業上顕著な効果を奏する。
As described above, according to the method of the present invention, ceramic superconducting materials can be bonded together without impairing superconducting properties such as Jc, resulting in significant industrial effects.

【図面の簡単な説明】[Brief explanation of drawings]

第1図及び第2図イ〜ハは本発明の接合方法の態様例を
示すそれぞれ断面図、第3図イ8 ロは従来の接合方法
を示すそれぞれ断面図である。 1−七うごノクス超電導棒材料、2−アモルファス状シ
ート、3−一一一半田。
1 and 2A to 2C are cross-sectional views showing embodiments of the joining method of the present invention, and FIG. 3A and 3B are cross-sectional views showing a conventional joining method. 1-Nana Ugonox superconducting rod material, 2-Amorphous sheet, 3-111 solder.

Claims (1)

【特許請求の範囲】[Claims] セラミックス超電導体からなる超電導材料同士を接合す
る方法において、前記超電導材料同士間に、前記セラミ
ックス超電導体と少なくとも金属成分が同じ組成で、且
つ溶融温度が前記セラミックス超電導体より低いアモル
ファス状物質を介在させて、これに所定の加熱処理を施
すことを特徴とするセラミックス超電導材料の接合方法
In a method for joining superconducting materials made of ceramic superconductors, an amorphous substance having at least the same composition of metal components as the ceramic superconductor and having a melting temperature lower than that of the ceramic superconductor is interposed between the superconducting materials. 1. A method for joining ceramic superconducting materials, the method comprising: applying a prescribed heat treatment to the ceramic superconducting materials;
JP2033348A 1990-02-14 1990-02-14 Joining method for ceramics superconductive material Pending JPH03237073A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2033348A JPH03237073A (en) 1990-02-14 1990-02-14 Joining method for ceramics superconductive material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2033348A JPH03237073A (en) 1990-02-14 1990-02-14 Joining method for ceramics superconductive material

Publications (1)

Publication Number Publication Date
JPH03237073A true JPH03237073A (en) 1991-10-22

Family

ID=12384070

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2033348A Pending JPH03237073A (en) 1990-02-14 1990-02-14 Joining method for ceramics superconductive material

Country Status (1)

Country Link
JP (1) JPH03237073A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1993020025A1 (en) * 1992-04-03 1993-10-14 Nippon Steel Corporation Bonded element of superconductive oxide materials and its manufacture
WO2010090023A1 (en) * 2009-02-05 2010-08-12 株式会社 東芝 Superconductive conductor connecting method and superconductive coil

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1993020025A1 (en) * 1992-04-03 1993-10-14 Nippon Steel Corporation Bonded element of superconductive oxide materials and its manufacture
US5786304A (en) * 1992-04-03 1998-07-28 Nippon Steel Corporation Joining product of oxide superconducting material and process for producing the same
WO2010090023A1 (en) * 2009-02-05 2010-08-12 株式会社 東芝 Superconductive conductor connecting method and superconductive coil

Similar Documents

Publication Publication Date Title
EP0634379B1 (en) Joined product of of superconductive oxide materials and its manufacture
JPH0440289B2 (en)
US20100009855A1 (en) Process for joining oxide superconducting tubes with a superconducting joint
EP1107324B1 (en) Method of joining oxide superconductors and superconductor members produced by same
JPH03237073A (en) Joining method for ceramics superconductive material
JP2907313B2 (en) Bismuth-based high-temperature superconductor joining method
JPH0797277A (en) Method for joining oxide superconductor
JPH06648B2 (en) Meltable superconductor and manufacturing method thereof
JP2622123B2 (en) Method for producing flake-like oxide superconductor
JP3621294B2 (en) Oxide superconducting compression molded conductor and manufacturing method thereof
JPH03242384A (en) Connection of bi-based oxide superconductor
JP3709532B2 (en) Manufacturing method of oxide superconductor
JPH04104970A (en) Bonding or mending oxide superconductor
JP3709531B2 (en) Manufacturing method of oxide superconductor
JPH038777A (en) Bond structure of oxide superconductor
JP2779210B2 (en) Conductor for current lead
JPH01242473A (en) Production of joined superconducting body
JPH03247571A (en) Method for joining ceramic superconducting material
JP3709999B2 (en) Manufacturing method of high-temperature superconducting joints
JPH02227249A (en) Joining method for magnetic shielding material made of bismuth oxide superconductor
JP2721821B2 (en) Method of removing sheath sheathed on superconductor
JPH09143000A (en) Joining method of oxide superconductor
JPH0279310A (en) Manufacture of oxide superconductive wire
JPH02307860A (en) Superconducting material and production thereof
Akbar et al. Rapidly Solidified Superconducting Film on Metallic Wire