JP2004039949A - Superconductive member and magnetic levitation device - Google Patents

Superconductive member and magnetic levitation device Download PDF

Info

Publication number
JP2004039949A
JP2004039949A JP2002196817A JP2002196817A JP2004039949A JP 2004039949 A JP2004039949 A JP 2004039949A JP 2002196817 A JP2002196817 A JP 2002196817A JP 2002196817 A JP2002196817 A JP 2002196817A JP 2004039949 A JP2004039949 A JP 2004039949A
Authority
JP
Japan
Prior art keywords
superconducting
superconductor
axis
magnetic bearing
magnet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002196817A
Other languages
Japanese (ja)
Other versions
JP4220733B2 (en
Inventor
Mitsuru Morita
森田 充
Hidekazu Tejima
手嶋 英一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2002196817A priority Critical patent/JP4220733B2/en
Priority to CNB031466079A priority patent/CN1299302C/en
Publication of JP2004039949A publication Critical patent/JP2004039949A/en
Application granted granted Critical
Publication of JP4220733B2 publication Critical patent/JP4220733B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C32/00Bearings not otherwise provided for
    • F16C32/04Bearings not otherwise provided for using magnetic or electric supporting means
    • F16C32/0406Magnetic bearings
    • F16C32/0408Passive magnetic bearings
    • F16C32/0436Passive magnetic bearings with a conductor on one part movable with respect to a magnetic field, e.g. a body of copper on one part and a permanent magnet on the other part
    • F16C32/0438Passive magnetic bearings with a conductor on one part movable with respect to a magnetic field, e.g. a body of copper on one part and a permanent magnet on the other part with a superconducting body, e.g. a body made of high temperature superconducting material such as YBaCuO

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Magnetic Bearings And Hydrostatic Bearings (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Superconductor Devices And Manufacturing Methods Thereof (AREA)
  • Connection Of Motors, Electrical Generators, Mechanical Devices, And The Like (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a superconductive member and a magnetic levitation device wherein loss is little in rotation and translational movement. <P>SOLUTION: The superconductive member is composed of a plurality of superconductors. A part of a surface joining the superconductors of the superconductive member mutually is not orthogonal to any surface in contact with the junction surface of the superconductor. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、磁気浮上用超伝導部材及び超伝導磁気浮上装置に関し、特に、電力貯蔵用フライホイールや高速回転機器等に用いられる超伝導軸受及びリニアモータ等の搬送機器等の磁気浮上装置に関する。
【0002】
【従来の技術】
超伝導軸受は、超伝導体と磁石との間のピンニング効果を利用したものであり、物体を制御なしで非接触で安定に浮上・回転できる機能を有する軸受である。超伝導軸受における超伝導体と磁石の位置関係には、主にアキシャル軸受型配置とラジアル軸受型配置がある。図1に示すように、アキシャル軸受型配置では、超伝導体と磁石は軸方向に対向している。一方、図2に示すように、ラジアル軸受型配置では、超伝導体と磁石は動径方向に対向している。
【0003】
超伝導軸受には、単結晶状に作製された大型の酸化物系超伝導体が用いられる。しかし、単結晶状の酸化物系超伝導体には結晶方位による異方性があり、結晶の c軸に平行な方向と、結晶の c軸に垂直な方向、すなわち結晶の a軸と b軸で形成する a−b面内に平行な方向との間で、超伝導特性が大きく異なる。その結果、磁石に対する超伝導体の結晶方位をどちらに向けるかによって浮上力が大きく異なる。従来は、浮上力を大きくするため、超伝導体の c軸を磁石の方に向ける、すなわち超伝導体の c軸が磁石の面に垂直になるような結晶配置で用いられるのが一般的であった。すなわち、アキシャル軸受型配置では、超伝導体の c軸は軸方向に向いたアキシャル配向であり、ラジアル軸受型配置では、超伝導体の c軸は動径方向を向いたラジアル配向であった。
【0004】
アキシャル軸受型配置では、軸受を構成する超伝導体全体の c軸をアキシャル配向させることは可能である。しかしながら、ラジアル軸受型配置では、軸受を構成する超伝導体の c軸を軸受全周にわたってラジアル配向させることは、単一の結晶では不可能である。従って、従来技術としては、図2に示すように、いくつかの試料を作製し、それぞれを扇形状に加工し、それらを組み合わせて1つの軸受を構成する超伝導体とし、軸受を構成する個々の要素部材の c軸をラジアル配向させる手法がとられている。このとき、個々の扇形状部材間の接合方法は、個々の部材を単に冷却容器に収納することによって物理的に接合しているだけか、あるいは冷却容器に収納する際にお互いに接着剤で接合固定しているだけである。上記従来技術は、特開2001−248642号公報に記載されている。
また、回転運動する軸受に対し、並進運動する磁気浮上装置には、リニアモータ搬送装置等がある。図3に超伝導搬送装置の基本構造を示す。
【0005】
【発明が解決しようとする課題】
しかしながら、図1、図2及び図3のように複数の超伝導体で超伝導軸受を作製すると、個々の超伝導要素部材は単に物理的に結合されているだけであり、各要素部材間の境界では超伝導電流は流れない。しかも、ラジアル型軸受の場合、厳密には個々の要素部材の c軸がラジアル配向している部分は要素部材の中央部だけであり、中央部からずれるにつれて c軸と動径方向とのずれは大きくなる。そのため、軸受全体としての超伝導体の c軸が動径方向へ配向している度合いを改善するには、要素部材の数を多くすることになるが、このことは逆に超伝導電流の流れない要素部材間の境界の数も増やすことになる。従って、ラジアル軸受型配置においては、従来の方法では、軸受全体の結晶の配向性を向上させることと、超伝導電流が流れない境界面の数を低減させることが、相反する性質を有しているため、浮上力及び回転損失を改善することが難しいという問題があった。
【0006】
また、アキシャル軸受型配置でも、軸受サイズが大きくなると、単結晶状の超伝導体を一体もので作製することは困難なので、複数の超伝導体を組み合わせることになる。この場合にも、個々の超伝導体間に超伝導電流が流れないので、浮上力及び回転損失を改善することが難しいという問題があった。
【0007】
このような課題に対し、図4及び図5に示すように、超伝導体を積層構造にし、かつ、隣り合う層毎に超伝導部材同士の境界面の位置がずれるようにすることによって、全体としての超伝導体の特性の均一化を図ることが、特開2001−248642号公報に記載されている。
【0008】
複数の超伝導部材からなる超伝導磁気軸受において、個々の部材の継ぎ目、及び個々の超伝導体内の特性不均質は、全体としての超伝導体の不均一性として現れる。軸受または搬送装置に荷重等の負荷が加えられた時、超伝導体は実質的に超伝導磁石として機能し、載荷力(又は反発力、又は浮上力)を発生する。この全体としての不均質は、不均質な超伝導磁石の原因になり、たとえ永久磁石の本来の特性が均質であったとしても、回転又は並進運動時には永久磁石内に誘導電流を誘起し、エネルギー損失をもたらす。 また、さらには、永久磁石の見掛けの磁場分布均質性を低下させる。このようなエネルギー損失は、超伝導フライホイールエネルギー貯蔵装置用軸受の場合、特に低減する必要がある。
【0009】
本発明は、上記の問題を解決し、より簡便でかつ経済的に回転及び並進運動時に損失の少ない超伝導部材及び磁気浮上装置を提供することである。
【0010】
【課題を解決するための手段】
本願発明は、以下のとおりである。
(1)複数の超伝導体からなる超伝導部材であって、該超伝導部材の超伝導体同士を接合した面の少なくとも一部が、該超伝導体の接合面に接する面の何れかの面と、直交しないことを特徴とする超伝導部材。
(2)前記超伝導部材がリング形状を有する部材である(1)記載の超伝導部材。
(3)前記超伝導体接合面の少なくとも一部が、前記超伝導体の接合面に接する面の何れかと、0°超45°以下の交差角度を有する(1)又は(2)に記載の超伝導部材。
(4)前記超伝導体接合面の少なくとも一部が平面である(1)〜(3)の何れかに記載の超伝導部材。
(5)磁石と(1)〜(4)の何れかに記載の超伝導部材を少なくとも有する超伝導磁気浮上装置。
(6)磁石と超伝導部材とが動径方向に対向するラジアル型配置の超伝導磁気軸受であって、前記超伝導部材が(1)〜(4)の何れかに記載の磁気浮上用超伝導部材である超伝導磁気軸受。
(7)前記超伝導部材を構成する個々の超伝導体が単結晶状であり、かつ、該超伝導体の結晶学的 c軸と回転軸とのなす角度が90°±30°の範囲内にある(6)記載の超伝導磁気軸受。
(8)前記 c軸と回転軸とのなす角度が90°である(7)記載の超伝導磁気軸受。
(9)前記超伝導部材を構成する個々の超伝導体が単結晶状であり、かつ、該超伝導体の結晶学的 c軸と回転軸とのなす角度が0°±30°の範囲内にある(6)記載の超伝導磁気軸受。
(10)前記 c軸と回転軸とのなす角度が0°である(9)記載の超伝導磁気軸受。
(11)磁石と超伝導部材とが軸方向に対向するアキシャル型配置の超伝導磁気軸受であって、前記超伝導部材が(1)〜(4)の何れかに記載の磁気浮上用超伝導部材である超伝導磁気軸受。
(12)前記超伝導部材を構成する個々の超伝導体が単結晶状であり、かつ、該超伝導体の結晶学的 c軸と回転軸とのなす角度が0°±30°の範囲内にある(11)記載の超伝導磁気軸受。
(13)前記 c軸と回転軸とのなす角度が0°である(12)記載の超伝導磁気軸受。
【0011】
【発明の実施の形態】
永久磁石と超伝導体との自立安定型の超伝導磁気浮上を例に、本発明の内容を詳述する。超伝導体が永久磁石の磁場中で超伝導状態に冷却され、その安定点で、永久磁石から発する磁束が超伝導体中に捕捉されている状況を考える。永久磁石が安定点から変位しようとした場合、永久磁石が安定点から変位するときに発生する磁束変化を打ち消すように、超伝導体内で超伝導電流が誘起される。この超伝導電流により超伝導体は磁石となり、永久磁石と超伝導磁石との間に力が作用する。この力が載荷力(反発力又は浮上力)と呼ばれるもので、安定点への復元力であり、安定磁気浮上の原理である。すなわち、磁気浮上において、超伝導体は永久磁石との変位に応じて強度を変化させる制御磁石として機能する。
【0012】
したがって、超伝導磁気浮上状態において、永久磁石と超伝導体との相対的変位が発生する場合、永久磁石の磁場分布が均一であっても、超伝導体の特性が不均一な場合は、超伝導磁石の不均一磁場により永久磁石内で誘導電流が発生し、エネルギー損失が生じる。このような、エネルギー損失を軽減するには、均質な永久磁石を用い、かつ全体としてより均一な超伝導体を用いる必要がある。超伝導体の不均質の要因には、個々の超伝導体の不均質と、個々の超伝導体間の継ぎ目による不均質がある。本発明は、主に、超伝導体間の継ぎ目による不均質を比較的簡便に改善するものである。
【0013】
超伝導体は磁石として機能することから、磁場中冷却等で着磁された個々の超伝導体及び継ぎ目の磁束分布を均質にすることが、相対運動を伴う磁気浮上におけるエネルギー損失の低減に寄与する。
【0014】
図6に十分に着磁された2つの超伝導体について、超伝導体内の超伝導電流の流れ、矢印の方向から見た磁束分布、超伝導体表面での磁束密度を、図6(a)、図6(b)、図6(c)にそれぞれ模式的に示す。図6から、磁石と対向する超伝導体の面と超伝導体同士の接合面の全部が直交している場合は、接合面で極性が反転する等、磁束密度分布は大きく変化しており、きわめて不均質な超伝導磁石になることが分かる。
【0015】
これに対して、磁石と対向する超伝導体の面と超伝導体同士の接合面の全部が直交せず、例えば、斜めに重なり合うようにして接合されている場合は、図7に示すように、接合面での磁場分布は、かなり改善される。本発明における超伝導部材の磁石との対向面と超伝導体接合面との交差角度とは、図7の場合、90°以下の狭い方の角度を意味し、30°となる。
【0016】
通常、磁気浮上において、上述した十分に着磁された状態は、安定点から完全離れた状態に対応する。実際には、磁気浮上状態においては、比較的小さな変位に対し、超伝導体の一部にのみ電流が流れる状態で機能している。図6と図7の比較において、このような場合の磁場分布は、図7の接合がより均質な磁場分布を形成する。
【0017】
上記原理に基づき、アキシャル型超伝導磁気軸受、ラジアル型超伝導磁気軸受、並進型搬送装置等を構成する場合、図1、図2、図3に示す従来の超伝導体に対し、図8ないし図10に記載の超伝導体の接合構造が、エネルギー損失の面からより優れていることが分かる。
【0018】
磁石と対向する超伝導体の面と超伝導体同士の接合面とが必ずしも斜めの平面接合である必要はない。図11に接合面の形状の例を示す。図11(a)のような曲面でもよいが、加工の容易さの点からは図11(b)の平面が好ましい。また、図11(c)ように磁石の対向面のみ接合し、反対面は接合面を形成しない方法は、均質性を大きく損なうことなく、より小型の超伝導材料で実現できることから、経済的に優れている。超伝導体間の接合界面には、非超伝導物質又はギャップ等が存在しない方が望ましいが、補強等の観点から必要な場合は、最小限にとどめることが望ましい。なお、本発明における対向面との交差角度は、接合面全部で直交していなければ良く、図11(d)及び図11(e)のように、一部に直交した部分を有する場合でも、他の接合面による改善効果により、全体として磁場分布が改善できる。
【0019】
本発明に用いる超伝導体は、ピンニング効果を発揮し得るものであれば特に制限されるものではないが、好ましくは、ピンニング力の強い超伝導体が望ましい。後述する本実施例で用いた超伝導体は、QMG材と呼ばれるもので、単結晶状のREBaCu相(REはYを含む希土類元素及びその組み合わせ)中にREBaCuO相が微細分散している酸化物系超伝導体で、液体窒素温度でピンニング力の強い材料である(特許登録番号第1869884号)。
【0020】
QMG材は、超伝導相であるREBaCu相の結晶学的方位における c軸に垂直な面(a−b面)間に劈開性が有り、ミクロなクラックが発生しやすい。そのため、図8ないし図10及び図12に示すような、a−b面内に超伝導電流を誘起する軸受構造又は搬送装置構造をとることが望ましい。図9及び図12は c軸と回転軸とのなす角度が0°の位置関係を示し、図8は、 c軸と回転軸とのなす角度が90°の場合を示す。また、図10は、 c軸と磁石の移動方向とが直交している場合を示す。
【0021】
一方、「Proceedings of the fifth U.S.−Japan Workshop on high Tc Superconductor(November 10,1992, p95, Tsukuba, Japan)」 にも記載されているように、単結晶状のQMG材の超伝導相には、結晶方位の揺らぎがある。 c軸方向の揺らぎに関して、数mmの範囲内では、±6°程度ある。また、数cmの範囲内では、±30°程度ある場合がある。この揺らぎは、隣り合う亜粒界の方位差は数°以内であるため、臨界電流密度を極端に低下させる弱結合とはならない。上記の理由から請求項7〜13の超伝導体と c軸と軸受の回転軸との方位関係を限定した。
【0022】
また、本発明に用いる磁石は、軸受構造が簡単になるので永久磁石が望ましいが、電磁石や超伝導磁石でもよい。超伝導体と対向する表面の磁束密度が大きいほど浮上力も大きくなるので、永久磁石を用いる場合には、希土類系の永久磁石のように表面磁束密度の大きい材料、例えば、Nd−Fe−B系や Pr−Fe−B系、Sm−Co系等の永久磁石が望ましい。
【0023】
超伝導体を用いた磁気浮上装置や磁気軸受は、一般に、ギャップを適宜調整した上で、超伝導体が常伝導状態で永久磁石と対向させた後、液体窒素等の冷媒又は冷凍機等を用いて超伝導状態に冷却される。所定の温度に超伝導体が冷却された後、永久磁石の質量及びフライホイール等の質量が加わり、負荷が加わると超伝導体と磁石との無負荷での平衡状態から変位し、超伝導体中には超伝導電流が流れ、新たな平衡点に達する。
【0024】
リニアモーターの場合は、並進運動を行うが、レールに対応する側が超伝導体であっても磁石であってもどちらでもよい。本発明の超伝導部材を用いたリニアモーターは、より均質な磁場分布を発生できるので、揺れの少ない安定した走行が可能となる。また、軸受においても、超伝導体の機械的強度の観点から回転子側が永久磁石である方が望ましいが、回転子側が超伝導体であってもよい。
【0025】
【実施例】
(実施例1)
図13(a)に示すように、厚さ5mm、幅25mm、長さ約50mmの平面状の接合面を有する超伝導材料を2本、物理的に接合し、交差角度の異なる4組の超伝導部材を作製した。交差角度は90°、45°、30°、20°の4種類であり、図13(a)は90°の場合を示す。これらの超伝導体に対して、1T及び0.14Tの磁場中で77Kに冷却した後、外部磁場を取り除いたときの接合界面付近における超伝導材料表面の磁束密度分布を測定した。用いた超伝導材料は、単結晶状のYBaCu相中に1μm程度の YBaCuO相が20体積%程度分散している酸化物系超伝導体(QMG材)で、 YBaCu相の結晶学的方位におけるc軸が板面に垂直であるように作製した。磁場印加方向は、 c軸と平行であり、主に超伝導材料のa−b面内に流れる超伝導電流による c軸方向の磁場を測定した。
【0026】
図13(b)に、交差角度90°の材料について、図13(a)中の点線が示す接合部付近の超伝導磁束密度分布を矢印が示す方向から見た様子を示す。接合部分で磁極が反転し、最低値を示す。表1及び表2に、同様に、各交差角度で接続した超伝導材料に対し、1T及び 0.14T中で冷却した場合の磁束密度分布を示す。交差角度が45°でも磁場分布を均一化する効果があり、30°以下では、極めて大きな均一化効果があることが分かる。さらに、1T中で十分な着磁を行った場合よりも、比較的弱い磁場中 (0.14T)で、超伝導体が十分に磁化していない着磁を行った場合の方が、均一化効果が大きく現れることが分かる。
【0027】
以上のように、交差角度を小さくすることによって、超伝導磁石の均質化が図られ、並進及び回転運動を伴う磁気浮上装置において、磁石との相対運動による損失が低減できることが明らかになった。
【0028】
【表1】

Figure 2004039949
【0029】
【表2】
Figure 2004039949
【0030】
(実施例2)
図14に示すように、外径180mm、内径100mm、厚さ15mmの8分割された超伝導バルク材料と外径170mm、内径120mm、厚さ10mmのSm−Co系永久磁石を対向させ、アキシャル型超伝導磁気軸受を構成し、回転数の減衰率を測定した。超伝導材料は、単結晶状のYBaCu相中に1μm程度のYBaCuO相が20体積%程度分散している酸化物系超伝導体(QMG材)で、YBaCu相の c軸が回転軸と平行であるように作製した。交差角度は30°である。永久磁石は継ぎ目を有しない一体ものであり、着磁は、回転軸と平行に磁場が発生するように行った。
【0031】
真空チャンバー内において、永久磁石と超伝導材料とを10mm離した状態で超伝導体を液体窒素中(77K)に冷却した。3000rpmまで高速回転させた後、2500rpmまでに減衰する時間から、減衰率を評価したところ 2.0%/hであった。
比較材として、交差角度が90°の上記8分割された超伝導バルク材料を作製し、同様の実験を行ったところ、減衰率は、4.0%/hであった。
これらの比較から、交差角度が30°の場合、90°の場合と比べ、極めて減衰率が低くなり、損失が低下することが明らかになった。
【0032】
(実施例3)
図15に示すような、外径120mm、内径100mm、高さ50mmの8分割された超伝導バルク材料と、外径146mm、内径126mm、厚さ40mmの Sm−Co系永久磁石を対向させ、アキシャル型超伝導磁気軸受を構成し、回転数の減衰率を測定した。超伝導材料は、単結晶状のGdBaCu相中に1μm程度のGdBaCuO相が20体積%程度分散し、かつ数百μmの銀粒子が15体積%程度分散している酸化物系超伝導体(QMG材)で、GdBaCu相の c軸が回転軸と垂直であるように作製した。交差角度は35°である。永久磁石は継ぎ目を有しない一体ものであり、着磁は、回転軸と垂直に磁場が発生するように行った。
【0033】
真空チャンバー内において、永久磁石と超伝導材料と隙間を3mm離した状態で超伝導体を液体窒素温度(77K)に冷却した。3000rpmまで高速回転させた後、2500rpmまでに減衰する時間から減衰率を評価したところ 2.8%/hであった。比較材として、交差角度が90°の上記8分割された超伝導バルク材料を作製し、同様の実験を行ったところ、減衰率は、4.6%/hであった。
これらの比較から、交差角度が35°の場合、90°の場合と比べ、極めて減衰率が低くなり、損失が低下することが明らかになった。
【0034】
【発明の効果】
以上で述べたように、本願発明の超伝導部材や超伝導磁気浮上装置は、回転又は平行移動にともなう損失が小さく、電力貯蔵用フライホイールや高速回転機器等に用いられる超伝導軸受及びリニアモータ等の搬送機器等の磁気浮上装置に好適に用いることができ、その工業的効果は甚大である。
【図面の簡単な説明】
【図1】従来のアキシャル型超伝導磁気軸受の永久磁石と超伝導部材の配置例と、これに用いる超伝導部材の例
【図2】従来のラジアル型超伝導磁気軸受の永久磁石と超伝導部材の配置例と、これに用いる超伝導部材の例
【図3】従来の並進浮上型装置の永久磁石と超伝導部材の配置例と、これに用いる超伝導部材の例
【図4】継ぎ目を覆うように超伝導材料を配置した従来技術の例
【図5】継ぎ目を覆うように超伝導材料を配置した従来のラジアル型超伝導磁気軸受の用超伝導部材の例
【図6】(a)十分に着磁された2つの超伝導体(交差角度=90°)及び超伝導電流の流れと(b)これの矢印方向から見た磁束分布、(c)超伝導体表面での磁束密度
【図7】(a)十分に着磁された2つの超伝導体(交差角度=30°)及び超伝導電流の流れと、(b)これの矢印の方向から見た磁束分布、(c)超伝導体表面での磁束密度
【図8】本発明のラジアル型超伝導磁気軸受の用超伝導部材の例
【図9】本発明のアキシャル型超伝導磁気軸受の用超伝導部材
【図10】本発明の並進浮上型装置の超伝導部材の例
【図11】(a)〜(e)はそれぞれ本発明における超伝導部材の接合面の例を示す図
【図12】超伝導材料の c軸が軸方向と平行なラジアル型超伝導磁気軸受の超伝導部材の例
【図13】(a)実施例1で用いた超伝導体の一例と、これにおける(b)磁束密度分布
【図14】実施例2で用いたアキシャル型磁気軸受用超伝導体
【図15】実施例3で用いたラジアル型磁気軸受用超伝導体[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a magnetic levitation superconducting member and a superconducting magnetic levitation device, and more particularly to a magnetic levitation device such as a superconducting bearing used in a power storage flywheel or a high-speed rotating device, or a conveying device such as a linear motor.
[0002]
[Prior art]
A superconducting bearing uses a pinning effect between a superconductor and a magnet, and has a function of stably floating and rotating an object without contact and without control. The positional relationship between the superconductor and the magnet in the superconducting bearing mainly includes an axial bearing type arrangement and a radial bearing type arrangement. As shown in FIG. 1, in the axial bearing type arrangement, the superconductor and the magnet face each other in the axial direction. On the other hand, as shown in FIG. 2, in the radial bearing type arrangement, the superconductor and the magnet face each other in the radial direction.
[0003]
A large oxide superconductor made in a single crystal form is used for the superconducting bearing. However, single crystal oxide superconductors have anisotropy due to crystal orientation, and the direction parallel to the c-axis of the crystal and the direction perpendicular to the c-axis of the crystal, that is, the a-axis and b-axis of the crystal The superconducting characteristics are greatly different from those in the direction parallel to the ab plane. As a result, the levitation force varies greatly depending on the orientation of the crystal orientation of the superconductor relative to the magnet. Conventionally, in order to increase the levitation force, it is common to use a crystal arrangement in which the c-axis of the superconductor is directed toward the magnet, that is, the c-axis of the superconductor is perpendicular to the surface of the magnet. there were. That is, in the axial bearing type arrangement, the c axis of the superconductor was axially oriented in the axial direction, and in the radial bearing type arrangement, the c axis of the superconductor was in the radial orientation oriented in the radial direction.
[0004]
In the axial bearing type arrangement, it is possible to orient the c-axis of the entire superconductor constituting the bearing. However, in the radial bearing type arrangement, it is not possible with a single crystal to radially orient the c-axis of the superconductor constituting the bearing over the entire circumference of the bearing. Therefore, as shown in FIG. 2, as a conventional technique, several samples are produced, each is processed into a fan shape, and they are combined to form a superconductor constituting one bearing, and individual bearings are constituted. A method is employed in which the c-axis of the element member is radially oriented. At this time, the method of joining the individual fan-shaped members is to physically join the individual members by simply storing them in the cooling container, or to bond them together with an adhesive when they are stored in the cooling container. It is only fixed. The above prior art is described in Japanese Patent Laid-Open No. 2001-248642.
Further, examples of the magnetic levitation device that translates with respect to the bearing that rotates include a linear motor conveyance device. FIG. 3 shows the basic structure of the superconducting transport device.
[0005]
[Problems to be solved by the invention]
However, when a superconducting bearing is made of a plurality of superconductors as shown in FIGS. 1, 2 and 3, the individual superconducting element members are merely physically coupled, and each element member Superconducting current does not flow at the boundary. In addition, in the case of radial type bearings, strictly speaking, the portion where the c-axis of each element member is radially oriented is only the central portion of the element member, and the deviation between the c-axis and the radial direction as it deviates from the center portion. growing. Therefore, in order to improve the degree of orientation of the c-axis of the superconductor as the entire bearing in the radial direction, the number of element members must be increased. The number of boundaries between missing element members will also increase. Therefore, in the radial bearing type arrangement, the conventional method has the contradictory properties of improving the crystal orientation of the entire bearing and reducing the number of boundary surfaces through which no superconducting current flows. Therefore, there is a problem that it is difficult to improve the flying force and the rotation loss.
[0006]
Further, even in the axial bearing type arrangement, when the bearing size is increased, it is difficult to produce a single crystal superconductor as a single body, and thus a plurality of superconductors are combined. Also in this case, since a superconducting current does not flow between the individual superconductors, there is a problem that it is difficult to improve the levitation force and the rotation loss.
[0007]
As shown in FIGS. 4 and 5, the superconductor has a laminated structure, and the boundary surface position between the superconductor members is shifted for each adjacent layer as shown in FIGS. Japanese Patent Laid-Open No. 2001-248642 discloses that the characteristics of the superconductor as described above are made uniform.
[0008]
In superconducting magnetic bearings composed of a plurality of superconducting members, the joints of the individual members and the characteristic inhomogeneities within the individual superconductors appear as non-uniformities in the superconductor as a whole. When a load such as a load is applied to the bearing or the conveying device, the superconductor substantially functions as a superconducting magnet and generates a loading force (or repulsive force or levitation force). This overall inhomogeneity causes inhomogeneous superconducting magnets, which induce induced currents in the permanent magnets during rotational or translational motions, even if the original properties of the permanent magnets are homogeneous. Cause loss. Furthermore, the apparent magnetic field distribution homogeneity of the permanent magnet is reduced. Such energy losses need to be reduced especially in the case of superconducting flywheel energy storage device bearings.
[0009]
The present invention solves the above-mentioned problems and provides a superconducting member and a magnetic levitation apparatus that are simpler and more economical and have less loss during rotation and translation.
[0010]
[Means for Solving the Problems]
The present invention is as follows.
(1) A superconducting member composed of a plurality of superconductors, wherein at least a part of a surface of the superconducting member joined to each other is in contact with the joining surface of the superconductor. A superconducting member that is not perpendicular to the surface.
(2) The superconducting member according to (1), wherein the superconducting member is a member having a ring shape.
(3) The superconductor joint surface according to (1) or (2), wherein at least a part of the superconductor joint surface has an intersection angle greater than 0 ° and 45 ° or less with any of the surfaces in contact with the superconductor joint surface. Superconducting member.
(4) The superconducting member according to any one of (1) to (3), wherein at least a part of the superconductor bonding surface is a flat surface.
(5) A superconducting magnetic levitation device having at least a magnet and the superconducting member according to any one of (1) to (4).
(6) A superconducting magnetic bearing having a radial arrangement in which a magnet and a superconducting member oppose each other in a radial direction, wherein the superconducting member is a magnetic levitation superconductor according to any one of (1) to (4) Superconducting magnetic bearing which is a conductive member.
(7) Each superconductor constituting the superconductor member is in a single crystal form, and the crystallographic c-axis of the superconductor and the angle formed by the rotation axis are within a range of 90 ° ± 30 °. The superconducting magnetic bearing according to (6).
(8) The superconducting magnetic bearing according to (7), wherein an angle formed between the c-axis and the rotating shaft is 90 °.
(9) Each superconductor constituting the superconducting member is in a single crystal form, and the crystallographic c-axis of the superconductor and the angle formed by the rotation axis are within the range of 0 ° ± 30 °. The superconducting magnetic bearing according to (6).
(10) The superconducting magnetic bearing according to (9), wherein an angle formed between the c-axis and the rotating shaft is 0 °.
(11) A superconducting magnetic bearing having an axial arrangement in which a magnet and a superconducting member face each other in the axial direction, wherein the superconducting member is the superconducting magnetic levitation according to any one of (1) to (4) Superconducting magnetic bearing as a member.
(12) Each superconductor constituting the superconductor member is in a single crystal form, and the crystallographic c-axis of the superconductor and the angle formed by the rotation axis are within a range of 0 ° ± 30 °. The superconducting magnetic bearing according to (11).
(13) The superconducting magnetic bearing according to (12), wherein an angle formed between the c-axis and the rotating shaft is 0 °.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
The content of the present invention will be described in detail by taking a self-supporting and stable superconducting magnetic levitation of a permanent magnet and a superconductor as an example. Consider a situation where a superconductor is cooled to a superconducting state in a magnetic field of a permanent magnet, and a magnetic flux emitted from the permanent magnet is trapped in the superconductor at its stable point. When the permanent magnet is about to be displaced from the stable point, a superconducting current is induced in the superconductor so as to cancel the magnetic flux change that occurs when the permanent magnet is displaced from the stable point. With this superconducting current, the superconductor becomes a magnet, and a force acts between the permanent magnet and the superconducting magnet. This force is called loading force (repulsive force or levitation force), is a restoring force to a stable point, and is a principle of stable magnetic levitation. That is, in magnetic levitation, the superconductor functions as a control magnet that changes its strength in accordance with the displacement from the permanent magnet.
[0012]
Therefore, when the relative displacement between the permanent magnet and the superconductor occurs in the superconducting magnetic levitation state, even if the magnetic field distribution of the permanent magnet is uniform, the characteristics of the superconductor are not uniform. An inductive current is generated in the permanent magnet due to the non-uniform magnetic field of the conductive magnet, resulting in energy loss. In order to reduce such energy loss, it is necessary to use a homogeneous permanent magnet and to use a more uniform superconductor as a whole. Superconductor inhomogeneities include inhomogeneities of individual superconductors and inhomogeneities due to seams between individual superconductors. The present invention mainly improves the inhomogeneity caused by the joint between the superconductors relatively easily.
[0013]
Since superconductors function as magnets, making the magnetic flux distribution of individual superconductors and joints magnetized by cooling in a magnetic field etc. contribute to reducing energy loss in magnetic levitation with relative motion. To do.
[0014]
For the two superconductors sufficiently magnetized in FIG. 6, the flow of superconducting current in the superconductor, the magnetic flux distribution seen from the direction of the arrow, and the magnetic flux density on the superconductor surface are shown in FIG. FIG. 6B and FIG. 6C schematically show each. From FIG. 6, when the superconductor surface facing the magnet and the joint surface of the superconductors are all orthogonal, the magnetic flux density distribution is greatly changed, such as the polarity being reversed at the joint surface, It turns out that it becomes a very heterogeneous superconducting magnet.
[0015]
On the other hand, when the superconductor surface facing the magnet and the joint surface of the superconductors are not orthogonal to each other, for example, when they are joined so as to be obliquely overlapped, as shown in FIG. The magnetic field distribution at the joint surface is considerably improved. In the case of FIG. 7, the crossing angle between the surface of the superconducting member facing the magnet and the superconductor joint surface in the present invention means the narrower angle of 90 ° or less, and is 30 °.
[0016]
Usually, in the magnetic levitation, the above sufficiently magnetized state corresponds to a state completely separated from the stable point. Actually, in the magnetically levitated state, the current functions only in a part of the superconductor with respect to a relatively small displacement. In comparison between FIG. 6 and FIG. 7, the magnetic field distribution in such a case forms a more uniform magnetic field distribution in the junction of FIG.
[0017]
Based on the above principle, when an axial type superconducting magnetic bearing, a radial type superconducting magnetic bearing, a translational conveying device, or the like is constructed, the conventional superconductor shown in FIGS. It can be seen that the superconductor junction structure shown in FIG. 10 is superior in terms of energy loss.
[0018]
The surface of the superconductor facing the magnet and the joint surface between the superconductors do not necessarily have to be an oblique plane joint. FIG. 11 shows an example of the shape of the joint surface. Although a curved surface as shown in FIG. 11A may be used, the plane shown in FIG. 11B is preferable from the viewpoint of ease of processing. Moreover, as shown in FIG. 11 (c), the method in which only the opposing surfaces of the magnet are joined and the opposite surface is not formed can be realized with a smaller superconducting material without greatly impairing the homogeneity. Are better. It is desirable that a non-superconducting material or a gap or the like does not exist at the bonding interface between the superconductors, but it is desirable to minimize it when necessary from the viewpoint of reinforcement. It should be noted that the crossing angle with the facing surface in the present invention is not required to be orthogonal to the entire bonding surface, and even when it has a portion orthogonal to a part as shown in FIGS. 11 (d) and 11 (e), The magnetic field distribution can be improved as a whole due to the improvement effect of other joint surfaces.
[0019]
The superconductor used in the present invention is not particularly limited as long as it can exhibit a pinning effect, but a superconductor having a strong pinning force is preferable. The superconductor used in this example to be described later is called a QMG material, and a RE 2 BaCuO 5 phase in a single-crystal REBa 2 Cu 3 O x phase (RE is a rare earth element including Y and a combination thereof). Is a finely dispersed oxide-based superconductor, which is a material having a strong pinning force at a liquid nitrogen temperature (Patent Registration No. 1869884).
[0020]
The QMG material has a cleavage property between planes (ab planes) perpendicular to the c-axis in the crystallographic orientation of the REBa 2 Cu 3 O x phase, which is a superconducting phase, and micro cracks are likely to occur. Therefore, it is desirable to adopt a bearing structure or a transport device structure that induces a superconducting current in the ab plane as shown in FIGS. 8 to 10 and 12. 9 and 12 show the positional relationship where the angle between the c-axis and the rotation axis is 0 °, and FIG. 8 shows the case where the angle between the c-axis and the rotation axis is 90 °. FIG. 10 shows a case where the c-axis and the moving direction of the magnet are orthogonal.
[0021]
On the other hand, it is also described in "G-like material of Proceedings of the fifty US-Japan Workshop on high Tc Superconductor (November 10, 1992, p95, Tsukuba, Japan)". Has fluctuations in crystal orientation. The fluctuation in the c-axis direction is about ± 6 ° within a range of several mm. Further, within a range of several centimeters, there may be about ± 30 °. This fluctuation does not become a weak coupling that drastically lowers the critical current density because the orientation difference between adjacent subgrain boundaries is within several degrees. For the above reason, the azimuth relationship between the superconductor of claims 7 to 13, the c-axis and the rotation axis of the bearing is limited.
[0022]
The magnet used in the present invention is preferably a permanent magnet because the bearing structure is simplified, but an electromagnet or a superconducting magnet may be used. Since the levitation force increases as the magnetic flux density on the surface facing the superconductor increases, when a permanent magnet is used, a material having a high surface magnetic flux density such as a rare earth permanent magnet, for example, an Nd-Fe-B system Or, permanent magnets such as Pr—Fe—B and Sm—Co are desirable.
[0023]
In general, a magnetic levitation device or a magnetic bearing using a superconductor generally adjusts a gap, and after a superconductor is opposed to a permanent magnet in a normal state, a refrigerant such as liquid nitrogen or a refrigerator is used. Used to cool to a superconducting state. After the superconductor is cooled to a predetermined temperature, the mass of the permanent magnet and the mass of the flywheel are added. When a load is applied, the superconductor and the magnet are displaced from the unloaded equilibrium state, and the superconductor A superconducting current flows inside and reaches a new equilibrium point.
[0024]
In the case of a linear motor, translational motion is performed, but the side corresponding to the rail may be either a superconductor or a magnet. Since the linear motor using the superconducting member of the present invention can generate a more homogeneous magnetic field distribution, stable running with less shaking is possible. In the bearing, the rotor side is preferably a permanent magnet from the viewpoint of the mechanical strength of the superconductor, but the rotor side may be a superconductor.
[0025]
【Example】
Example 1
As shown in FIG. 13 (a), two superconducting materials having a planar joining surface having a thickness of 5 mm, a width of 25 mm, and a length of about 50 mm are physically joined to form four sets of superconductors having different crossing angles. A conductive member was produced. There are four types of crossing angles of 90 °, 45 °, 30 °, and 20 °, and FIG. 13A shows the case of 90 °. After these superconductors were cooled to 77K in 1T and 0.14T magnetic fields, the magnetic flux density distribution on the surface of the superconductive material in the vicinity of the junction interface when the external magnetic field was removed was measured. The superconducting material used is an oxide-based superconductor (QMG material) in which a Y 2 BaCuO 5 phase of about 1 μm is dispersed in a single crystal YBa 2 Cu 3 O x phase by about 20% by volume. YBa The c-axis in the crystallographic orientation of the 2 Cu 3 O x phase was made perpendicular to the plate surface. The magnetic field application direction was parallel to the c-axis, and the magnetic field in the c-axis direction due to the superconducting current flowing mainly in the ab plane of the superconducting material was measured.
[0026]
FIG. 13B shows the superconducting magnetic flux density distribution in the vicinity of the junction indicated by the dotted line in FIG. 13A viewed from the direction indicated by the arrow for the material having an intersection angle of 90 °. The magnetic pole reverses at the joint and shows the lowest value. Similarly, Table 1 and Table 2 show magnetic flux density distributions when the superconducting materials connected at each crossing angle are cooled in 1T and 0.14T. It can be seen that even when the crossing angle is 45 °, there is an effect of homogenizing the magnetic field distribution, and when it is 30 ° or less, there is an extremely large homogenizing effect. Furthermore, it is more uniform when magnetization is performed in a relatively weak magnetic field (0.14T) and the superconductor is not sufficiently magnetized than when magnetization is sufficiently performed in 1T. It turns out that the effect appears greatly.
[0027]
As described above, it has been clarified that by reducing the crossing angle, the superconducting magnet can be homogenized, and in the magnetic levitation apparatus with translational and rotational motion, loss due to relative motion with the magnet can be reduced.
[0028]
[Table 1]
Figure 2004039949
[0029]
[Table 2]
Figure 2004039949
[0030]
(Example 2)
As shown in FIG. 14, an eight-part superconducting bulk material having an outer diameter of 180 mm, an inner diameter of 100 mm, and a thickness of 15 mm is opposed to an Sm—Co-based permanent magnet having an outer diameter of 170 mm, an inner diameter of 120 mm, and a thickness of 10 mm. A superconducting magnetic bearing was constructed and the damping rate of the rotational speed was measured. The superconducting material is an oxide-based superconductor (QMG material) in which a Y 2 BaCuO 5 phase of about 1 μm is dispersed in a single crystal YBa 2 Cu 3 O x phase by about 20% by volume, and YBa 2 Cu. The c-axis of the 3 O x phase was prepared so as to be parallel to the rotation axis. The crossing angle is 30 °. The permanent magnet is an integral part having no seam, and magnetization was performed so that a magnetic field was generated in parallel with the rotation axis.
[0031]
In the vacuum chamber, the superconductor was cooled in liquid nitrogen (77K) with the permanent magnet and the superconductive material separated by 10 mm. When the rate of decay was evaluated from the time of decay to 2500 rpm after high-speed rotation to 3000 rpm, it was 2.0% / h.
As a comparative material, the above eight-divided superconducting bulk material having a crossing angle of 90 ° was produced, and the same experiment was performed. As a result, the attenuation factor was 4.0% / h.
From these comparisons, it was found that when the crossing angle is 30 °, the attenuation rate is extremely low and the loss is reduced as compared with the case of 90 °.
[0032]
(Example 3)
As shown in FIG. 15, an eight-part superconducting bulk material having an outer diameter of 120 mm, an inner diameter of 100 mm, and a height of 50 mm is opposed to an Sm-Co permanent magnet having an outer diameter of 146 mm, an inner diameter of 126 mm, and a thickness of 40 mm. A type superconducting magnetic bearing was constructed, and the decay rate of the rotational speed was measured. In the superconducting material, about 1 μm of Gd 2 BaCuO 5 phase is dispersed about 20% by volume in a single crystal GdBa 2 Cu 3 O x phase, and several hundreds of μm silver particles are dispersed about 15% by volume. An oxide-based superconductor (QMG material) was prepared so that the c-axis of the GdBa 2 Cu 3 O x phase was perpendicular to the rotation axis. The crossing angle is 35 °. The permanent magnet is an integral part without a seam, and magnetization was performed so that a magnetic field was generated perpendicular to the rotation axis.
[0033]
In the vacuum chamber, the superconductor was cooled to liquid nitrogen temperature (77 K) with a gap of 3 mm between the permanent magnet and the superconductive material. When the rate of decay was evaluated from the time of decay to 2500 rpm after high-speed rotation to 3000 rpm, it was 2.8% / h. As a comparative material, the above eight-divided superconducting bulk material having a crossing angle of 90 ° was produced and the same experiment was performed. As a result, the attenuation factor was 4.6% / h.
From these comparisons, it was found that when the crossing angle is 35 °, the attenuation rate is extremely low and the loss is reduced as compared with the case of 90 °.
[0034]
【The invention's effect】
As described above, the superconducting member and the superconducting magnetic levitation device of the present invention have a small loss due to rotation or parallel movement, and are used in power storage flywheels, high-speed rotating devices, and the like. It can be suitably used for a magnetic levitation device such as a transport device, and the industrial effect is enormous.
[Brief description of the drawings]
FIG. 1 shows an arrangement example of permanent magnets and superconducting members of a conventional axial type superconducting magnetic bearing and an example of superconducting members used therefor. FIG. 2 shows permanent magnets and superconducting parts of a conventional radial superconducting magnetic bearing. Example of arrangement of members and example of superconducting member used for this [Fig. 3] Example of arrangement of permanent magnet and superconducting member of conventional translational levitation type device, and example of superconducting member used for this [Fig. 4] Seam Example of prior art in which superconducting material is arranged to cover [FIG. 5] Example of superconducting member for conventional radial superconducting magnetic bearing in which superconducting material is arranged to cover seam [FIG. 6] (a) Two sufficiently superconductors (crossing angle = 90 °) and the flow of superconducting current, (b) magnetic flux distribution viewed from the direction of the arrow, (c) magnetic flux density on the superconductor surface FIG. 7 (a) Two fully magnetized superconductors (crossing angle = 30 °) and superconducting current. (B) Magnetic flux distribution viewed from the direction of the arrow, (c) Magnetic flux density on the surface of the superconductor [FIG. 8] Example of superconducting member for the radial superconducting magnetic bearing of the present invention FIG. 9 is a superconducting member for an axial superconducting magnetic bearing of the present invention. FIG. 10 is an example of a superconducting member of a translational levitation device of the present invention. FIG. 12 is a diagram showing an example of a joining surface of a superconducting member in FIG. 12. FIG. 13 is an example of a superconducting member of a radial superconducting magnetic bearing in which the c-axis of the superconducting material is parallel to the axial direction. FIG. 14 shows an example of a superconductor used in Example 2 and (b) magnetic flux density distribution in the superconductor. FIG. 14 shows a superconductor for an axial type magnetic bearing used in Example 2. FIG. 15 shows a radial type magnetic bearing used in Example 3. Superconductor

Claims (13)

複数の超伝導体からなる超伝導部材であって、該超伝導部材の超伝導体同士を接合した面の少なくとも一部が、該超伝導体の接合面に接する面の何れかの面と、直交しないことを特徴とする超伝導部材。A superconducting member composed of a plurality of superconductors, wherein at least a part of a surface of the superconducting member joined to each other is in contact with the joining surface of the superconductor; A superconducting member that is not orthogonal. 前記超伝導部材がリング形状を有する部材である請求項1記載の超伝導部材。The superconducting member according to claim 1, wherein the superconducting member is a member having a ring shape. 前記超伝導体接合面の少なくとも一部が、前記超伝導体の接合面に接する面の何れかと、0°超45°以下の交差角度を有する請求項1又は2に記載の超伝導部材。3. The superconducting member according to claim 1, wherein at least a part of the superconductor bonding surface has an intersecting angle of more than 0 ° and 45 ° or less with any of the surfaces in contact with the bonding surface of the superconductor. 前記超伝導体接合面の少なくとも一部が平面である請求項1〜3の何れかに記載の超伝導部材。The superconductor member according to claim 1, wherein at least a part of the superconductor joint surface is a flat surface. 磁石と請求項1〜4の何れかに記載の超伝導部材を少なくとも有する超伝導磁気浮上装置。A superconducting magnetic levitation apparatus having at least a magnet and the superconducting member according to claim 1. 磁石と超伝導部材とが動径方向に対向するラジアル型配置の超伝導磁気軸受であって、前記超伝導部材が請求項1〜4の何れかに記載の磁気浮上用超伝導部材である超伝導磁気軸受。A superconducting magnetic bearing having a radial arrangement in which a magnet and a superconducting member oppose each other in a radial direction, wherein the superconducting member is a superconducting member for magnetic levitation according to any one of claims 1 to 4. Conductive magnetic bearing. 前記超伝導部材を構成する個々の超伝導体が単結晶状であり、かつ、該超伝導体の結晶学的 c軸と回転軸とのなす角度が90°±30°の範囲内にある請求項6記載の超伝導磁気軸受。The individual superconductors constituting the superconducting member are in a single crystal form, and the crystallographic c-axis and rotation axis of the superconductor are within a range of 90 ° ± 30 °. Item 7. The superconducting magnetic bearing according to Item 6. 前記 c軸と回転軸とのなす角度が90°である請求項7記載の超伝導磁気軸受。The superconducting magnetic bearing according to claim 7, wherein an angle formed between the c-axis and the rotating shaft is 90 °. 前記超伝導部材を構成する個々の超伝導体が単結晶状であり、かつ、該超伝導体の結晶学的 c軸と回転軸とのなす角度が0°±30°の範囲内にある請求項6記載の超伝導磁気軸受。The individual superconductors constituting the superconducting member are in a single crystal form, and the crystallographic c-axis and the rotation axis of the superconductor are within a range of 0 ° ± 30 °. Item 7. The superconducting magnetic bearing according to Item 6. 前記 c軸と回転軸とのなす角度が0°である請求項9記載の超伝導磁気軸受。The superconducting magnetic bearing according to claim 9, wherein an angle formed between the c-axis and the rotating shaft is 0 °. 磁石と超伝導部材とが軸方向に対向するアキシャル型配置の超伝導磁気軸受であって、前記超伝導部材が請求項1〜4の何れかに記載の磁気浮上用超伝導部材である超伝導磁気軸受。A superconducting magnetic bearing having an axial arrangement in which a magnet and a superconducting member face each other in the axial direction, wherein the superconducting member is the superconducting member for magnetic levitation according to any one of claims 1 to 4. Magnetic bearing. 前記超伝導部材を構成する個々の超伝導体が単結晶状であり、かつ、該超伝導体の結晶学的 c軸と回転軸とのなす角度が0°±30°の範囲内にある請求項11記載の超伝導磁気軸受。The individual superconductors constituting the superconducting member are in a single crystal form, and the crystallographic c-axis and the rotation axis of the superconductor are within a range of 0 ° ± 30 °. Item 12. The superconducting magnetic bearing according to Item 11. 前記 c軸と回転軸とのなす角度が0°である請求項12記載の超伝導磁気軸受。The superconducting magnetic bearing according to claim 12, wherein an angle formed between the c-axis and the rotating shaft is 0 °.
JP2002196817A 2002-07-05 2002-07-05 Superconducting magnetic bearing Expired - Fee Related JP4220733B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2002196817A JP4220733B2 (en) 2002-07-05 2002-07-05 Superconducting magnetic bearing
CNB031466079A CN1299302C (en) 2002-07-05 2003-07-07 Superconductive device, superconductive magnetic suspension apparatus and superconductive magnetic beraing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002196817A JP4220733B2 (en) 2002-07-05 2002-07-05 Superconducting magnetic bearing

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2008260057A Division JP5131136B2 (en) 2008-10-06 2008-10-06 Superconducting member and superconducting magnetic levitation device

Publications (2)

Publication Number Publication Date
JP2004039949A true JP2004039949A (en) 2004-02-05
JP4220733B2 JP4220733B2 (en) 2009-02-04

Family

ID=31492020

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002196817A Expired - Fee Related JP4220733B2 (en) 2002-07-05 2002-07-05 Superconducting magnetic bearing

Country Status (2)

Country Link
JP (1) JP4220733B2 (en)
CN (1) CN1299302C (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006101585A (en) * 2004-09-28 2006-04-13 Internatl Superconductivity Technology Center Superconducting bearing and magnetically levitating device
JP2006228500A (en) * 2005-02-16 2006-08-31 Institute Of Physical & Chemical Research Method and device of generating magnetic field
CN108110942A (en) * 2018-01-04 2018-06-01 中国科学院电工研究所 A kind of magnetic suspension mechanical energy storage system
JP2018127381A (en) * 2017-02-08 2018-08-16 新日鐵住金株式会社 Method for producing superconductive bulk conjugate
KR20210152547A (en) * 2019-04-30 2021-12-15 인관 세미콘덕터 테크놀로지 씨오., 엘티디. Magnetic Levitation Gravity Compensation Device
CN114803598A (en) * 2022-05-11 2022-07-29 安徽理工大学 Controllable magnetic circuit permanent magnet suspension carrier roller

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114916797B (en) * 2022-05-17 2023-09-15 淄博职业学院 Display cabinet applying superconducting magnetic levitation technology

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4892863A (en) * 1988-09-30 1990-01-09 Eastman Kodak Company Electric machinery employing a superconductor element
JPH0968224A (en) * 1995-08-30 1997-03-11 Koyo Seiko Co Ltd Superconducting bearing device
JP4331850B2 (en) * 2000-03-07 2009-09-16 新日本製鐵株式会社 Superconducting bearing

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006101585A (en) * 2004-09-28 2006-04-13 Internatl Superconductivity Technology Center Superconducting bearing and magnetically levitating device
JP4670094B2 (en) * 2004-09-28 2011-04-13 財団法人国際超電導産業技術研究センター Superconducting bearing and magnetic levitation device
JP2006228500A (en) * 2005-02-16 2006-08-31 Institute Of Physical & Chemical Research Method and device of generating magnetic field
JP4613289B2 (en) * 2005-02-16 2011-01-12 独立行政法人理化学研究所 Magnetic field generation method and magnetic field generation apparatus
JP2018127381A (en) * 2017-02-08 2018-08-16 新日鐵住金株式会社 Method for producing superconductive bulk conjugate
CN108110942A (en) * 2018-01-04 2018-06-01 中国科学院电工研究所 A kind of magnetic suspension mechanical energy storage system
CN108110942B (en) * 2018-01-04 2023-10-27 中国科学院电工研究所 Magnetic suspension mechanical energy storage system
KR20210152547A (en) * 2019-04-30 2021-12-15 인관 세미콘덕터 테크놀로지 씨오., 엘티디. Magnetic Levitation Gravity Compensation Device
KR102622752B1 (en) * 2019-04-30 2024-01-08 인관 세미콘덕터 테크놀로지 씨오., 엘티디. Magnetic Levitation Gravity Compensation Device
CN114803598A (en) * 2022-05-11 2022-07-29 安徽理工大学 Controllable magnetic circuit permanent magnet suspension carrier roller
CN114803598B (en) * 2022-05-11 2024-02-27 安徽理工大学 Controllable magnetic circuit permanent magnet suspension idler

Also Published As

Publication number Publication date
CN1299302C (en) 2007-02-07
CN1476024A (en) 2004-02-18
JP4220733B2 (en) 2009-02-04

Similar Documents

Publication Publication Date Title
JP2968999B2 (en) High thrust and high stability magnet-superconductor system
US5126317A (en) Bearing system employing a superconductor element
US5710469A (en) Magnetic bearing element for a rotor shaft using high-TC superconducting materials
US20070080595A1 (en) Superconductive non-contact rotary device
WO1995020264A1 (en) Magnetic levitation device
US6737777B2 (en) Magnetic bearing and use thereof
US5270601A (en) Superconducting composite magnetic bearings
JP4220733B2 (en) Superconducting magnetic bearing
JP3554070B2 (en) Superconducting magnetic bearing device
JP5131136B2 (en) Superconducting member and superconducting magnetic levitation device
US5479059A (en) Thin film superconductor magnetic bearings
Tixador et al. Hybrid superconducting magnetic suspensions
JP2001248642A (en) Superconductive bearing
JP3631399B2 (en) Superconducting magnetizer
Kim et al. Development of the noncontact rotating system using combined ring-shaped HTS bulks and permanent magnets
JP4670094B2 (en) Superconducting bearing and magnetic levitation device
JP2022071330A (en) High magnetic gradient type superconducting bulk magnet device
JP4874318B2 (en) Superconducting bearing
Mizutani et al. Synthesis and magnetization of high-T_c bulk superconductors and their application as superconducting permanent magnets
Murakami Applications of bulk high temperature superconductors
JPH07327338A (en) Superconducting levitation rotary system
Fukuyama et al. Static and dynamic characteristics of superconducting magnetic bearings using MPMG Y-Ba-Cu-O
JP2001210519A (en) Method for magnetizing oxide superconducting material and magnetizing device
JPH07274563A (en) Superconducting levitation device
JPS63155706A (en) Magnetic levitation apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040901

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20050908

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060118

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080311

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080509

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080805

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081006

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20081016

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081104

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081114

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111121

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4220733

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111121

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111121

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121121

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121121

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131121

Year of fee payment: 5

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131121

Year of fee payment: 5

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131121

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees