JP2018127381A - Method for producing superconductive bulk conjugate - Google Patents

Method for producing superconductive bulk conjugate Download PDF

Info

Publication number
JP2018127381A
JP2018127381A JP2017021337A JP2017021337A JP2018127381A JP 2018127381 A JP2018127381 A JP 2018127381A JP 2017021337 A JP2017021337 A JP 2017021337A JP 2017021337 A JP2017021337 A JP 2017021337A JP 2018127381 A JP2018127381 A JP 2018127381A
Authority
JP
Japan
Prior art keywords
bonding
bodies
bonding layer
superconducting bulk
bonded
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2017021337A
Other languages
Japanese (ja)
Inventor
手嶋 英一
Hidekazu Tejima
英一 手嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel and Sumitomo Metal Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel and Sumitomo Metal Corp filed Critical Nippon Steel and Sumitomo Metal Corp
Priority to JP2017021337A priority Critical patent/JP2018127381A/en
Publication of JP2018127381A publication Critical patent/JP2018127381A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Ceramic Products (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for producing a superconductive bulk conjugate excellent in a superconductivity characteristic even when a conjugation body and a conjugation layer are arranged horizontally.SOLUTION: A method includes: an arranging step of arranging a plurality of conjugation bodies for deviations of crystal orientation in conjugation bodies adjacent to each other to be 15° or lower, and a conjugation layer is arranged between the conjugation bodies adjacent to each other while bringing the conjugation layer into contact with the conjugation bodies; and a thermally treating step of heating the conjugation bodies and the conjugation layer at temperature lower than a melting point of the conjugation bodies but higher than a melting point of the conjugation layer to melt the conjugation layer, and thereafter conducting slow cooling to a temperature in which at least the conjugation layer is crystallized, to connect the conjugation bodies adjacent to each other via the conjugation layer. In the arranging step, the plurality of conjugation bodies and the conjugation layer are arranged horizontally while each of the conjugation bodies is supported by using at least one supporting member per conjugation body; and in the thermally treating step, the conjugation bodies are connected while keeping them arranged horizontally.SELECTED DRAWING: Figure 1

Description

本発明は、超電導バルク体同士を接合した超電導バルク接合体の製造方法に関する。   The present invention relates to a method for manufacturing a superconducting bulk joined body in which superconducting bulk bodies are joined together.

塊状(バルク状)の超電導体は超電導バルク体と呼ばれ、従来の永久磁石を凌駕する非常に強力な磁場発生源(超電導バルク磁石)や、複雑なフィードバック制御システムなしでも安定浮上を実現できる非接触な軸受(超電導軸受)、磁場中でも大電流を通電できる電流リードなどの通電素子、強い磁場を遮蔽できる磁気シールドなど、様々な応用が期待されている。   Bulk superconductors are called superconducting bulk bodies, which can achieve stable levitation without a very strong magnetic field source (superconducting bulk magnet) that exceeds conventional permanent magnets and complicated feedback control systems. Various applications are expected, such as contact bearings (superconducting bearings), current-carrying elements such as current leads that can carry a large current even in a magnetic field, and magnetic shields that can shield a strong magnetic field.

このような応用に用いられる超電導バルク体には、臨界温度(T)が高く、磁場中での臨界電流密度(J)が高い超電導バルク体が望ましい。RE−Ba−Cu−O系酸化物超電導体(REはY又は希土類元素から選ばれる1種又は2種以上の元素)の臨界温度Tは90K程度と高いが、酸化物の一般的な製法である焼結法で作製されるバルク体は多数の結晶粒からなる多結晶状の超電導バルク体である。超電導バルク体が多結晶である場合には、内部に存在する多数の結晶粒界が超電導電流を阻害するため、臨界電流密度Jは77Kで1.0×10A/cm以下であり、低い値である。 A superconducting bulk body used for such applications is preferably a superconducting bulk body having a high critical temperature (T c ) and a high critical current density (J c ) in a magnetic field. RE-Ba-Cu-O based oxide superconductor (RE is one or more elements selected from Y or a rare earth element) is the critical temperature T c of but high as about 90K, the general preparation of oxides The bulk body produced by the sintering method is a polycrystalline superconducting bulk body composed of a large number of crystal grains. If superconductive bulk body is a polycrystalline, since a large number of grain boundaries existing therein inhibit superconducting current, the critical current density J c is an 1.0 × 10 3 A / cm 2 or less at 77K Is a low value.

臨界電流密度Jを改善するために、例えば、特許文献1で開示されているような溶融結晶成長プロセスが開発されている。このような溶融結晶成長プロセスを適用することにより、結晶方位の揃ったREBaCu(yは酸素量で、6.8≦y≦7.1)中にREBaCuOが微細分散した組織を有する超電導バルク体を得ることができる。かかる超電導バルク体は、77K、1Tにおいて臨界電流密度Jが1.0×10A/cm以上という磁場中でも高い特性を示す。なお、ここで、結晶方位の揃ったとは、内部に大傾角粒界を含まない単結晶状であることと同義である。 To improve the critical current density J c, for example, melting the crystal growth process, as disclosed in Patent Document 1 has been developed. By applying such a molten crystal growth process, RE 2 BaCuO 5 is incorporated into RE 1 Ba 2 Cu 3 O y (y is the amount of oxygen, 6.8 ≦ y ≦ 7.1) with the same crystal orientation. A superconducting bulk body having a finely dispersed structure can be obtained. Such superconducting bulk body, 77K, exhibits high characteristics even in a magnetic field of the critical current density J c is 1.0 × 10 4 A / cm 2 or more at 1T. Here, the alignment of crystal orientations is synonymous with a single crystal shape that does not include a large-angle grain boundary inside.

このような結晶方位の揃った超電導バルク体は、溶融結晶成長プロセスで製造されるため、すなわち、種結晶を用いて、徐冷させながら結晶成長させることにより製造される。そのため、超電導バルク体のサイズが大型化すると、製造時間が極端に長くなることに加え、種結晶以外からの余分な核生成が生じて多結晶化しやすくなるので、製造が非常に困難になる。そのため、製造可能なサイズには実質的に限界がある。   Such a superconducting bulk body having a uniform crystal orientation is manufactured by a melt crystal growth process, that is, by crystal growth using a seed crystal while slowly cooling. For this reason, when the size of the superconducting bulk body is increased, the manufacturing time becomes extremely long, and extra nucleation from other than the seed crystal occurs, so that it becomes easy to be polycrystallized, which makes it very difficult to manufacture. For this reason, the size that can be manufactured is substantially limited.

このような超電導バルク体の大型化、長尺化の問題を解決するために、ある程度の大きさや長さを有する超電導バルク体同士を接合することが考えられる。しかし、超電導バルク体同士を単に接合しただけでは、接合層において互いの結晶方位がずれてしまうため、あるいは超電導バルク体同士をつなぐ接合層部分が多結晶化することにより生じ得る超電導電流を阻害する結晶粒界が存在するため、接合体の超電導特性は単体の超電導バルク体と比較して低いものであった。   In order to solve the problem of enlargement and lengthening of such superconducting bulk bodies, it is conceivable to join superconducting bulk bodies having a certain size and length. However, if the superconducting bulk bodies are simply joined together, the crystal orientations of the joining layers are shifted, or the superconducting current that can be generated by the polycrystallization of the joining layer portion that connects the superconducting bulk bodies is hindered. Due to the presence of crystal grain boundaries, the superconducting properties of the bonded body were lower than those of a single superconducting bulk body.

このような超電導接合体の問題を解決するための方法が、例えば特許文献2や3で開示されている。具体的には、結晶方位の揃った複数の超電導体からなる接合本体が、その接合面で接合本体よりも溶融温度(包晶温度)が低く、かつ接合本体と同じ結晶方位を有する超電導体からなる接合層を介して接合されていることを特徴とする超電導バルク接合体が開示されている。また、接合本体となる超電導バルク体同士をお互いの結晶方位を揃えて配置し、接合層を挟んだ状態で、接合本体の溶融温度よりは低く、かつ、接合層の溶融温度よりは高い温度まで加熱し、その後、接合層の溶融温度前後の温度領域にて徐冷することによって、溶融状態にある接合層部が両端の接合本体を種結晶として結晶成長することになり、最終的に両端の接合本体と接合層の全ての結晶方位が揃った状態で接合できることが開示されている。   For example, Patent Documents 2 and 3 disclose methods for solving such problems of the superconducting joint. Specifically, a joining body composed of a plurality of superconductors having a uniform crystal orientation has a melting temperature (peritectic temperature) lower than that of the joining body at the joining surface, and a superconductor having the same crystal orientation as the joining body. There is disclosed a superconducting bulk bonded body that is bonded via a bonding layer. In addition, the superconducting bulk bodies to be the bonding body are arranged with their crystal orientations aligned, and with the bonding layer sandwiched between them, the melting temperature is lower than the melting temperature of the bonding body and higher than the melting temperature of the bonding layer. By heating and then slowly cooling in a temperature range around the melting temperature of the bonding layer, the bonding layer portion in the molten state grows as a seed crystal with the bonded body at both ends, and finally the both ends It is disclosed that bonding can be performed in a state where all crystal orientations of the bonding body and the bonding layer are aligned.

なお、この方法では、接合層の溶融温度を接合本体の溶融温度より低くする必要がある。そこで、RE−Ba−Cu−O系酸化物超電導体は、REサイトの元素によって溶融温度が異なる性質を有しているので、接合本体として溶融温度の高い元素を選択し、接合層として溶融温度の低い元素を選択することが提案されている。   In this method, the melting temperature of the bonding layer needs to be lower than the melting temperature of the bonding body. Therefore, since the RE-Ba-Cu-O-based oxide superconductor has a property that the melting temperature differs depending on the element of the RE site, an element having a high melting temperature is selected as the bonding body, and the melting temperature is selected as the bonding layer. It has been proposed to select elements with low values.

また、別の方法として、RE−Ba−Cu−O系酸化物超電導体は銀を含有すると溶融温度が低下する性質を有しているので、接合層に銀または銀化合物を含有することが提案されている。   As another method, the RE-Ba-Cu-O-based oxide superconductor has a property that the melting temperature is lowered when silver is contained, so that it is proposed that the bonding layer contains silver or a silver compound. Has been.

特公平4−40289号公報Japanese Examined Patent Publication No. 4-40289 特開平6−40775号JP 6-40775 A 特開平5−279028号JP-A-5-279028

上述したように、結晶方位の揃った複数の超電導バルク体からなる接合本体で、接合本体よりも溶融温度が低い超電導体からなる接合層を挟むようにして配置してから熱処理を行う製造方法は、両側の接合本体と接合層の全ての結晶方位が揃った超電導バルク接合体を製造することを可能にする有効な手段である。超電導バルク接合体を製造する際には、接合本体である超電導バルク体や接合層になる超電導体を電気炉内に設置する必要がある。その際、一般には、例えば、接合本体と接合層を電気炉底面のアルミナ等の断熱材の上に直接設置することが行われる。あるいは、電気炉外にて、アルミナやマグネシア等のセラミックス製基板の上で接合本体や接合層を配置し、基板ごと電気炉内に運搬してこれらを電気炉内に設置することが行われる。   As described above, a manufacturing method in which heat treatment is performed after placing a joining body made of a superconductor having a melting point lower than that of a joining body in a joining body made of a plurality of superconducting bulk bodies with uniform crystal orientation is performed on both sides. This is an effective means that makes it possible to manufacture a superconducting bulk bonded body in which all the crystal orientations of the bonding body and bonding layer are aligned. When manufacturing a superconducting bulk joined body, it is necessary to install a superconducting bulk body which is a joining body and a superconductor which becomes a joining layer in an electric furnace. In that case, generally, for example, the joining body and the joining layer are directly installed on a heat insulating material such as alumina on the bottom of the electric furnace. Alternatively, a bonding main body and a bonding layer are arranged on a ceramic substrate such as alumina or magnesia outside the electric furnace, and the substrates are transported into the electric furnace and installed in the electric furnace.

従来、超電導バルク接合体を製造する際には、例えば、図10Aに示すように、接合本体92である超電導バルク体と接合層93になる超電導体を、鉛直方向に積層して電気炉内に配置してから、接合のための熱処理を行うことが多かった。一方、図10Bに示すように、接合本体92と接合層93を水平方向に配置してから、接合のための熱処理を行うことも考えられる。接合本体92と接合層93を鉛直方向に配置する縦配置と、接合本体92と接合層93を水平方向に配置する横配置を比較すると、短尺な接合本体92を用いて超電導バルク接合体91を製造する場合には、縦配置でも横配置でも作業性に大きな違いはないが、長尺の超電導バルク接合体1を製造する場合には、バランスが悪い縦配置よりも、横配置の方が作業性は格段に優れている。   Conventionally, when manufacturing a superconducting bulk joined body, for example, as shown in FIG. 10A, a superconducting bulk body that is a joining body 92 and a superconductor that becomes a joining layer 93 are vertically stacked in an electric furnace. After placement, heat treatment for bonding was often performed. On the other hand, as shown in FIG. 10B, it is also conceivable to perform heat treatment for bonding after the bonding body 92 and the bonding layer 93 are arranged in the horizontal direction. When the vertical arrangement in which the bonding main body 92 and the bonding layer 93 are arranged in the vertical direction is compared with the horizontal arrangement in which the bonding main body 92 and the bonding layer 93 are arranged in the horizontal direction, the superconducting bulk bonded body 91 is formed using the short bonding main body 92. When manufacturing, there is no significant difference in workability between vertical and horizontal arrangements. However, when manufacturing a long superconducting bulk bonded body 1, the horizontal arrangement is more work than the poorly arranged vertical arrangement. Sex is much better.

しかしながら、従来の超電導バルク接合体の製造方法では、接合本体と接合層を鉛直方向に配置した縦配置の場合に比べて、水平方向に配置した横配置の場合の超電導特性が低いという問題があった。特に、接合層およびその周辺の超電導特性が低下することが問題であった。   However, the conventional method for manufacturing a superconducting bulk bonded body has a problem that the superconducting characteristics in the horizontal arrangement in the horizontal direction are lower than in the vertical arrangement in which the bonding body and the bonding layer are arranged in the vertical direction. It was. In particular, the problem is that the superconducting properties of the bonding layer and its surroundings are degraded.

そこで、本発明では、上記の問題を解決し、接合本体と接合層を水平方向に配置した場合でも、超電導特性に優れた超電導バルク接合体の製造方法を提供することを目的とする。   In view of the above, an object of the present invention is to solve the above problems and to provide a method of manufacturing a superconducting bulk bonded body excellent in superconducting characteristics even when the bonding body and the bonding layer are arranged in the horizontal direction.

本発明者が横配置の状態にして製造された超電導バルク接合体の特性低下の原因について鋭意調査した結果、横配置で製造された超電導バルク接合体は、縦配置で製造された超電導バルク接合体に比べて、接合層およびその周辺において、断熱材や基板の材質であるアルミナやマグネシアの不純物混入が大きく、それが超電導特性の低下の原因であることを突き止めた。横配置で製造された超電導バルク接合体において、接合層およびその周辺に不純物混入が大きかった理由として、接合のための熱処理工程では接合層は半溶融状態になっているが、図10Bに示す配置では、半溶融状態となった接合層部が直接電気炉底面や基板に触れていることが不純物混入を加速しているためと考えられる。   As a result of earnest investigation by the inventor on the cause of deterioration in characteristics of the superconducting bulk joint manufactured in the lateral arrangement, the superconducting bulk joint manufactured in the horizontal arrangement is a superconducting bulk joint manufactured in the vertical arrangement. In comparison with the above, it has been found that impurities in alumina and magnesia, which are the materials of the heat insulating material and the substrate, are large in the bonding layer and its periphery, which causes the deterioration of the superconducting characteristics. In the superconducting bulk bonded body manufactured in the lateral arrangement, the bonding layer and the periphery thereof have a large amount of impurities. The bonding layer is in a semi-molten state in the heat treatment step for bonding, but the arrangement shown in FIG. Then, it is considered that the mixing of the impurities is accelerated because the bonding layer portion in a semi-molten state is in direct contact with the bottom surface of the electric furnace or the substrate.

一方、縦配置の場合には、半溶融状態となった接合層部は直接電気炉底面や基板に触れていない。すなわち、横配置で超電導バルク接合体を製造した場合には、縦配置で製造した場合に比べて、電気炉内のアルミナ製断熱材あるいはアルミナ製基板やマグネシア製基板からの不純物混入(コンタミ)の影響を受けやすいため、超電導バルク接合体の超電導特性が低くなっていたことが分かった。また、縦配置および横配置のどちらで製造した場合においても、超電導バルク接合体の接合本体部にも若干の不純物混入はあるものの、熱処理工程での最高温度は接合本体の溶融温度以下であり、接合本体部は半溶融状態になっていないため、接合本体の電気炉内のアルミナ製断熱材あるいはアルミナ製基板やマグネシア製基板に直接触れている箇所においても、不純物混入量は超電導特性を大きく低下させるものではない。   On the other hand, in the case of the vertical arrangement, the bonding layer portion that has become a semi-molten state does not directly touch the bottom surface of the electric furnace or the substrate. That is, when a superconducting bulk bonded body is manufactured in a horizontal arrangement, the contamination of impurities (contamination) from an alumina heat insulating material or an alumina substrate or a magnesia substrate in an electric furnace is larger than that in a vertical arrangement. It was found that the superconducting properties of the superconducting bulk joint were low because it was easily affected. In addition, in the case of manufacturing in either the vertical arrangement or the horizontal arrangement, although there are some impurities in the superconducting bulk bonded body, the maximum temperature in the heat treatment step is lower than the melting temperature of the bonded main body, Since the joint body is not in a semi-molten state, the amount of impurities greatly reduces the superconducting properties even in the part where the joint body is in direct contact with the alumina heat insulating material or alumina substrate or magnesia substrate in the electric furnace. It doesn't let you.

上述した点を踏まえ、本発明の超電導バルク体を利用した超電導バルク接合体の製造方法は、以下のとおりである。
(1)結晶方位の揃った第1の酸化物超電導体により形成される複数の接合本体を、隣り合う前記接合本体の互いの結晶方位のずれが15°以内になるように配置するとともに、隣り合う前記接合本体同士の間に、前記第1の酸化物超電導体よりも溶融温度が低い材料特性を有する第2の酸化物超電導体により形成される接合層を、前記接合本体同士に接触させて配置する配置工程と、前記接合本体の溶融温度よりは低く、かつ、前記接合層の溶融温度よりは高い温度に、前記複数の接合本体および前記接合層を加熱して前記接合層を溶融し、その後、少なくとも前記接合層が結晶化する温度まで徐冷し、前記接合層を介して隣り合う前記接合本体同士を接合する熱処理工程と、を有する超電導バルク接合体の製造方法であって、前記配置工程において、1つの接合本体あたり少なくとも1つの支持部材を用いて前記複数の接合本体の各々を支持しながら、前記複数の接合本体および前記接合層を水平方向に配設し、前記熱処理工程において、前記支持部材により支持されている前記複数の接合本体と前記接合層との配設方向を水平方向に維持した状態で、前記接合層を介して隣り合う前記接合本体同士を接合することを特徴とする超電導バルク接合体の製造方法。
(2)前記配置工程において、前記複数の接合本体の各々を、1つの接合本体あたり複数の前記支持部材を用いて支持することを特徴とする(1)に記載の超電導バルク接合体の製造方法。
(3)前記接合本体と前記接合層とを、有機系の接着剤または銀ペーストにより接着することを特徴とする(1)又は(2)に記載の超電導バルク接合体の製造方法。
(4)前記第1の酸化物超電導体および前記第2の酸化物超電導体は、REBaCu(REはY及び希土類元素からなる群から選ばれる1種または2種以上の元素であり、yは酸素量で、6.8≦y≦7.1)中にREBaCuOが分散した酸化物超電導体であることを特徴とする(1)〜(3)のいずれか1項に記載の超電導バルク接合体の製造方法。
(5)前記接合本体および前記接合層には、金属銀換算で2質量%以上30質量%以下の銀が含有されていることを特徴とする(1)〜(4)のいずれか1項に記載の超電導バルク接合体の製造方法
Based on the above-described points, a method for manufacturing a superconducting bulk joint using the superconducting bulk body of the present invention is as follows.
(1) A plurality of junction bodies formed of first oxide superconductors with aligned crystal orientations are arranged so that the deviation of the crystal orientations of the adjacent junction bodies from each other is within 15 °. A bonding layer formed by a second oxide superconductor having a material characteristic having a melting temperature lower than that of the first oxide superconductor is brought into contact with each other between the bonded main bodies. An arrangement step of arranging, melting the bonding layer by heating the plurality of bonding bodies and the bonding layer to a temperature lower than the melting temperature of the bonding body and higher than the melting temperature of the bonding layer; Then, the method of manufacturing a superconducting bulk joined body, comprising: annealing at least to a temperature at which the joining layer is crystallized, and joining the joining bodies adjacent to each other via the joining layer. Craft In the heat treatment step, the plurality of bonding bodies and the bonding layer are disposed in a horizontal direction while supporting each of the plurality of bonding bodies using at least one support member per bonding body. The bonding bodies adjacent to each other are bonded to each other through the bonding layer in a state in which the arrangement direction of the plurality of bonding main bodies supported by the support member and the bonding layer is maintained in the horizontal direction. A method of manufacturing a superconducting bulk bonded body.
(2) In the arrangement step, each of the plurality of bonded main bodies is supported using a plurality of the supporting members per one bonded main body. The method for producing a superconducting bulk bonded body according to (1) .
(3) The method for manufacturing a superconducting bulk bonded body according to (1) or (2), wherein the bonding body and the bonding layer are bonded with an organic adhesive or silver paste.
(4) The first oxide superconductor and the second oxide superconductor are RE 1 Ba 2 Cu 3 O y (RE is one or more selected from the group consisting of Y and rare earth elements) Any one of (1) to (3), wherein y is an oxygen amount and is an oxide superconductor in which RE 2 BaCuO 5 is dispersed in 6.8 ≦ y ≦ 7.1) 2. A method for producing a superconducting bulk joined body according to item 1.
(5) In any one of (1) to (4), the bonding body and the bonding layer contain 2% by mass to 30% by mass of silver in terms of metallic silver. Manufacturing method of superconducting bulk joined body described

なお、ここで「超電導バルク接合体」とは、いくつかの超電導バルク体(接合本体)を接合することによって1つの大きな超電導バルク体、あるいは1つの長い超電導バルク体にしたものである。   Here, the “superconducting bulk joined body” is one large superconducting bulk body or one long superconducting bulk body obtained by joining several superconducting bulk bodies (joining bodies).

以上説明したように本発明によれば、接合本体と接合層を水平方向に配置した場合でも、超電導特性に優れた超電導バルク接合体の製造方法を提供することができる。   As described above, according to the present invention, it is possible to provide a method for manufacturing a superconducting bulk bonded body having excellent superconducting characteristics even when the bonding body and the bonding layer are arranged in the horizontal direction.

本実施形態における超電導バルク接合体の製造方法の一例を示す概念図である。It is a conceptual diagram which shows an example of the manufacturing method of the superconducting bulk joined body in this embodiment. 同実施形態に係る支持部材の形状および設置の例を示す斜視図である。It is a perspective view which shows the example of the shape of the support member which concerns on the embodiment, and installation. 同実施形態に係る支持部材の形状および設置の例を示す斜視図である。It is a perspective view which shows the example of the shape of the support member which concerns on the embodiment, and installation. 同実施形態に係る支持部材の形状および設置の例を示す斜視図である。It is a perspective view which shows the example of the shape of the support member which concerns on the embodiment, and installation. 同実施形態に係る支持部材の形状および設置の例を示す斜視図である。It is a perspective view which shows the example of the shape of the support member which concerns on the embodiment, and installation. 同実施形態に係る支持部材の形状および設置の例を示す斜視図である。It is a perspective view which shows the example of the shape of the support member which concerns on the embodiment, and installation. 同実施形態に係る支持部材の形状および設置の例を示す斜視図である。It is a perspective view which shows the example of the shape of the support member which concerns on the embodiment, and installation. 同実施形態に係る支持部材の配置の例を示す下面図である。It is a bottom view which shows the example of arrangement | positioning of the supporting member which concerns on the embodiment. 同実施形態に係る支持部材の配置の例を示す下面図である。It is a bottom view which shows the example of arrangement | positioning of the supporting member which concerns on the embodiment. 同実施形態に係る支持部材の配置の例を示す下面図である。It is a bottom view which shows the example of arrangement | positioning of the supporting member which concerns on the embodiment. 同実施形態に係る支持部材の配置の例を示す下面図である。It is a bottom view which shows the example of arrangement | positioning of the supporting member which concerns on the embodiment. 同実施形態に係る支持部材の配置の例を示す下面図である。It is a bottom view which shows the example of arrangement | positioning of the supporting member which concerns on the embodiment. 同実施形態に係る支持部材の配置の例を示す下面図である。It is a bottom view which shows the example of arrangement | positioning of the supporting member which concerns on the embodiment. 同実施形態の一変形例に係る超電導バルク接合体の製造方法を示す概念図である。It is a conceptual diagram which shows the manufacturing method of the superconducting bulk joined body which concerns on the modification of the embodiment. 同実施形態の一変形例に係る超電導バルク接合体の製造方法を示す概念図である。It is a conceptual diagram which shows the manufacturing method of the superconducting bulk joined body which concerns on the modification of the embodiment. 同実施形態の一実施例に係る超電導バルク接合体を構成する接合本体と接合層の態様を説明するための概念図である。It is a conceptual diagram for demonstrating the aspect of the joining main body and joining layer which comprise the superconducting bulk joined body based on one Example of the embodiment. 同実施形態の一実施例に係る超電導バルク接合体の製造方法における各部材の配置例を示す斜視図である。It is a perspective view which shows the example of arrangement | positioning of each member in the manufacturing method of the superconducting bulk joined body based on one Example of the embodiment. 試料Aの捕捉磁場分布の測定結果を示すグラフである。5 is a graph showing measurement results of a captured magnetic field distribution of sample A. 試料Bの捕捉磁場分布の測定結果を示すグラフである。It is a graph which shows the measurement result of capture magnetic field distribution of sample B. 同実施形態の一実施例に係る超電導バルク接合体の製造方法における支持部材の配置例を示す斜視図である。It is a perspective view which shows the example of arrangement | positioning of the supporting member in the manufacturing method of the superconducting bulk joined body based on one Example of the embodiment. 各試料の接合層における磁場強度の結果を示すグラフである。It is a graph which shows the result of the magnetic field strength in the joining layer of each sample. 従来における超電導バルク接合体の製造方法における接合本体と接合層の配置の例(縦配置)を示す概念図である。It is a conceptual diagram which shows the example (vertical arrangement | positioning) of the arrangement | positioning of the joining main body and joining layer in the manufacturing method of the conventional superconducting bulk joined body. 従来における超電導バルク接合体の製造方法における接合本体と接合層の配置の例(横配置)を示す概念図である。It is a conceptual diagram which shows the example (horizontal arrangement | positioning) of the arrangement | positioning of the joining main body and joining layer in the manufacturing method of the conventional superconducting bulk joined body.

以下に添付図面を参照しながら、本発明の好適な実施の形態について詳細に説明する。なお、本明細書及び図面において、実質的に同一の機能構成を有する構成要素については、同一の符号を付することにより重複説明を省略する。   Exemplary embodiments of the present invention will be described below in detail with reference to the accompanying drawings. In addition, in this specification and drawing, about the component which has the substantially same function structure, duplication description is abbreviate | omitted by attaching | subjecting the same code | symbol.

本実施形態で用いる結晶方位の揃った酸化物超電導バルク体は、単結晶状のREBaCu7−x相(123相)中に直径20μm以下のREBaCuO相(211相)等に代表される非超電導相が分散した組織を有するものであればよく、特に、非超電導相が微細分散した組織を有するもの(以下、「QMG材料」ともいう。)が望ましい。ここで、単結晶状というのは、完璧な単結晶でなく、小傾角粒界等の実用に差し支えない欠陥を有するものも包含する。123相及び211相におけるREは、Y、La、Nd、Sm、Eu、Gd、Dy、Ho、Er、Tm、Yb、Luからなる希土類元素及びそれらの組み合わせである。La、Nd、Sm、Eu、Gdを含む123相は1:2:3の化学量論組成から外れ、REのサイトにBaが一部置換した状態になることもある。また、非超電導相である211相においても、La、Ndは、Y、Sm、Eu、Gd、Dy、Ho、Er、Tm、Yb、Luとは幾分異なり、金属元素の比が非化学量論的組成であったり、結晶構造が異なったりすることが知られている。このような単結晶状の酸化物超電導バルク体は、セラミックスの一般的な製法である焼結法ではなく、焼結温度よりも高い溶融温度以上に成形体を昇温して半溶融状態にした後、徐冷中に結晶成長させるという溶融結晶成長法で製造される。 An oxide superconducting bulk body with a uniform crystal orientation used in the present embodiment has a RE 2 BaCuO 5 phase (211 phase) having a diameter of 20 μm or less in a single-crystal RE 1 Ba 2 Cu 3 O 7-x phase (123 phase). ), Etc., as long as it has a structure in which the non-superconducting phase is dispersed. In particular, a structure having a structure in which the non-superconducting phase is finely dispersed (hereinafter also referred to as “QMG material”) is desirable. Here, the term “single crystal” includes not only a perfect single crystal but also a defect having a defect that may be practically used such as a low-angle grain boundary. RE in the 123 phase and the 211 phase is a rare earth element composed of Y, La, Nd, Sm, Eu, Gd, Dy, Ho, Er, Tm, Yb, and Lu, and combinations thereof. The 123 phase containing La, Nd, Sm, Eu, and Gd deviates from the 1: 2: 3 stoichiometric composition, and Ba may be partially substituted at the RE site. In the 211 phase which is a non-superconducting phase, La and Nd are somewhat different from Y, Sm, Eu, Gd, Dy, Ho, Er, Tm, Yb and Lu, and the ratio of metal elements is non-stoichiometric. It is known that it has a theoretical composition or a different crystal structure. Such a single-crystal oxide superconducting bulk material is not a sintering method, which is a general method for producing ceramics, but is heated to a temperature higher than the melting temperature higher than the sintering temperature to make it a semi-molten state. Thereafter, it is manufactured by a melt crystal growth method in which crystals are grown during slow cooling.

QMG材料中の211相の微細分散は、臨界電流密度(J)向上の観点から極めて重要である。Pt、Rh又はCeの少なくとも一つを微量添加することで、半溶融状態(211相と液相からなる状態)での211相の粒成長を抑制し、結果的に材料中の211相を約1μm程度に微細化する。添加量は、微細化効果が現れる量及び材料コストの観点から、Pt:0.2〜2.0質量%、Rh:0.01〜0.5質量%、Ce:0.5〜2.0質量%であることが望ましい。添加されたPt、Rh、Ceは123相中に一部固溶する。また、固溶できなかった元素は、BaやCuとの複合酸化物を形成し、材料中に点在することになる。123相中の211相の割合は、臨界電流密度Jの特性及び機械強度の観点から、5〜35体積%であることが望ましい。また、材料中には、50〜500μm程度のボイド(気泡)を5〜20体積%含むことが一般的であり、さらにAg添加した場合、添加量によって1〜500μm程度のAg又はAg化合物を0体積%超25体積%以下含む。 The fine dispersion of the 211 phase in the QMG material is extremely important from the viewpoint of improving the critical current density (J c ). By adding a trace amount of at least one of Pt, Rh, or Ce, the grain growth of the 211 phase in the semi-molten state (a state composed of the 211 phase and the liquid phase) is suppressed, and as a result, the 211 phase in the material is reduced to about Refine to about 1 μm. The addition amount is Pt: 0.2 to 2.0% by mass, Rh: 0.01 to 0.5% by mass, Ce: 0.5 to 2.0 from the viewpoint of the amount at which the effect of miniaturization appears and the material cost. It is desirable that it is mass%. The added Pt, Rh, and Ce partially dissolve in the 123 phase. In addition, elements that could not be dissolved form a composite oxide with Ba and Cu, and are scattered in the material. 211 phase ratio of 123 phase, from the viewpoint of properties and mechanical strength of the critical current density J c, is preferably 5 to 35% by volume. Further, the material generally contains 5 to 20% by volume of voids (bubbles) of about 50 to 500 μm, and when Ag is added, 0 to about 1 to 500 μm of Ag or Ag compound is added depending on the amount added. More than 25% by volume.

また、結晶成長後の超電導バルク体の酸素欠損量(x)は、0.5〜0.8程度で半導体的あるいは絶縁材料的な抵抗率の温度変化を示す。これを各RE系により350℃〜600℃で100時間程度、酸素雰囲気中においてアニールすることにより酸素が超電導バルク体中に取り込まれ、酸素欠損量(x)は0.2以下となり、良好な超電導特性を示す。このとき、超電導相中には双晶構造ができる。しかしながら、この点を含めここでは単結晶状と呼ぶことにする。酸化物超電導バルク体を例えば超電導軸受として利用するには、結晶成長後の酸化物超電導バルク体を円板形状、四角形状、扇形状、瓦形状等の所定の形状に加工し、加工後に酸化物超電導バルク体の酸素アニールを行うことが求められる。   Further, the oxygen deficiency (x) of the superconducting bulk body after crystal growth is about 0.5 to 0.8, and shows a temperature change in resistivity like a semiconductor or an insulating material. This is annealed in an oxygen atmosphere at 350 ° C. to 600 ° C. for about 100 hours by each RE system, so that oxygen is taken into the superconducting bulk body and the oxygen deficiency (x) is 0.2 or less, which is a good superconductivity. Show properties. At this time, a twin structure is formed in the superconducting phase. However, including this point, it is referred to as a single crystal here. In order to use an oxide superconducting bulk body as, for example, a superconducting bearing, the oxide superconducting bulk body after crystal growth is processed into a predetermined shape such as a disk shape, a square shape, a fan shape, a tile shape, etc. It is required to perform oxygen annealing of the superconducting bulk material.

以下に、本発明の実施形態について、図に沿って説明する。なお、以下の説明では、熱処理工程前において、熱処理後に接合本体2になる超電導バルク体、および接合層3になる超電導体についても、接合本体2および接合層3と称することもある。   Embodiments of the present invention will be described below with reference to the drawings. In the following description, the superconducting bulk body that becomes the bonding body 2 and the superconductor that becomes the bonding layer 3 after the heat treatment before the heat treatment step may also be referred to as the bonding body 2 and the bonding layer 3.

図1は、本実施形態における超電導バルク接合体1の製造方法の一例を示す概念図である。接合本体2は、結晶方位の揃った酸化物超電導体(第1の酸化物超電導体に相当)の超電導バルク体により構成される。図1では、2つの接合本体2が、互いの結晶方位のずれが15°以内になるように水平方向に配置され、隣り合う接合本体2同士の間に、接合本体2よりも溶融温度が低い材料特性を有する別の酸化物超電導体(第2の酸化物超電導体に相当)の超電導体が、接合本体2に接触した状態で配置されている。かかる超電導体は、接合本体2の間に配置された酸化物超電導体が熱処理後において接合層3になる部分である。   FIG. 1 is a conceptual diagram showing an example of a method for manufacturing a superconducting bulk bonded body 1 in the present embodiment. The junction body 2 is composed of a superconducting bulk body of an oxide superconductor (corresponding to a first oxide superconductor) having a uniform crystal orientation. In FIG. 1, two bonding bodies 2 are arranged in a horizontal direction so that a deviation in crystal orientation between each other is within 15 °, and the melting temperature is lower than the bonding bodies 2 between adjacent bonding bodies 2. A superconductor of another oxide superconductor (corresponding to a second oxide superconductor) having material characteristics is arranged in contact with the bonding body 2. Such a superconductor is a portion where the oxide superconductor disposed between the bonding bodies 2 becomes the bonding layer 3 after the heat treatment.

さらに、図1では、配置工程において、接合本体2が、それぞれ支持部材5によって支持された状態で、接合本体2と接合層3とが水平方向に配設されている。かかる支持状態では、接合本体2と接合層3の配設方向が水平方向に維持され、電気炉内の底面、あるいは接合本体2と接合層3を配置した基板(以下、総称して基板4とも称する)に、接合層3となる酸化物超電導体が直接触れていない。   Further, in FIG. 1, in the arrangement step, the bonding body 2 and the bonding layer 3 are disposed in the horizontal direction in a state where the bonding body 2 is supported by the support member 5. In such a support state, the arrangement direction of the bonding body 2 and the bonding layer 3 is maintained in the horizontal direction, and the bottom surface in the electric furnace or the substrate on which the bonding body 2 and the bonding layer 3 are arranged (hereinafter collectively referred to as the substrate 4). The oxide superconductor to be the bonding layer 3 is not directly touched.

図1に示す状態で、接合本体2の溶融温度よりは低く、かつ、接合層3の溶融温度よりは高い温度に加熱して接合層3になる酸化物超電導体を溶融させ、その後、少なくとも接合層3が結晶化する温度まで徐冷することで、溶融状態にある接合層3が隣り合う接合本体2を種結晶として結晶成長する。これにより、最終的に、隣り合う接合本体2と接合層3との間における結晶方位のずれが小さくなった状態でこれらを接合することができる。すなわち、接合層3を介して隣り合う接合本体2同士が接合した超電導バルク接合体1を製造することができる。   In the state shown in FIG. 1, the oxide superconductor that is heated to a temperature lower than the melting temperature of the bonding body 2 and higher than the melting temperature of the bonding layer 3 is melted to become the bonding layer 3. By slowly cooling to a temperature at which the layer 3 crystallizes, the bonding layer 3 in the molten state grows as a seed crystal using the adjacent bonding body 2 as a seed crystal. Thereby, these can finally be joined in a state in which the deviation of the crystal orientation between the adjacent joining body 2 and the joining layer 3 is reduced. That is, the superconducting bulk bonded body 1 in which the adjacent bonded main bodies 2 are bonded to each other through the bonding layer 3 can be manufactured.

また、隣り合う接合本体2を、互いの結晶方位が同一となるように配置することで、接合層3を挟んで形成される超電導バルク接合体1の結晶方位を全体的に同一とすることができる。   In addition, by arranging adjacent bonding bodies 2 so that their crystal orientations are the same, the crystal orientation of the superconducting bulk bonded body 1 formed across the bonding layer 3 may be the same as the whole. it can.

図1では、2つの接合本体2が接合層3を介して接合されている。なお、接合本体2の数は特に限定されるものではなく、例えば、必要に応じて3個以上の接合本体2を接合してもよい。なお、接合本体2や接合層3を配置する順番については、例えば、2個以上の接合本体2を最初に配置してからこれらの間に接合層3を挿入してもよいし、接合本体2と接合層3を順次並べながらこれらを配置してもよい。   In FIG. 1, two joining bodies 2 are joined via a joining layer 3. In addition, the number of the joining main bodies 2 is not specifically limited, For example, you may join 3 or more joining main bodies 2 as needed. In addition, about the order which arrange | positions the joining main body 2 and the joining layer 3, for example, after joining two or more joining main bodies 2 initially, the joining layer 3 may be inserted among these, or the joining main body 2 may be inserted. These may be arranged while the bonding layers 3 are sequentially arranged.

図1のように配置した状態で、接合本体2の接合のための熱処理工程を行うと、以下のような利点が得られる。すなわち、熱処理工程中に半溶融状態になる接合層3が基板4に直接触れないために、接合層3およびその周辺への不純物の混入を抑制することができる。   When the heat treatment process for joining the joining body 2 is performed in the state of being arranged as shown in FIG. 1, the following advantages are obtained. That is, since the bonding layer 3 that is in a semi-molten state during the heat treatment process does not directly touch the substrate 4, it is possible to suppress the mixing of impurities into the bonding layer 3 and its periphery.

さらに、従来例の図10Bの横配置の場合と比較すると、接合本体2と基板4とが接触せず、接合本体2は支持部材5との僅かな点でのみ接触する。すなわち、接合本体2と基板4との接触面積と比較して、接合本体2と支持部材5との接触面積は著しく小さくなる。よって、熱処理工程中の接合本体2への不純物混入をさらに小さくできる。   Furthermore, compared with the case of the horizontal arrangement of FIG. 10B of the conventional example, the bonding body 2 and the substrate 4 do not contact each other, and the bonding body 2 contacts only a few points with the support member 5. That is, the contact area between the bonding body 2 and the support member 5 is significantly smaller than the contact area between the bonding body 2 and the substrate 4. Accordingly, it is possible to further reduce the contamination of the junction body 2 during the heat treatment process.

なお、接合層3への不純物混入は、従来例の図10Aに示す縦配置の場合でも抑制することは可能である。しかしながら、長尺あるいは大型の超電導バルク接合体1を製造する場合には、接合本体2と接合層3を鉛直方向に配置するよりも、水平方向に配置する方が、作業性の点で優れている。特に、細長い形状の接合本体2を長手方向に複数個接合する場合には、バランスが悪い縦配置では、長尺の超電導バルク接合体1を製造することは実質的に不可能であり、横配置の方が作業性は格段に優れている。   It should be noted that the contamination of the bonding layer 3 can be suppressed even in the case of the vertical arrangement shown in FIG. 10A of the conventional example. However, when manufacturing a long or large superconducting bulk bonded body 1, it is better in terms of workability to arrange the bonding body 2 and the bonding layer 3 in the horizontal direction than in the vertical direction. Yes. In particular, when a plurality of elongated joining bodies 2 are joined in the longitudinal direction, it is practically impossible to manufacture a long superconducting bulk joined body 1 in a longitudinal arrangement with a poor balance. The workability is much better.

ここで、酸化物超電導体の結晶方位について補足する。酸化物超電導体の結晶構造は積層構造を有する。なお、結晶構造の積層方向を結晶のc軸方向といい、c軸方向に垂直な方向をa軸方向、b軸方向という。酸化物超電導体はa軸とb軸で作る平面内で双晶構造を有するため、超電導バルク体全体で見るとa軸方向とb軸方向の区別はつかない。そのため、本明細書ではab軸と称する。図1中の破線2aは、結晶構造の積層構造の層の境目を示す。   Here, it supplements about the crystal orientation of an oxide superconductor. The crystal structure of the oxide superconductor has a laminated structure. The stacking direction of the crystal structure is referred to as the c-axis direction of the crystal, and the directions perpendicular to the c-axis direction are referred to as the a-axis direction and the b-axis direction. Since the oxide superconductor has a twin structure in the plane formed by the a-axis and the b-axis, the a-axis direction and the b-axis direction cannot be distinguished from the whole superconducting bulk body. Therefore, in this specification, it is called an ab axis. A broken line 2a in FIG. 1 indicates a boundary between layers having a crystal structure.

本発明の実施形態では、ab軸方向およびc軸方向の両方において、隣り合う接合本体2同士の結晶方位のずれが15度以内であることが好ましい。また、隣り合う接合本体2同士の結晶方位のずれが小さいほど超電導電流の低下が小さいので、隣り合う接合本体2同士の結晶方位のずれが5度以内であることがより好ましい。挟まれた接合層3は、上述したように隣り合う接合本体2を種結晶として結晶成長するので、接合層3のほぼ中央部を境に2つの結晶方位を有する部分が形成される。すなわち、接合層3の中央部の境界における結晶方位のずれは、隣り合う接合本体2同士の結晶方位のずれとほぼ同じ結晶方位のずれになる。したがって、隣り合う接合本体2同士に挟まれた接合層3の結晶方位と、隣り合う接合本体2の結晶方位とのずれは、いずれも15度以内となり得る。   In the embodiment of the present invention, it is preferable that the crystal orientation deviation between the adjacent bonded bodies 2 is within 15 degrees in both the ab axis direction and the c axis direction. Further, the smaller the deviation of the crystal orientation between the adjacent bonding bodies 2 is, the smaller the decrease in the superconducting current is. Therefore, the deviation of the crystal orientation between the adjacent bonding bodies 2 is more preferably within 5 degrees. Since the sandwiched bonding layer 3 grows with the adjacent bonding body 2 as a seed crystal as described above, a portion having two crystal orientations is formed with the substantially central portion of the bonding layer 3 as a boundary. That is, the crystal orientation deviation at the boundary of the central portion of the bonding layer 3 is substantially the same crystal orientation deviation as the crystal orientation deviation between the adjacent bonding bodies 2. Accordingly, the deviation between the crystal orientation of the bonding layer 3 sandwiched between the adjacent bonding bodies 2 and the crystal direction of the adjacent bonding bodies 2 can be within 15 degrees.

酸化物超電導体では、大傾角の結晶粒界は超電導電流を阻害する弱結合となるが、本実施形態のように、接合層および隣り合う接合本体2の結晶方位のずれが小さいため、接合部分において超電導電流が大きく阻害されることはない。そのため、かかる超電導バルク接合体1は、良好な超電導特性を発現する。   In an oxide superconductor, a crystal grain boundary with a large inclination becomes a weak bond that inhibits the superconducting current. However, as in this embodiment, since the deviation in crystal orientation between the bonding layer and the adjacent bonding body 2 is small, the bonding portion The superconducting current is not significantly hindered. Therefore, the superconducting bulk bonded body 1 exhibits good superconducting characteristics.

本実施形態における超電導バルク接合体1は、接合本体2と接合層3で溶融温度が異なる。それぞれの溶融温度については、それぞれの一部を切り出した小試験片を昇温し、当該小試験片が溶融する温度を測定することで調べることができる。   In the superconducting bulk bonded body 1 in the present embodiment, the melting temperature differs between the bonding body 2 and the bonding layer 3. About each melting temperature, it can investigate by heating up the small test piece which cut out each part, and measuring the temperature which the said small test piece melts.

また、超電導バルク接合体1を製造する過程での徐冷速度が速すぎると接合層3の結晶成長が乱れ、接合層3の超電導特性が著しく低下する。そのため、徐冷速度としては3K/時間以下が好ましく、1K/時間以下であればより好ましい。また、徐冷は溶融した接合層3が結晶化する温度に到達するまで少なくとも行う必要がある。溶融した接合層3が結晶化する温度は、希土類元素の種類や銀の含有量によって変化するが、1233K〜1213Kの温度までは徐冷することが好ましい。   Further, if the slow cooling rate in the process of manufacturing the superconducting bulk bonded body 1 is too high, the crystal growth of the bonding layer 3 is disturbed, and the superconducting characteristics of the bonding layer 3 are remarkably deteriorated. Therefore, the slow cooling rate is preferably 3 K / hour or less, more preferably 1 K / hour or less. Further, the slow cooling needs to be performed at least until reaching a temperature at which the molten bonding layer 3 crystallizes. The temperature at which the molten bonding layer 3 is crystallized varies depending on the type of rare earth element and the silver content, but is preferably gradually cooled to a temperature of 1233K to 1213K.

接合層3の作製方法としては、粉末を敷き詰める方法、粉末を成形、焼結あるいは溶融・固化したものを接合本体2で挟む方法、有機バインダーと混合したものを接合本体2の接合面に塗布する方法、またはスパッタリング等で接合本体2の接合面に成膜する方法等が用いられる。   As a method for producing the bonding layer 3, a method in which powder is spread, a method in which powder is molded, sintered or melted and solidified is sandwiched between the bonding bodies 2, and a mixture with an organic binder is applied to the bonding surface of the bonding body 2. A method or a method of forming a film on the bonding surface of the bonding body 2 by sputtering or the like is used.

本実施形態のように接合本体2と接合層3を横方向(水平方向)に配置し、支持部材5を用いて接合本体2を支持し、接合本体2と接合層3の配設方向を水平に維持する場合、粉末を敷き詰める方法や粉末を成形する方法で作製したものを接合層3として用いると、熱処理前の接合本体2と接合層3の配置作業の途中で、接合層3の部分が落下するおそれがある。したがって、焼結あるいは溶融・固化した酸化物超電導体を接合層3として用いた方が好ましい。   As in the present embodiment, the bonding body 2 and the bonding layer 3 are arranged in the lateral direction (horizontal direction), the bonding body 2 is supported using the support member 5, and the arrangement direction of the bonding body 2 and the bonding layer 3 is horizontal. In the case where the bonding layer 3 is made of a powder spread method or a powder molding method, the bonding layer 3 portion is in the process of arranging the bonding body 2 and the bonding layer 3 before heat treatment. There is a risk of falling. Therefore, it is preferable to use a sintered or melted / solidified oxide superconductor as the bonding layer 3.

さらに、焼結あるいは溶融・固化した酸化物超電導体を接合層3として用いる場合、例えば、接合層3の厚さが0.2mm以下であれば、接合層3が軽いために摩擦力で保持できるので、落下の可能性は小さくなる。   Furthermore, when the oxide superconductor sintered or melted / solidified is used as the bonding layer 3, for example, if the thickness of the bonding layer 3 is 0.2 mm or less, the bonding layer 3 is light and can be held by frictional force. Therefore, the possibility of falling becomes smaller.

しかし、かかる薄さである接合層3でも落下の可能性はゼロではない。また、厚さが0.2mm以上の厚い接合層3では落下の可能性がより高くなる。そのため、接合層3を落下させずに、接合本体2を支持部材5で水平に支持して接合層3を基板4に直接触れないようにするためには、何らかの落下防止対策を講じる必要がある。   However, the possibility of dropping is not zero even with the bonding layer 3 having such a thin thickness. Moreover, the possibility of dropping becomes higher in the thick bonding layer 3 having a thickness of 0.2 mm or more. Therefore, in order to prevent the bonding layer 3 from dropping and to support the bonding body 2 horizontally by the support member 5 so that the bonding layer 3 does not directly touch the substrate 4, it is necessary to take some measures to prevent the dropping. .

かかる落下防止対策として、加圧と接着がある。まず、加圧による落下防止に関しては、高温になる電気炉内で接合本体2と接合層3とを配設方向に加圧することが必要となる。すると、鉛直方向の縦配置の場合には、例えば錘をこれらの上部に乗せることにより、比較的容易に加圧可能である。しかしながら、本実施形態のように接合本体2と接合層3とを水平方向に配置する横配置の場合には、水平方向に加圧する必要があり、加圧は容易ではない。例えば、楔などを用いて鉛直方向にかかる荷重を水平方向に変換する手段や、耐熱性のアルミナ製の万力等により水平方向に加圧する手段などが考えられる。ただし、高温の電気炉内において接合本体2と接合層3とを水平方向に加圧する加圧機構を設けるのは難しく、現実的ではないと言える。   Such measures to prevent dropping include pressurization and adhesion. First, regarding the prevention of dropping by pressurization, it is necessary to pressurize the joining body 2 and the joining layer 3 in the arrangement direction in an electric furnace that is at a high temperature. Then, in the case of the vertical arrangement in the vertical direction, for example, the weight can be relatively easily applied by placing a weight on these upper portions. However, in the case of a horizontal arrangement in which the bonding body 2 and the bonding layer 3 are arranged in the horizontal direction as in the present embodiment, it is necessary to apply pressure in the horizontal direction, and pressurization is not easy. For example, means for converting the load applied in the vertical direction using a wedge or the like into the horizontal direction, means for applying pressure in the horizontal direction with a heat-resistant alumina vise, or the like can be considered. However, it can be said that it is difficult to provide a pressurizing mechanism that pressurizes the joining body 2 and the joining layer 3 in the horizontal direction in a high-temperature electric furnace, which is not practical.

一方、接着による落下防止対策に関しては、接合本体2と接合層3をポリビニルアルコール等の有機系の接着剤で接着してもよい。これにより、接合層3が接合本体2に固定されるので、接合層3の落下防止になり、作業性を大幅に改善できる。なお、ポリビニルアルコール等の有機系の接着剤は、加熱の途中や接合層3が半溶融状態になった際に分解または蒸発するため、超電導バルク接合体1の超電導特性にほとんど影響を及ぼさない。   On the other hand, as a countermeasure for preventing dropping by bonding, the bonding body 2 and the bonding layer 3 may be bonded with an organic adhesive such as polyvinyl alcohol. Thereby, since the joining layer 3 is fixed to the joining main body 2, the joining layer 3 is prevented from falling, and workability can be greatly improved. An organic adhesive such as polyvinyl alcohol decomposes or evaporates during heating or when the bonding layer 3 is in a semi-molten state, so that it hardly affects the superconducting characteristics of the superconducting bulk bonded body 1.

また、銀も超電導バルク接合体1の超電導特性に影響を与えない。そのため、接着手段として、銀ペーストを用いても、上記の効果を得ることができる。従って、有機系の接着剤や銀ペーストで接合本体2と接合層3とを接着する手段の方が、作業性の改善の点で各段に優れている。すなわち、有機系の接着剤または銀ペーストによる接着手段が、接合層3の落下防止対策としてより好ましい。   Further, silver does not affect the superconducting characteristics of the superconducting bulk bonded body 1. Therefore, the above effect can be obtained even when a silver paste is used as the bonding means. Therefore, means for bonding the bonding body 2 and the bonding layer 3 with an organic adhesive or silver paste is superior in each stage in terms of improving workability. That is, an adhesion means using an organic adhesive or silver paste is more preferable as a measure for preventing the bonding layer 3 from falling.

接合層3の部分は、加熱処理の際に、一旦半溶融状態になる。そのため、接合層3の厚さ、言い換えると隣り合う接合本体2の間隔が長いと、接合層3が半溶融状態の時に接合本体2の間から流出してしまうおそれがある。接合層3を成膜や塗布で形成するのであれば、その厚さは数μmから数十μm、数百μm程度であり特に問題はない。一方で、粉末を敷き詰める方法や粉末を成形、焼結あるいは溶融・固化したものを接合本体2で挟む方法で接合層3を作製する際には、その厚さは、例えば、3mm以下が好ましく、1mm以下であればより好ましい。   The portion of the bonding layer 3 is once in a semi-molten state during the heat treatment. Therefore, if the thickness of the bonding layer 3, in other words, the interval between adjacent bonding bodies 2 is long, the bonding layer 3 may flow out from between the bonding bodies 2 when the bonding layer 3 is in a semi-molten state. If the bonding layer 3 is formed by film formation or coating, the thickness is about several μm to several tens μm and several hundreds μm, and there is no particular problem. On the other hand, when the bonding layer 3 is produced by a method of spreading the powder or a method in which the powder is molded, sintered or melted and solidified and sandwiched between the bonding bodies 2, the thickness is preferably, for example, 3 mm or less, If it is 1 mm or less, it is more preferable.

次に、本実施形態に係る支持部材5の形状および設置の例について説明する。図2A〜図2Fは、本実施形態に係る支持部材5の形状および設置の例を示す斜視図である。なお、図2A〜図2Fでは、基板4は省略してある。   Next, the shape and installation example of the support member 5 according to the present embodiment will be described. 2A to 2F are perspective views showing examples of the shape and installation of the support member 5 according to the present embodiment. In FIG. 2A to FIG. 2F, the substrate 4 is omitted.

図2Aは、板状であって、接合本体2よりも少しだけ小さくした支持部材5aの例である。支持部材5aの大きさを接合本体2よりも小さくして、接合層3に重ならないように配置することで、熱処理工程において接合層3が半溶融状態になったとしても、接合層3が基板4に直接触れることを避けることができる。また、図2Aの支持部材5aは板状であるから、接合本体2を安定的に支持することが可能である点において優れている。   FIG. 2A is an example of a support member 5 a that is plate-shaped and slightly smaller than the joining body 2. Even if the bonding layer 3 is in a semi-molten state in the heat treatment step by arranging the support member 5a to be smaller than the bonding body 2 and not to overlap the bonding layer 3, the bonding layer 3 is a substrate. It is possible to avoid touching 4 directly. Moreover, since the supporting member 5a of FIG. 2A is plate-shaped, it is excellent in the point which can support the joining main body 2 stably.

図2Bは、図2Aに示した支持部材5aの、接合本体2と接合層3の並設方向における長さを短くして、接合本体2と支持部材5bとの接触面積をより小さくした例である。接合本体2への不純物混入量は接合層3に比べて小さいものの、全くのゼロではない。接合本体2への不純物混入をできるだけ抑制するためには、図2Bに示す構成のように、接合本体2と支持部材5bとの接触面積を可能な限り小さくする方が好ましい。   FIG. 2B is an example in which the length of the support member 5a shown in FIG. 2A in the juxtaposed direction of the joining body 2 and the joining layer 3 is shortened to reduce the contact area between the joining body 2 and the support member 5b. is there. Although the amount of impurities mixed into the bonding body 2 is smaller than that of the bonding layer 3, it is not completely zero. In order to suppress the mixing of impurities into the bonded body 2 as much as possible, it is preferable to reduce the contact area between the bonded body 2 and the support member 5b as much as possible as in the configuration shown in FIG. 2B.

図2Cは、図2Bに示した支持部材5bの個数を増やした例である。接合本体2と支持部材5cとの接触面積を小さくすると、接合本体2を水平に支持することが難しくなる。そこで、図2Cに示すように、1つの接合本体2を複数の支持部材5cで支持することによって、接合本体2をより安定的に支持することができる。   FIG. 2C is an example in which the number of support members 5b shown in FIG. 2B is increased. If the contact area between the bonding body 2 and the support member 5c is reduced, it becomes difficult to support the bonding body 2 horizontally. Therefore, as shown in FIG. 2C, the bonded main body 2 can be supported more stably by supporting the single bonded main body 2 with a plurality of support members 5 c.

図2Dは、図2Cに示した支持部材5cを三角柱状に変形した例である。支持部材5dの形状を三角柱状にすることによって、接合本体2と支持部材5dとの接触面積をさらに小さくすることができる。なお、図2Dに示す支持部材5dの形状は略三角柱状を含む。つまり、接合本体2の支持点となる角部が尖っている場合は、接合本体2と支持部材5dとは線接触となるが、当該角部が面取りされていれば、接合本体2と支持部材5dとは面接触になることは言うまでもない。   FIG. 2D is an example in which the support member 5c shown in FIG. 2C is deformed into a triangular prism shape. By making the shape of the support member 5d a triangular prism, the contact area between the joining main body 2 and the support member 5d can be further reduced. 2D includes a substantially triangular prism shape. That is, when the corner portion serving as the support point of the joint body 2 is pointed, the joint body 2 and the support member 5d are in line contact, but if the corner portion is chamfered, the joint body 2 and the support member. Needless to say, 5d is in surface contact.

図2Eは、円柱形状の支持部材5eで接合本体2を支持した例である。図2A〜2Dに示した例では、支持部材5の幅(Y軸方向の長さ)は、接合本体2の幅とほぼ同程度であった。しかしながら、本実施形態に係る支持部材5は、かかる例に限定されるものではない。例えば、図2Eに示すように、支持部材5eの幅をより小さくすることによって、接合本体2と支持部材5eとの接触面積をさらに小さくすることができる。なお、図2Eでは、円柱形状の支持部材5eの例を示したが、支持部材5eの形状は特に限定されるものではなく、例えば、中空の円筒形状、円錐形状、三角柱形状などでもよい。   FIG. 2E is an example in which the joining body 2 is supported by a columnar support member 5e. In the example shown in FIGS. 2A to 2D, the width of the support member 5 (the length in the Y-axis direction) is approximately the same as the width of the bonded body 2. However, the support member 5 according to the present embodiment is not limited to such an example. For example, as shown in FIG. 2E, by reducing the width of the support member 5e, the contact area between the joining body 2 and the support member 5e can be further reduced. 2E shows an example of the columnar support member 5e, the shape of the support member 5e is not particularly limited, and may be, for example, a hollow cylindrical shape, a conical shape, or a triangular prism shape.

図2Fは、図2Eに示した支持部材5eの個数を増やした例である。接合本体2と支持部材5eとの接触面積を小さくすると、接合本体2を水平に支持することが難しくなることが懸念される。そこで、図2Fに示すように、1つの接合本体2を複数の支持部材5fで支持することによって、接合本体2をより安定的に支持することができる。   FIG. 2F shows an example in which the number of support members 5e shown in FIG. 2E is increased. If the contact area between the bonded main body 2 and the support member 5e is reduced, it may be difficult to support the bonded main body 2 horizontally. Therefore, as shown in FIG. 2F, the joint body 2 can be supported more stably by supporting one joint body 2 with a plurality of support members 5f.

次に、本実施形態に係る支持部材5の配置の例について説明する。図3A〜図3Fは、本実施形態に係る支持部材5の配置の例を示す下面図である。なお、図3A〜図3Fでは、基板4は省略してある。   Next, an example of the arrangement of the support members 5 according to this embodiment will be described. 3A to 3F are bottom views showing examples of the arrangement of the support members 5 according to the present embodiment. In FIG. 3A to FIG. 3F, the substrate 4 is omitted.

図3Aは、図2Eの斜視図に対応する構成についての下面図であり、1つの接合本体2を1つの支持部材50aで支持している例である。   FIG. 3A is a bottom view of the configuration corresponding to the perspective view of FIG. 2E, and is an example in which one joining body 2 is supported by one support member 50a.

図3Bは、図2Fの斜視図に対応する構成についての下面図であり、1つの接合本体2を2つの支持部材50bで支持している例である。1つの接合本体2を複数の支持部材50bで支持することで、接合本体2をより安定的に支持することができる。   FIG. 3B is a bottom view of the configuration corresponding to the perspective view of FIG. 2F, and is an example in which one joining body 2 is supported by two support members 50 b. By supporting one joining body 2 with a plurality of support members 50b, the joining body 2 can be supported more stably.

図3Cは、1つの接合本体2を2つの支持部材50cで支持している別の例である。図3Bと図3Cとを比較すると分かるように、支持部材50b(50c)の個数が同じでも、いくつかの配列のパターンが考えられる。このような配列のパターンは、製造する超電導バルク接合体1の大きさや電気炉内の状況等に応じて、適宜選ぶことができる。   FIG. 3C is another example in which one joining main body 2 is supported by two supporting members 50c. As can be seen by comparing FIG. 3B and FIG. 3C, even if the number of support members 50b (50c) is the same, several arrangement patterns are conceivable. Such an arrangement pattern can be appropriately selected according to the size of the superconducting bulk bonded body 1 to be manufactured, the situation in the electric furnace, and the like.

図3Dは、1つの接合本体2を支持する4つの支持部材50dを四角形状に配列した例であり、図3Eは、1つの接合本体2を支持する3つの支持部材50eを三角形状に配列した例である。図3Bや図3Cに示したように支持部材50b(50c)を直線的に配列するよりも、図3Dや図3Eに示したように、支持部材50d(50e)を四角形状や三角形状など平面的に配列する方が、接合本体2をより安定的に支持することができる。   FIG. 3D is an example in which four support members 50d that support one joint body 2 are arranged in a square shape, and FIG. 3E is a diagram in which three support members 50e that support one joint body 2 are arranged in a triangle shape. It is an example. Rather than arranging the support members 50b (50c) linearly as shown in FIGS. 3B and 3C, as shown in FIGS. 3D and 3E, the support member 50d (50e) is a flat surface such as a rectangle or triangle. Therefore, the joining body 2 can be supported more stably.

なお、図3A〜図3Eに示した例では、接合本体2を支持する支持部材50の配列の仕方は、どの接合本体2でも共通する例を示した。しかしながら、接合本体2を水平方向に安定的に支持できるのであれば、例えば図3Fに示すように、支持部材50fの配列の仕方を接合本体2の各々によって異ならせた配列で接合本体2を支持しても構わない。   In the example shown in FIGS. 3A to 3E, the example in which the joining members 2 are arranged in the same manner as the arrangement method of the support members 50 that support the joining bodies 2 is shown. However, if the joining body 2 can be stably supported in the horizontal direction, for example, as shown in FIG. 3F, the joining body 2 is supported in an arrangement in which the manner of arrangement of the support members 50f is different for each joining body 2. It doesn't matter.

(超電導バルク接合体の他の態様)
図1では、矩形状の2つの接合本体2を接合して超電導バルク接合体1を製造する方法の例を示したが、製造される超電導バルク接合体1の形状等の態様は、図1に示すような矩形状に限定するものではなく、様々な態様が考えられる。
(Other aspects of superconducting bulk bonded body)
In FIG. 1, an example of a method of manufacturing a superconducting bulk bonded body 1 by bonding two rectangular bonding bodies 2 is shown, but the shape and the like of the manufactured superconducting bulk bonded body 1 are shown in FIG. 1. The present invention is not limited to the rectangular shape as shown, and various modes are conceivable.

図4は、本実施形態の一変形例に係る超電導バルク接合体1Aの製造方法を示す概念図である。図4は、長尺状の接合本体2を複数接合して、長尺の超電導バルク接合体1Aを製造する際の、接合本体2および接合層3の配置を示した例である。このような長尺の超電導バルク接合体1Aを製造するには、接合本体2および接合層3を鉛直方向に配置(縦配置)することは非常に難しく、実質的に不可能である。また、図1に示した例では、接合本体2の数は2つであったが、図4に示す例では接合本体2の数は3つである。このように、支持部材5を用いることで、接合本体2の数を増やすことで得られるさらに長尺な超電導バルク接合体1Aを安定に支持しながら製造することも可能になる。   FIG. 4 is a conceptual diagram showing a method of manufacturing the superconducting bulk bonded body 1A according to a modification of the present embodiment. FIG. 4 is an example showing the arrangement of the bonding body 2 and the bonding layer 3 when a plurality of long bonding bodies 2 are bonded to produce a long superconducting bulk bonded body 1A. In order to manufacture such a long superconducting bulk bonded body 1A, it is very difficult and practically impossible to arrange the bonding body 2 and the bonding layer 3 in the vertical direction (vertical arrangement). Moreover, in the example shown in FIG. 1, the number of the joining main bodies 2 is two, but in the example shown in FIG. 4, the number of the joining main bodies 2 is three. As described above, by using the support member 5, it is possible to manufacture the superconducting bulk bonded body 1 </ b> A, which is obtained by increasing the number of the bonded main bodies 2, while stably supporting it.

また、図5は、本実施形態の一変形例に係る超電導バルク接合体1Bの製造方法を示す概念図である。図1や図4では、接合本体2と接合層3を水平方向のみに配置する例を示したが、図5では、接合本体2と接合層3を水平方向に配置する部分と、接合本体2と接合層3を鉛直方向に配置する部分の両方を含んだ例である。図5に示す例では、水平方向に配置された2つの接合本体2の外側の端部の各々に、他の接合本体2が接合層3を介して鉛直方向に積層されている。この場合、鉛直方向に積層されている接合本体2は、水平方向に配設された接合本体2により支持されていることとなる。横配置と縦配置の両方含んだ超電導バルク接合体1Bを製造する場合においても、横配置の接合本体2をそれぞれ独立に水平に支持する支持部材5を用いることによって、接合層3となる酸化物超電導体が基板4に直接触れなくなるので、良好な超電導特性を有する超電導バルク接合体1Bを製造することができる。   FIG. 5 is a conceptual diagram showing a method for manufacturing the superconducting bulk bonded body 1B according to a modification of the present embodiment. 1 and 4 show an example in which the bonding body 2 and the bonding layer 3 are arranged only in the horizontal direction. However, in FIG. 5, a portion in which the bonding body 2 and the bonding layer 3 are arranged in the horizontal direction, and the bonding body 2. And an example including both portions where the bonding layer 3 is arranged in the vertical direction. In the example shown in FIG. 5, another joining body 2 is laminated in the vertical direction via a joining layer 3 on each outer end of two joining bodies 2 arranged in the horizontal direction. In this case, the joining main bodies 2 stacked in the vertical direction are supported by the joining main bodies 2 arranged in the horizontal direction. Even in the case of manufacturing the superconducting bulk bonded body 1B including both the horizontal arrangement and the vertical arrangement, the oxide that becomes the bonding layer 3 can be obtained by using the supporting members 5 that horizontally support the bonding bodies 2 in the horizontal arrangement. Since the superconductor does not directly touch the substrate 4, the superconducting bulk bonded body 1B having good superconducting characteristics can be manufactured.

また、接合本体2と接合層3の両方には、銀が含有されてもよい。これにより、超電導バルク接合体1の接合部分の機械的強度を改善することができる。接合本体2および接合層3に銀を含有させる方法としては、例えば、接合本体2および接合層3の粉体を製造する過程において、酸化銀等の銀化合物の粉末または金属銀の粉末を、原料粉末や混合粉末、あるいは仮焼粉末等に添加する方法がある。この場合、酸化銀粉末を添加しても、あるいは金属銀粉末を添加しても、銀は、最終的には超電導バルク接合体1中において主に銀粒子の形で存在する。   Further, both the bonding body 2 and the bonding layer 3 may contain silver. Thereby, the mechanical strength of the joint portion of the superconducting bulk joined body 1 can be improved. Examples of a method for containing silver in the bonding body 2 and the bonding layer 3 include, for example, in the process of manufacturing the powder of the bonding body 2 and the bonding layer 3, a silver compound powder such as silver oxide or a metal silver powder. There is a method of adding to powder, mixed powder, calcined powder or the like. In this case, silver is finally present mainly in the form of silver particles in the superconducting bulk bonded body 1 regardless of whether silver oxide powder or metallic silver powder is added.

なお、接合本体2および接合層3中の銀の含有量は、金属銀換算で、2質量%以上、30質量%以下であることが好ましい。銀の含有量が30質量%より大きいと、機械的強度を改善する効果が小さく、また、溶融した接合層3の部分が接合本体2を種結晶として結晶成長することを阻害する作用が大きくなる。また、銀の含有量が2質量%以上であれば、機械的強度を改善する効果がより十分に発揮される。   In addition, it is preferable that content of the silver in the joining main body 2 and the joining layer 3 is 2 to 30 mass% in conversion of metallic silver. If the silver content is greater than 30% by mass, the effect of improving the mechanical strength is small, and the action of inhibiting the molten bonding layer 3 portion from growing as a seed crystal with the bonding body 2 is increased. . Moreover, if content of silver is 2 mass% or more, the effect which improves mechanical strength will be exhibited more fully.

(実施例1)
本実施例では、図6Aおよび図6Bを用いて、本実施形態に係る超電導バルク接合体の製造方法の有効性について説明する。図6Aは、超電導バルク接合体10を構成する接合本体2と接合層3の態様を説明するための概念図である。図6Bは、超電導バルク接合体10の製造方法における各部材の配置例を示す斜視図である。
Example 1
In this example, the effectiveness of the method for manufacturing a superconducting bulk joint according to this embodiment will be described with reference to FIGS. 6A and 6B. FIG. 6A is a conceptual diagram for explaining an aspect of the bonding body 2 and the bonding layer 3 constituting the superconducting bulk bonded body 10. FIG. 6B is a perspective view showing an arrangement example of each member in the method of manufacturing the superconducting bulk bonded body 10.

まず試料A〜試料Cを構成する接合本体2を切り出すための単結晶状の酸化物超電導バルク体の製造手順について述べる。市販されている純度99.9質量%のガドリニウム(Gd)、バリウム(Ba)、銅(Cu)のそれぞれの酸化物の粉末を、Gd:Ba:Cu=1.6:2.3:3.3のモル比で秤量し、それに酸化セリウムを1質量%及び酸化銀を銀換算で10質量%加えた。この秤量粉を2時間かけて十分混練してから、大気中にて1173Kで8時間仮焼した。   First, a manufacturing procedure of a single-crystal oxide superconducting bulk body for cutting out the joining body 2 constituting the samples A to C will be described. Commercially available powders of oxides of gadolinium (Gd), barium (Ba), and copper (Cu) having a purity of 99.9% by mass are obtained by using Gd: Ba: Cu = 1.6: 2.3: 3. The mixture was weighed at a molar ratio of 3, and 1% by mass of cerium oxide and 10% by mass of silver oxide in terms of silver were added thereto. The weighed powder was sufficiently kneaded over 2 hours and then calcined at 1173 K for 8 hours in the air.

次に、金型を用いて仮焼粉を円板形状に成形した。この成形体を1423Kまで加熱して溶融状態にし、30分間保持した後、降温途中で種付けを行い、1278K〜1252Kの温度領域を100時間かけて徐冷して結晶成長させ、直径50mm、高さ15mmの単結晶状バルク体を得た。そして、この直径50mmの単結晶状バルク体から接合本体として、図6Aに示すように、10mm(W)×15mm(L)×4mm(T)の矩形状試料を2個、結晶のc軸が4mm長の辺と平行になるように切り出した。当該試料は、接合本体に相当する試料である。 Next, the calcined powder was formed into a disk shape using a mold. This molded body was heated to 1423K to be in a molten state, held for 30 minutes, and then seeded in the middle of lowering the temperature, and a temperature range of 1278K to 1252K was gradually cooled over 100 hours to grow a crystal, having a diameter of 50 mm and a height of A 15 mm single crystal bulk body was obtained. Then, as shown in FIG. 6A, two rectangular samples of 10 mm (W 0 ) × 15 mm (L 1 ) × 4 mm (T 0 ) are used as a bonding main body from the single crystal bulk body having a diameter of 50 mm. The c-axis was cut out so as to be parallel to a 4 mm long side. The sample is a sample corresponding to the bonding body.

次に、市販されている純度99.9質量%のイットリウム(Y)、バリウム(Ba)、銅(Cu)のそれぞれの酸化物の粉末を、Y:Ba:Cu=1.6:2.3:3.3のモル比で秤量し、それに酸化セリウムを1質量%及び酸化銀を銀換算で10質量%加えた。この秤量粉を2時間かけて十分混練してから、大気中にて1173Kで8時間仮焼した。   Next, powders of oxides of yttrium (Y), barium (Ba), and copper (Cu) having a purity of 99.9% by mass, which are commercially available, are obtained as follows: Y: Ba: Cu = 1.6: 2.3 : Weighed at a molar ratio of 3.3, and added 1% by mass of cerium oxide and 10% by mass of silver oxide in terms of silver. The weighed powder was sufficiently kneaded over 2 hours and then calcined at 1173 K for 8 hours in the air.

次に、金型を用いて仮焼粉を円板形状に成形し、この成形体を1223Kで8時間焼結させ、直径30mm、高さ10mmの焼結体を得た。この直径30mmの焼結体から接合層として、10mm(W)×1mm(L)×4mm(T)の矩形状試料を1個切り出した。当該試料は、接合層3に相当する試料である。 Next, the calcined powder was formed into a disk shape using a mold, and this formed body was sintered at 1223K for 8 hours to obtain a sintered body having a diameter of 30 mm and a height of 10 mm. One rectangular sample of 10 mm (W 0 ) × 1 mm (L 2 ) × 4 mm (T 0 ) was cut out as a bonding layer from the sintered body having a diameter of 30 mm. The sample is a sample corresponding to the bonding layer 3.

これらの接合本体2および接合層3となる酸化物は、REBaCu(REはY及び希土類元素からなる群から選ばれる1種又は2種以上の元素であり、yは酸素量で、6.8≦y≦7.1)中にREBaCuOが分散した酸化物超電導体からなるものである。また、接合本体2となる酸化物、および接合層3となる酸化物のそれぞれの溶融温度を測定したところ(切り出し後に残った部位で測定)、それぞれ、1277Kおよび1243Kであった。 The oxide to be the bonding body 2 and the bonding layer 3 is RE 1 Ba 2 Cu 3 O y (RE is one or more elements selected from the group consisting of Y and rare earth elements, and y is oxygen It consists of an oxide superconductor in which RE 2 BaCuO 5 is dispersed in an amount of 6.8 ≦ y ≦ 7.1). Moreover, when the melting temperature of the oxide used as the joining main body 2 and the oxide used as the joining layer 3 was measured (measured in the site | part which remained after cutting), they were 1277K and 1243K, respectively.

まず、試料Aについて説明する。試料Aは、上記のように切り出した2つの接合本体2と1つの接合層3の接合面にポリビニルアルコール系の有機接着剤を薄く塗布した後に、図6Bに示すように、これらを水平方向に隣り合わせて並べたものである。また、アルミナ製の直径6mm、高さ10mmの円柱形状の支持部材51を2個アルミナ製の基板4の上に配置し、これらの支持部材51の上に接合本体2の各々が来るように試料Aを配置した。すなわち、図6Bに示す試料Aを支持部材51で支持する構成は、本発明の超電導バルク接合体の製造方法に係る配置構成に相当する。   First, the sample A will be described. As shown in FIG. 6B, the sample A was applied in a horizontal direction after thinly applying a polyvinyl alcohol-based organic adhesive to the joining surfaces of the two joining bodies 2 and one joining layer 3 cut out as described above. They are arranged side by side. In addition, two cylindrical support members 51 having a diameter of 6 mm and a height of 10 mm are arranged on the alumina substrate 4, and the sample body 2 is placed on each of the support members 51. A was placed. That is, the configuration in which the sample A shown in FIG. 6B is supported by the support member 51 corresponds to the arrangement configuration according to the method for manufacturing a superconducting bulk bonded body of the present invention.

比較のため、試料Aと同じサイズでかつ同じ材料の接合本体2および接合層3を有する試料Bを準備した。試料Bは、図6Bに示すように、試料Aと同様に接合本体2および接合層3を水平方向に並べたが、支持部材を用いずに、これらを基板4の上に直接配置した。   For comparison, a sample B having a bonding body 2 and a bonding layer 3 having the same size and the same material as the sample A was prepared. In Sample B, as shown in FIG. 6B, the bonding body 2 and the bonding layer 3 were arranged in the horizontal direction in the same manner as Sample A, but these were directly arranged on the substrate 4 without using a support member.

さらに、比較のため、試料Aおよび試料Bと同じサイズでかつ同じ材料の接合本体2および接合層3を有する試料Cを準備した。試料Cは、図6Bに示すように、試料Aや試料Bと異なり、接合本体2および接合層3を鉛直方向に並べて、基板4上に直接配置した。試料Bと試料Cの配置が、従来の超電導バルク接合体の製造方法における配置に相当する。なお、試料Bや試料Cの構成では接合層3が落下する可能性はないので、接合本体2と接合層3には接着剤を塗布しなかった。   Furthermore, for comparison, a sample C having the same size and the same material as those of the sample A and the sample B and the bonding body 2 and the bonding layer 3 was prepared. As shown in FIG. 6B, the sample C differs from the sample A and the sample B in that the bonding body 2 and the bonding layer 3 are arranged in the vertical direction and directly arranged on the substrate 4. The arrangement of the sample B and the sample C corresponds to the arrangement in the conventional method for manufacturing a superconducting bulk joined body. In addition, since there is no possibility that the bonding layer 3 falls in the configurations of the sample B and the sample C, no adhesive is applied to the bonding body 2 and the bonding layer 3.

次に、試料A、試料Bおよび試料Cを載せた基板4を持って移動し、電気炉内に設置した。その際、基板4を電気炉内に設置する途中で、試料Cが幾度か転倒したので、そのたびに試料Cを鉛直方向に配置しなおした。次に、電気炉内に設置した各試料を1258Kまで加熱し、1時間保持した後、1223Kまで35時間かけて徐冷した。このようにして得られた超電導バルク接合体を酸素気流中において723Kで100時間熱処理した。   Next, the substrate 4 on which the sample A, the sample B, and the sample C were placed was moved and placed in an electric furnace. At that time, the sample C fell several times in the middle of installing the substrate 4 in the electric furnace, so that the sample C was rearranged in the vertical direction each time. Next, each sample installed in the electric furnace was heated to 1258K, held for 1 hour, and then gradually cooled to 1223K over 35 hours. The superconducting bulk joined body thus obtained was heat-treated at 723 K for 100 hours in an oxygen stream.

熱処理後、電気炉を開けて確認したところ、試料Aと試料Bに係る接合本体2と接合層3は十分に接合され、それぞれ1つの超電導バルク接合体を構成していた。一方で、試料Cは電気炉内で転倒しており、接合本体2と接合層3が接合されておらずバラバラだった。これは、熱処理工程の途中で何らかの原因(例えば、電気炉の運転に伴う小さな振動など)によって、試料Cが転倒したものと推察される。このことから、長尺の超電導バルク接合体10の製造において、鉛直方向に接合本体2と接合層3を並べる縦配置は、水平方向に接合本体2と接合層3を並べる横配置に比べて、バランスが悪く不安定な配置であることが確認できた。   When the electric furnace was opened and confirmed after the heat treatment, the joining body 2 and the joining layer 3 according to the samples A and B were sufficiently joined, and each constituted one superconducting bulk joined body. On the other hand, the sample C was overturned in the electric furnace, and the joining body 2 and the joining layer 3 were not joined and were apart. This is presumed that the sample C fell down due to some cause (for example, a small vibration accompanying the operation of the electric furnace) during the heat treatment process. From this, in the production of the long superconducting bulk bonded body 10, the vertical arrangement in which the bonding main body 2 and the bonding layer 3 are arranged in the vertical direction is compared with the horizontal arrangement in which the bonding main body 2 and the bonding layer 3 are arranged in the horizontal direction. It was confirmed that the balance was unstable and unstable.

次に、十分に接合できた試料Aと試料Bの超電導バルク接合体を、1Tの磁場において液体窒素中で冷却する磁場中冷却法にて着磁させ、ホール素子にてこれらの試料表面を走査することで捕捉磁場分布を測定した。   Next, the superconducting bulk bonded body of sample A and sample B that have been sufficiently bonded is magnetized by a magnetic field cooling method that cools in liquid nitrogen in a magnetic field of 1 T, and the surface of these samples is scanned by a Hall element. The captured magnetic field distribution was measured.

図7Aおよび図7Bは、試料Aおよび試料Bの捕捉磁場分布の測定結果を示すグラフである。なお、図7Aおよび図7Bのグラフの下部に示す概要図は、捕捉磁場分布に対応する接合本体2および接合層3の位置を示す図である。   7A and 7B are graphs showing the measurement results of the captured magnetic field distributions of Sample A and Sample B. FIG. 7A and 7B are diagrams showing the positions of the bonding body 2 and the bonding layer 3 corresponding to the captured magnetic field distribution.

図7Aに示すように、試料Aの捕捉磁場分布は、接合層3の部分で磁場強度の低下は見られず、接合層3の位置での磁場強度は0.18Tであった。一方、図7Bに示すように、試料Bの捕捉磁場分布は、接合層3の部分で磁場強度の低下が見られ、接合層3の位置での磁場強度は0.09Tであり、試料Aの約半分であった。   As shown in FIG. 7A, in the trapped magnetic field distribution of sample A, no decrease in magnetic field strength was observed at the bonding layer 3 portion, and the magnetic field strength at the position of the bonding layer 3 was 0.18T. On the other hand, as shown in FIG. 7B, in the trapped magnetic field distribution of sample B, a decrease in magnetic field strength is observed in the bonding layer 3 portion, and the magnetic field strength at the position of the bonding layer 3 is 0.09 T. It was about half.

従って、本結果から、接合本体2を水平方向に維持するよう支持部材5を配置し、接合層3を基板4に直接触れないようにすることにより、接合本体2と接合層3を水平方向に配置した場合でも、超電導特性に優れた超電導バルク接合体1を製造することができることが示された。   Therefore, from this result, the support member 5 is disposed so as to maintain the bonding body 2 in the horizontal direction, and the bonding layer 3 is not directly touched to the substrate 4, so that the bonding body 2 and the bonding layer 3 are horizontally aligned. It was shown that the superconducting bulk bonded body 1 having excellent superconducting characteristics can be manufactured even when arranged.

(実施例2)
本実施例では、図8を用いて、超電導バルク接合体の製造方法における、支持部材の配置による超電導特性への影響について説明する。図8は、超電導バルク接合体10の製造方法における支持部材の配置例を示す斜視図である。本実施例における試料D、試料E、試料Fおよび試料Gは、先の実施例1に係る試料Aの接合本体2と接合層3と同じサイズ、同じ材料を用いて準備したもので、支持部材の形状やサイズ、配列の仕方が異なるものである。
(Example 2)
In the present embodiment, the influence on the superconducting characteristics due to the arrangement of the support member in the method of manufacturing a superconducting bulk bonded body will be described with reference to FIG. FIG. 8 is a perspective view showing an example of the arrangement of the support members in the method for manufacturing the superconducting bulk bonded body 10. Sample D, Sample E, Sample F, and Sample G in this example are prepared using the same size and the same material as the bonding body 2 and the bonding layer 3 of Sample A according to Example 1 described above. Are different in shape, size, and arrangement.

試料Dについては、図8に示すように、試料Aと同様に支持部材を配列して接合本体2の各々を支持させた。具体的には、試料Dについては、アルミナ製の直径6mm、高さ10mmの円柱形状の支持部材51を4個基板4の上に配置し、1つの接合本体2あたり2個の支持部材51を用いて接合本体2の各々を支持した。すなわち、試料Dは、実施例1の試料Aと同じ条件で製造したものである。   For sample D, as shown in FIG. 8, support members were arranged in the same manner as sample A to support each of the bonded main bodies 2. Specifically, for the sample D, four columnar support members 51 made of alumina having a diameter of 6 mm and a height of 10 mm are arranged on the substrate 4, and two support members 51 per one bonding body 2 are arranged. Used to support each of the bonded bodies 2. That is, Sample D was manufactured under the same conditions as Sample A of Example 1.

試料Eについては、図8に示すように、アルミナ製の幅10mm、長さ12mm、高さ6mmの四角形状の支持部材52を2個基板4の上に配置し、1つの接合本体2あたり1個の支持部材52を用いて接合本体2の各々を支持した。つまり、試料Eでは、支持部材51のサイズを接合本体2より一回り小さくして、接合層3が支持部材52に直接触れないようにした。   For sample E, as shown in FIG. 8, two rectangular support members 52 made of alumina having a width of 10 mm, a length of 12 mm, and a height of 6 mm are arranged on the substrate 4, and one per bonded body 2. Each of the joining main bodies 2 was supported using a single support member 52. In other words, in the sample E, the size of the support member 51 is made slightly smaller than that of the bonding body 2 so that the bonding layer 3 does not directly touch the support member 52.

試料Fについては、図8に示すように、アルミナ製の幅15mm、長さ2mm、高さ2mmの四角棒状の支持部材53を4個基板4の上に配置し、1つの接合本体2あたり2個の支持部材53を用いて接合本体2の各々を支持した。その際、支持部材53は、長手方向が水平方向となるように配置された。また、試料Gについては、アルミナ製の直径6mm、高さ10mmの円柱形状の支持部材54を2個基板4の上に配置し、1つの接合本体2あたり1個の支持部材54を用いて接合本体2の各々を、支持した。その際、支持部材54は、長手方向が鉛直方向となるように配置された。   For the sample F, as shown in FIG. 8, four square bar-shaped support members 53 made of alumina having a width of 15 mm, a length of 2 mm, and a height of 2 mm are arranged on the substrate 4, and 2 per one bonded body 2. Each of the joining main bodies 2 was supported using a single support member 53. At that time, the support member 53 was disposed so that the longitudinal direction thereof was the horizontal direction. For sample G, two columnar support members 54 made of alumina having a diameter of 6 mm and a height of 10 mm are arranged on the substrate 4 and bonded using one support member 54 per bonded body 2. Each body 2 was supported. At that time, the support member 54 was disposed such that the longitudinal direction was the vertical direction.

次に、試料D、試料E、試料F、試料G載せた基板4を持って移動し、電気炉内に設置した。次に、電気炉内に設置した各試料を1253Kまで加熱し、1時間保持した後、1223Kまで30時間かけて徐冷した。このようにして得られた超電導バルク接合体を酸素気流中において723Kで100時間熱処理した。   Next, the substrate 4 carrying the sample D, the sample E, the sample F, and the sample G was moved and placed in an electric furnace. Next, each sample installed in the electric furnace was heated to 1253K, held for 1 hour, and then gradually cooled to 1223K over 30 hours. The superconducting bulk joined body thus obtained was heat-treated at 723 K for 100 hours in an oxygen stream.

熱処理後、電気炉を開けて確認したところ、試料D、試料E、試料Fに係る接合本体2と接合層3は十分に接合され、それぞれ1つの超電導バルク接合体を構成していた。一方で、試料Gに係る接合本体2と接合層3は十分に接合しているものの、試料D、試料E、試料Fに比べて、2つの接合本体2が少しずれて接合されていたことが目視で確認された。   When the electric furnace was opened and confirmed after the heat treatment, the bonding body 2 and the bonding layer 3 related to the sample D, the sample E, and the sample F were sufficiently bonded to each other to constitute one superconducting bulk bonded body. On the other hand, although the joining body 2 and the joining layer 3 related to the sample G are sufficiently joined, the two joining bodies 2 are joined with a slight deviation compared to the samples D, E, and F. It was confirmed visually.

試料Gでは、各接合本体2を接触面積の小さい支持部材54を1個だけ用いて支持しているため、熱処理工程の途中で、2つの接合本体2の間に小さなずれが生じたものと推察される。実際、試料Gを製造した際の支持部材54の位置が、接合本体2の各々の中央の位置より少しずれていた。そこで、新たに試料G’として、図8に示す試料Gの接合本体2を支持する支持部材54の位置を接合本体2のそれぞれの中央部なるように調整し、再度熱処理を行った。すると、試料G’に係る接合本体2と接合層3は十分に接合され、試料Gで見られた2つの接合本体の間の小さなずれのない、超電導バルク接合体が得られた。   In sample G, each joint body 2 is supported by using only one support member 54 having a small contact area, so that it is inferred that a small deviation occurred between the two joint bodies 2 during the heat treatment process. Is done. Actually, the position of the support member 54 when the sample G was manufactured was slightly shifted from the center position of each joint body 2. Therefore, the position of the support member 54 that supports the joining body 2 of the sample G shown in FIG. 8 is newly adjusted as the sample G ′ so as to be in the center of each joining body 2, and heat treatment is performed again. Then, the bonding body 2 and the bonding layer 3 according to the sample G ′ were sufficiently bonded, and a superconducting bulk bonded body without a small deviation between the two bonding bodies observed in the sample G was obtained.

次に、試料D、試料E、試料F、試料Gおよび試料G’に係る超電導バルク接合体を1Tの磁場において液体窒素中で冷却する磁場中冷却法にて着磁させ、ホール素子にてこれらの試料表面を走査することで捕捉磁場分布を測定した。   Next, the superconducting bulk bonded bodies according to Sample D, Sample E, Sample F, Sample G, and Sample G ′ are magnetized by a magnetic field cooling method in which liquid nitrogen is cooled in a magnetic field of 1 T, and these are formed by a Hall element. The captured magnetic field distribution was measured by scanning the sample surface.

図9は、各試料の接合層3における捕捉磁場強度の結果を示すグラフである。図9では、実施例1の試料B(すなわち、接合本体2を基板4に直接配置して熱処理をした試料)に係る磁場強度を基準として表示してある。図9に示すように、接合本体2と支持部材5との接触面積が比較的小さい試料D、試料F、および試料G’では、良好な超電導特性を有することが確認できた。また、接合本体2と支持部材5の接触面積が比較的大きい試料Eや、2つの接合本体2がずれて接合された試料Gでは、接合層3における磁場強度が、他の試料と比較してやや低下したものの、試料Bの磁場強度の1.5倍以上はあった。よって、従来の製造方法である基板上に接合本体2を直接配置した場合に比べて、本実施形態に係る支持部材5を用いた製造方法では、超電導特性が大きく改善することが確認できた。   FIG. 9 is a graph showing the results of the captured magnetic field strength in the bonding layer 3 of each sample. In FIG. 9, the magnetic field strength related to the sample B of Example 1 (that is, the sample subjected to the heat treatment with the bonding body 2 directly disposed on the substrate 4) is displayed as a reference. As shown in FIG. 9, it was confirmed that Sample D, Sample F, and Sample G ′ having relatively small contact areas between the bonding body 2 and the support member 5 have good superconducting characteristics. Further, in the sample E in which the contact area between the bonding main body 2 and the support member 5 is relatively large and the sample G in which the two bonding main bodies 2 are bonded to each other, the magnetic field strength in the bonding layer 3 is slightly higher than that of other samples. Although it decreased, it was more than 1.5 times the magnetic field strength of Sample B. Therefore, it has been confirmed that the superconducting characteristics are greatly improved in the manufacturing method using the support member 5 according to the present embodiment as compared with the case where the bonding body 2 is directly arranged on the substrate, which is a conventional manufacturing method.

従って、本結果から、接合本体2を水平方向に維持するよう支持部材5を配置し、接合層3を基板4に直接触れないようにすることにより、接合本体2と接合層3を水平方向に配置した場合でも、超電導特性に優れた超電導バルク接合体1を製造することができることが示された。また、接合本体2と支持部材5との接触面積をより小さくすることにより、超電導特性がさらに優れた超電導バルク接合体1を製造することができることが示された。   Therefore, from this result, the support member 5 is disposed so as to maintain the bonding body 2 in the horizontal direction, and the bonding layer 3 is not directly touched to the substrate 4, so that the bonding body 2 and the bonding layer 3 are horizontally aligned. It was shown that the superconducting bulk bonded body 1 having excellent superconducting characteristics can be manufactured even when arranged. Moreover, it was shown that the superconducting bulk bonded body 1 having further excellent superconducting characteristics can be manufactured by further reducing the contact area between the bonding body 2 and the support member 5.

以上、添付図面を参照しながら本発明の好適な実施形態について詳細に説明したが、本発明はかかる例に限定されない。本発明の属する技術の分野における通常の知識を有する者であれば、特許請求の範囲に記載された技術的思想の範疇内において、各種の変更例または修正例に想到し得ることは明らかであり、これらについても、当然に本発明の技術的範囲に属するものと了解される。   The preferred embodiments of the present invention have been described in detail above with reference to the accompanying drawings, but the present invention is not limited to such examples. It is obvious that a person having ordinary knowledge in the technical field to which the present invention pertains can come up with various changes or modifications within the scope of the technical idea described in the claims. Of course, it is understood that these also belong to the technical scope of the present invention.

1、10 超電導バルク接合体
2 接合本体
3 接合層
4 基板
5、50 支持部材
DESCRIPTION OF SYMBOLS 1, 10 Superconducting bulk bonded body 2 Bonding main body 3 Bonding layer 4 Substrate 5, 50

Claims (5)

結晶方位の揃った第1の酸化物超電導体により形成される複数の接合本体を、隣り合う前記接合本体の互いの結晶方位のずれが15°以内になるように配置するとともに、隣り合う前記接合本体同士の間に、前記第1の酸化物超電導体よりも溶融温度が低い材料特性を有する第2の酸化物超電導体により形成される接合層を、前記接合本体同士に接触させて配置する配置工程と、
前記接合本体の溶融温度よりは低く、かつ、前記接合層の溶融温度よりは高い温度に、前記複数の接合本体および前記接合層を加熱して前記接合層を溶融し、その後、少なくとも前記接合層が結晶化する温度まで徐冷し、前記接合層を介して隣り合う前記接合本体同士を接合する熱処理工程と、を有する超電導バルク接合体の製造方法であって、
前記配置工程において、1つの接合本体あたり少なくとも1つの支持部材を用いて前記複数の接合本体の各々を支持しながら、前記複数の接合本体および前記接合層を水平方向に配設し、
前記熱処理工程において、前記支持部材により支持されている前記複数の接合本体と前記接合層との配設方向を水平方向に維持した状態で、前記接合層を介して隣り合う前記接合本体同士を接合することを特徴とする超電導バルク接合体の製造方法。
A plurality of junction bodies formed of first oxide superconductors having a uniform crystal orientation are arranged so that the deviation of the crystal orientations of the adjacent junction bodies is within 15 °, and the adjacent junctions Arrangement in which a bonding layer formed by a second oxide superconductor having a material property having a melting temperature lower than that of the first oxide superconductor is placed between the main bodies so as to be in contact with each other. Process,
The plurality of bonding bodies and the bonding layer are heated to a temperature lower than the melting temperature of the bonding body and higher than the melting temperature of the bonding layer, and then the bonding layer is melted, and then at least the bonding layer Is a method of manufacturing a superconducting bulk bonded body, comprising: a step of gradually cooling to a temperature at which crystallization occurs and bonding the adjacent bonded bodies adjacent to each other via the bonding layer,
In the arranging step, while supporting each of the plurality of bonding bodies using at least one support member per bonding body, the plurality of bonding bodies and the bonding layer are disposed in a horizontal direction,
In the heat treatment step, the bonding bodies adjacent to each other are bonded to each other through the bonding layer in a state where the arrangement direction of the bonding bodies supported by the support member and the bonding layer is maintained in a horizontal direction. A method of manufacturing a superconducting bulk joined body.
前記配置工程において、前記複数の接合本体の各々を、1つの接合本体あたり複数の前記支持部材を用いて支持することを特徴とする請求項1に記載の超電導バルク接合体の製造方法。   2. The method of manufacturing a superconducting bulk bonded body according to claim 1, wherein, in the arranging step, each of the plurality of bonded main bodies is supported using a plurality of the supporting members per one bonded main body. 前記接合本体と前記接合層とを、有機系の接着剤または銀ペーストにより接着することを特徴とする請求項1又は2に記載の超電導バルク接合体の製造方法。   The method for manufacturing a superconducting bulk bonded body according to claim 1 or 2, wherein the bonding main body and the bonding layer are bonded with an organic adhesive or silver paste. 前記第1の酸化物超電導体および前記第2の酸化物超電導体は、REBaCu(REはY及び希土類元素からなる群から選ばれる1種または2種以上の元素であり、yは酸素量で、6.8≦y≦7.1)中にREBaCuOが分散した酸化物超電導体であることを特徴とする請求項1〜3のいずれか1項に記載の超電導バルク接合体の製造方法。 The first oxide superconductor and the second oxide superconductor are RE 1 Ba 2 Cu 3 O y (RE is one or more elements selected from the group consisting of Y and rare earth elements) Y is an amount of oxygen, and is an oxide superconductor in which RE 2 BaCuO 5 is dispersed in 6.8 ≦ y ≦ 7.1). A method of manufacturing a superconducting bulk bonded body. 前記接合本体および前記接合層には、金属銀換算で2質量%以上30質量%以下の銀が含有されていることを特徴とする請求項1〜4のいずれか1項に記載の超電導バルク接合体の製造方法。   The superconducting bulk joining according to any one of claims 1 to 4, wherein the joining main body and the joining layer contain 2% by mass to 30% by mass of silver in terms of metallic silver. Body manufacturing method.
JP2017021337A 2017-02-08 2017-02-08 Method for producing superconductive bulk conjugate Pending JP2018127381A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017021337A JP2018127381A (en) 2017-02-08 2017-02-08 Method for producing superconductive bulk conjugate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017021337A JP2018127381A (en) 2017-02-08 2017-02-08 Method for producing superconductive bulk conjugate

Publications (1)

Publication Number Publication Date
JP2018127381A true JP2018127381A (en) 2018-08-16

Family

ID=63172170

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017021337A Pending JP2018127381A (en) 2017-02-08 2017-02-08 Method for producing superconductive bulk conjugate

Country Status (1)

Country Link
JP (1) JP2018127381A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020164340A (en) * 2019-03-28 2020-10-08 日本製鉄株式会社 Oxide superconductive bulk conductor and manufacturing method thereof

Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02212372A (en) * 1989-02-13 1990-08-23 Shimadzu Corp Joined structure of oxide superconductor
JPH03242384A (en) * 1990-02-16 1991-10-29 Furukawa Electric Co Ltd:The Connection of bi-based oxide superconductor
JPH03290377A (en) * 1990-04-04 1991-12-20 Hitachi Chem Co Ltd Superconductor and production thereof
JPH042670A (en) * 1990-04-19 1992-01-07 Ishikawajima Harima Heavy Ind Co Ltd Method for joining superconductive wire material and heating device therefor
JPH04321569A (en) * 1990-02-13 1992-11-11 Hoechst Ag Method of bonding member made of ceramic high-temperature superconductor material
WO1993020025A1 (en) * 1992-04-03 1993-10-14 Nippon Steel Corporation Bonded element of superconductive oxide materials and its manufacture
JPH05279028A (en) * 1992-03-31 1993-10-26 Ngk Insulators Ltd Rare-earth superconducting composition and its production
JPH0640775A (en) * 1992-04-03 1994-02-15 Nippon Steel Corp Joined body of oxide superconducting material and its production
JPH0717774A (en) * 1993-06-22 1995-01-20 Railway Technical Res Inst Bonding structure of oxide superconductor, bonding method and magnetic shielding material
JPH0797277A (en) * 1993-08-02 1995-04-11 Kyocera Corp Method for joining oxide superconductor
JPH07157372A (en) * 1993-12-02 1995-06-20 Chubu Electric Power Co Inc Method for joining bismuth-containing high temperature superconductor
JPH1052865A (en) * 1996-08-09 1998-02-24 Tokyo Electron Ltd Handling member of material to be processed as well as method and apparatus for manufacturing it
WO2003002483A1 (en) * 2001-06-29 2003-01-09 International Superconductivity Technology Center, The Juridical Foundation Method of joining oxide superconductor and oxide superconductor joiner
JP2004039949A (en) * 2002-07-05 2004-02-05 Nippon Steel Corp Superconductive member and magnetic levitation device
JP2008251720A (en) * 2007-03-29 2008-10-16 Nippon Steel Corp Oxide superconductor conducting element
JP2018035015A (en) * 2016-08-29 2018-03-08 新日鐵住金株式会社 Superconducting bulk conjugate and manufacturing method of superconducting bulk conjugate

Patent Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02212372A (en) * 1989-02-13 1990-08-23 Shimadzu Corp Joined structure of oxide superconductor
JPH04321569A (en) * 1990-02-13 1992-11-11 Hoechst Ag Method of bonding member made of ceramic high-temperature superconductor material
JPH03242384A (en) * 1990-02-16 1991-10-29 Furukawa Electric Co Ltd:The Connection of bi-based oxide superconductor
JPH03290377A (en) * 1990-04-04 1991-12-20 Hitachi Chem Co Ltd Superconductor and production thereof
JPH042670A (en) * 1990-04-19 1992-01-07 Ishikawajima Harima Heavy Ind Co Ltd Method for joining superconductive wire material and heating device therefor
JPH05279028A (en) * 1992-03-31 1993-10-26 Ngk Insulators Ltd Rare-earth superconducting composition and its production
WO1993020025A1 (en) * 1992-04-03 1993-10-14 Nippon Steel Corporation Bonded element of superconductive oxide materials and its manufacture
JPH0640775A (en) * 1992-04-03 1994-02-15 Nippon Steel Corp Joined body of oxide superconducting material and its production
JPH0717774A (en) * 1993-06-22 1995-01-20 Railway Technical Res Inst Bonding structure of oxide superconductor, bonding method and magnetic shielding material
JPH0797277A (en) * 1993-08-02 1995-04-11 Kyocera Corp Method for joining oxide superconductor
JPH07157372A (en) * 1993-12-02 1995-06-20 Chubu Electric Power Co Inc Method for joining bismuth-containing high temperature superconductor
JPH1052865A (en) * 1996-08-09 1998-02-24 Tokyo Electron Ltd Handling member of material to be processed as well as method and apparatus for manufacturing it
WO2003002483A1 (en) * 2001-06-29 2003-01-09 International Superconductivity Technology Center, The Juridical Foundation Method of joining oxide superconductor and oxide superconductor joiner
JP2004039949A (en) * 2002-07-05 2004-02-05 Nippon Steel Corp Superconductive member and magnetic levitation device
JP2008251720A (en) * 2007-03-29 2008-10-16 Nippon Steel Corp Oxide superconductor conducting element
JP2018035015A (en) * 2016-08-29 2018-03-08 新日鐵住金株式会社 Superconducting bulk conjugate and manufacturing method of superconducting bulk conjugate

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020164340A (en) * 2019-03-28 2020-10-08 日本製鉄株式会社 Oxide superconductive bulk conductor and manufacturing method thereof
JP7277721B2 (en) 2019-03-28 2023-05-19 日本製鉄株式会社 Oxide superconducting bulk conductor and its manufacturing method

Similar Documents

Publication Publication Date Title
US5084436A (en) Oriented superconductor containing a dispersed non-superconducting phase
EP0634379B1 (en) Joined product of of superconductive oxide materials and its manufacture
JP4113113B2 (en) Oxide superconductor joining method and oxide superconductor joined body
JPH09306256A (en) Bulk oxide superconductor, and production of wire rod and plate thereof
JP2018127381A (en) Method for producing superconductive bulk conjugate
JP6772674B2 (en) Manufacturing method of superconducting bulk joint and superconducting bulk joint
KR100209580B1 (en) Manfacturing method of yttrium ultra conduct
JPH0640775A (en) Joined body of oxide superconducting material and its production
JP7277721B2 (en) Oxide superconducting bulk conductor and its manufacturing method
JP2005217039A (en) Conducting element using oxide superconductor
JP2001114576A (en) Joined body and oxide superconductor used therein
EP0562618B1 (en) Oxide superconductor having large magnetic levitation force and its production method
JP3237953B2 (en) Manufacturing method of oxide superconducting material
JP7127463B2 (en) Oxide superconducting bulk conductor
US6255255B1 (en) Oxide superconducting material and method of producing the same
JP3283691B2 (en) High damping oxide superconducting material and method of manufacturing the same
JP4071860B2 (en) Superconducting bulk material and manufacturing method thereof
JP3854364B2 (en) Method for producing REBa2Cu3Ox-based superconductor
JPH0791057B2 (en) Rare earth oxide superconductor
JP4967173B2 (en) Hollow oxide superconductor and method for producing the same
JP3844169B2 (en) Oxide superconductor and manufacturing method thereof
JP6746981B2 (en) Superconducting bearing
JP2019176086A (en) Oxide superconducting bulk body and method for manufacturing the same
JPH05319824A (en) Production of oxide superconductor laminated body
JP4660326B2 (en) Manufacturing method of oxide superconducting material and substrate for supporting precursor thereof

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20190208

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20190419

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20190422

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20190426

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191007

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200826

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200908

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20210302