JPH07274563A - Superconducting levitation device - Google Patents

Superconducting levitation device

Info

Publication number
JPH07274563A
JPH07274563A JP6493794A JP6493794A JPH07274563A JP H07274563 A JPH07274563 A JP H07274563A JP 6493794 A JP6493794 A JP 6493794A JP 6493794 A JP6493794 A JP 6493794A JP H07274563 A JPH07274563 A JP H07274563A
Authority
JP
Japan
Prior art keywords
superconducting
levitation
damping
levitation device
superconducting material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6493794A
Other languages
Japanese (ja)
Other versions
JP3388868B2 (en
Inventor
Hidekazu Tejima
英一 手嶋
Masamoto Tanaka
将元 田中
Katsuyoshi Miyamoto
勝良 宮本
Mitsuru Morita
充 森田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP06493794A priority Critical patent/JP3388868B2/en
Publication of JPH07274563A publication Critical patent/JPH07274563A/en
Application granted granted Critical
Publication of JP3388868B2 publication Critical patent/JP3388868B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Superconductor Devices And Manufacturing Methods Thereof (AREA)

Abstract

PURPOSE:To provide a non-contact levitation device, which requires no complicate controller, cost of which is reduced and which has high damping characteristics and utilizes superconduction. CONSTITUTION:In a superconducting levitation device, a levitated body 1 is formed by using a magnet 2, and a superconductive material 3 or a conductive material 4 having a damping function and a superconductive material 5 having a levitation function and a high Jc are arranged onto a fixing section 6 at places oppositely faced to the levitated body 1. When the levitated body 1 is vibrated, the low-Jc superconductive material 3 or the conductive material 4 having high electrical conductivity absorbs vibrational energy as thermal energy, and damps vibrations.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、超電導現象を利用した
非接触な浮上装置に関するものであり、例えば、ターボ
分子ポンプや電力貯蔵用フライホイールの軸受装置、半
導体製造プロセスにおける非接触搬送装置、除振装置等
に利用できる超電導浮上装置関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a non-contact levitation device utilizing a superconducting phenomenon, for example, a bearing device for a turbo molecular pump or a flywheel for power storage, a non-contact transfer device in a semiconductor manufacturing process, The present invention relates to a superconducting levitation device that can be used as a vibration isolation device.

【0002】[0002]

【従来の技術】ターボ電子ポンプ、フライホイール、搬
送装置、除振装置等の産業機器において、高効率化、高
速化、長寿命化、低騒音化、クリーン化等の機器に対す
る要請が高まってきている。この要請に応えるため非接
触な浮上装置が望まれており、現在電磁石を利用したも
のが開発されている。しかしながら、電磁石を利用した
非接触な浮上装置においては、浮上体を非接触状態で安
定に保持するために、構造が複雑で費用が嵩ばるという
問題があった。すなわち、浮上体の位置を正確に測定す
るための精密で応答性のよいセンサ、及びセンサからの
信号に基づいて電磁石への通電を制御するための応答性
のよい制御器が必要となるので、構造が複雑で費用が嵩
ばってしまう。そのため、電磁石を利用した制御型の非
接触浮上装置の普及が制限されている。
2. Description of the Related Art In industrial equipment such as turbo electronic pumps, flywheels, conveyors, anti-vibration equipments, etc., there is an increasing demand for equipments such as high efficiency, high speed, long life, low noise and cleanliness. There is. In order to meet this demand, a non-contact levitation device is desired, and a device using an electromagnet is currently being developed. However, the non-contact levitation device using the electromagnet has a problem that the structure is complicated and the cost is high in order to stably hold the levitation body in a non-contact state. That is, a precise and responsive sensor for accurately measuring the position of the floating body, and a responsive controller for controlling the energization of the electromagnet based on the signal from the sensor are required. The structure is complicated and the cost is high. Therefore, the spread of control-type non-contact levitation devices using electromagnets is limited.

【0003】電磁石を利用した非接触浮上装置の問題点
を解決するため、超電導現象を利用した非接触な浮上装
置が提案されている。例えば、超電導磁気軸受に関して
は、特開昭63−243523等がある。超電導による
非接触な浮上装置の中で強いピン止め効果を利用したも
のは、磁石からでている磁力線を超電導体がピン止めす
ることにより浮上体を安定に保持している。すなわち、
浮上体が平衡状態からずれた場合、磁力線がピン止めさ
れているため復元力が働き元の位置の戻ろうとする。こ
のように、超電導を利用した非接触浮上装置は、構造が
簡単で安価な非接触浮上装置を実現させるものとして期
待されている。
In order to solve the problems of the non-contact levitation device using an electromagnet, a non-contact levitation device utilizing a superconducting phenomenon has been proposed. For example, as for the superconducting magnetic bearing, there is JP-A-63-243523. Among non-contact levitation devices using superconductivity, those utilizing the strong pinning effect hold the levitation body stable by pinning the magnetic lines of force from the magnet by the superconductor. That is,
When the levitating body is out of equilibrium, the magnetic force lines are pinned and the restoring force acts to try to return to the original position. As described above, the non-contact levitation device using superconductivity is expected to realize a non-contact levitation device that has a simple structure and is inexpensive.

【0004】[0004]

【発明が解決しようとする課題】上述したように、超電
導を利用した非接触浮上装置は、複雑な制御回路を必要
とせずに安定な浮上を実現できる。しかしながら、浮上
体が平衡状態からずれた場合、復元力が働き元の位置に
戻ろうとするが、非接触で浮上しているため、浮上体は
すぐに平衡位置で止ることなく、平衡位置で長時間震動
するという問題がある。超電導浮上装置を実現させるた
めには、この平衡位置での震動を抑制する必要がある。
例えば、搬送装置や除振装置等で浮上体が平衡点で長時
間震動すると、位置決め精度が悪くなる。また、軸受装
置では、回転数が固有振動数に達したときに、共振現象
により震動が増大し、回転軸が外れてしまうことにな
る。
As described above, the non-contact levitation device utilizing superconductivity can realize stable levitation without requiring a complicated control circuit. However, when the levitation body deviates from the equilibrium state, the restoring force tries to return to the original position, but since it floats without contact, the levitation body does not stop immediately at the equilibrium position, There is a problem of shaking for hours. In order to realize a superconducting levitation device, it is necessary to suppress vibrations at this equilibrium position.
For example, if the levitation body vibrates at the equilibrium point for a long time in a transfer device, a vibration isolation device, etc., the positioning accuracy will deteriorate. Further, in the bearing device, when the number of rotations reaches the natural frequency, the vibration phenomenon increases due to the resonance phenomenon, and the rotation axis comes off.

【0005】上記のような震動を減衰させる機構はダン
ピングと呼ばれるものであり、十分大きなダンピングが
非接触浮上応用には必要である。電磁石を利用した非接
触浮上装置では、電子制御装置によって、浮上体を安定
に浮上させるだけでなく、装置に高ダンピング特性を附
与している。そのため、制御装置は一層複雑なものにな
り、費用も益々嵩ばる。超電導を利用した非接触浮上装
置においても、複雑な制御装置でダンピング特性を付与
することは可能である。しかし、構造が簡単で安価であ
るという超電導非接触浮上装置の特徴が失われてしま
う。
The mechanism for damping the vibration as described above is called damping, and sufficiently large damping is necessary for non-contact floating application. In a non-contact levitation device using an electromagnet, an electronic control device not only stably levitates the levitation body, but also imparts high damping characteristics to the device. As a result, the control device becomes more complicated and more expensive. Even in a non-contact levitation device using superconductivity, it is possible to add damping characteristics with a complicated control device. However, the characteristic of the superconducting non-contact levitation device that the structure is simple and inexpensive is lost.

【0006】本発明は、上述のような問題点を解決し、
複雑な制御装置を必要とせずに安価で、しかも高ダンピ
ング特性を有する超電導を利用した非接触浮上装置を提
供することを目的とする。
The present invention solves the above problems,
It is an object of the present invention to provide a non-contact levitation device that does not require a complicated control device, is inexpensive, and uses superconductivity that has high damping characteristics.

【0007】[0007]

【課題を解決するための手段】本発明の超電導浮上装置
は、上述の課題を解決するために、ダンピング機能を有
する材料を含んだものである。すなわち、(1) 超電
導材料と磁石とからなる浮上装置において、ダンピング
機能を有する材料が該超電導材料と一体となっているこ
とを特徴とする超電導浮上装置、(2) (1)におい
て、ダンピング機能を有する材料として超電導材料を使
用したことを特徴とする超電導浮上装置、(3)
(1)において、ダンピング機能を有する材料として導
電性材料を使用したことを特徴とする超電導浮上装置、
(4) (1)において、ダンピング機能を有する材料
として超電導材料と導電性材料を使用したことを特徴と
する超電導浮上装置、である。
The superconducting levitation apparatus of the present invention contains a material having a damping function in order to solve the above-mentioned problems. That is, (1) in a levitation device including a superconducting material and a magnet, a material having a damping function is integrated with the superconducting material, (2) in (1), a damping function. A superconducting levitation device, characterized in that a superconducting material is used as a material having (3)
In (1), a superconducting levitation device, characterized in that a conductive material is used as a material having a damping function,
(4) A superconducting levitation device according to (1), wherein a superconducting material and a conductive material are used as the material having a damping function.

【0008】なお、ここで一体とは、超電導浮上装置に
おいて、浮上体の位置が変化した時に、浮上機能を担う
高い臨界電流密度(Jc)を有する超電導材料とダイン
ピング機能を有する材料の相対的位置関係が変わらない
ことを意味している。
Here, in the superconducting levitation apparatus, the term "integral" means the relative position of the superconducting material having a high critical current density (Jc) responsible for the levitation function and the material having the dyneping function when the position of the levitation body changes. It means that the relationship does not change.

【0009】本発明の具体的な構造の例としては、図1
に示すように、浮上体を磁石を用いて形成し、この浮上
体と対向する位置に高いJcを有する超電導材料とダン
ピング機能を有する材料を固定部側に配置する。ダンピ
ング機能を有する材料は磁石と高Jc超電導材料の間に
配置する方が、磁石の振動による磁場変化を敏感に感じ
ることができるのでダンピング特性は大きくなる。ま
た、逆に、図2に示すように、浮上体を高Jc超電導材
料とダンピング機能を有する材料で形成し、それらと対
向する位置に磁石を固定部側に配置しても良い。浮上体
は、例えば、軸受装置においては回転軸であり、搬送装
置においては搬送車であり、除振装置においては除振台
である。
FIG. 1 shows an example of a concrete structure of the present invention.
As shown in FIG. 5, a levitation body is formed by using a magnet, and a superconducting material having a high Jc and a material having a damping function are arranged on the fixed portion side at a position facing the levitation body. When the material having a damping function is arranged between the magnet and the high Jc superconducting material, the change in the magnetic field due to the vibration of the magnet can be more sensitively sensed, so that the damping characteristic is enhanced. On the contrary, as shown in FIG. 2, the levitation body may be formed of a high Jc superconducting material and a material having a damping function, and the magnet may be arranged on the fixed portion side at a position facing them. The floating body is, for example, a rotating shaft in the bearing device, a transport vehicle in the transport device, and a vibration isolation table in the vibration isolation device.

【0010】本発明の超電導浮上装置において、浮上機
能は、高いJcを有する、すなわち、高い浮上力を有す
る超電導材料が担う。高Jcの超電導材料としては、例
えば、特願昭63−261607のような単結晶状のR
EBa2 Cu3 7-x 相(REは希土類元素およびそれ
らの組み合わせ)中にRE2 BaCuO5 が分散してい
る酸化物超電導材料がある(QMG材)。ダンピング機
能を有する材料としては、低いJcを有する超電導材料
あるいは高い電気伝導率を有する電導性材料が有効であ
る。
In the superconducting levitating apparatus of the present invention, the levitating function is carried out by the superconducting material having a high Jc, that is, a high levitating force. As a high Jc superconducting material, for example, a single crystal R such as Japanese Patent Application No. 63-261607 can be used.
There is an oxide superconducting material in which RE 2 BaCuO 5 is dispersed in an EBa 2 Cu 3 O 7-x phase (RE is a rare earth element and a combination thereof) (QMG material). As a material having a damping function, a superconducting material having a low Jc or a conductive material having a high electric conductivity is effective.

【0011】[0011]

【作用】本発明の超電導浮上装置において、何らかの原
因で浮上体が平衡位置からずれ、浮上体が振動した場
合、ダンピング機能を有する材料の位置で磁場の変化が
起こる。浮上体の平衡点での振動のエネルギーを、これ
らのダンピング機能を有する材料で熱エネルギーとして
吸収し、振動を減衰させるのである。
In the superconducting levitation device of the present invention, when the levitation body is displaced from the equilibrium position for some reason and the levitation body vibrates, the magnetic field changes at the position of the material having the damping function. The vibration energy at the equilibrium point of the levitating body is absorbed as thermal energy by these materials having a damping function, and the vibration is damped.

【0012】ダンピング機能を有する材料が低Jcの超
電導材料の場合、浮上体の振動に伴って超電導体内の磁
束が動き、エネルギー損失が起こり、浮上体の振動エネ
ルギーを熱エネルギーとして吸収し、振動体の振動を減
衰させる。
When the material having a damping function is a low Jc superconducting material, the magnetic flux in the superconductor moves along with the vibration of the levitation body, resulting in energy loss, and the vibration energy of the levitation body is absorbed as thermal energy, thereby vibrating the vibration body. Dampen the vibration of.

【0013】ダンピング機能を有する材料が導電性材料
の場合、浮上体の振動に伴って導電性材料内に渦電流が
発生し、エネルギー損失が起こり、浮上体の振動エネル
ギーを熱エネルギーとして吸収し、浮上体の振動を減衰
させる。
When the material having a damping function is a conductive material, an eddy current is generated in the conductive material due to the vibration of the levitation body, energy loss occurs, and the vibration energy of the levitation body is absorbed as heat energy. Damps the vibration of the levitating body.

【0014】超電導材料におけるエネルギーの損失は、
超電導体内に存在する磁束量子の動きに起因する。超電
導体の磁束の動き易さの目安である磁束フロー抵抗ρf
は次式で与えられる。 ρf=(H/Hc2 )ρn ここで、Hは超電導体の位置での磁場の強さ、Hc2 超
電導体の上部臨界磁場、ρnは超電導体の常電導状態で
の電気抵抗である。
Energy loss in a superconducting material is
This is due to the movement of the magnetic flux quantum existing in the superconductor. Magnetic flux flow resistance ρf, which is a measure of the ease of movement of the magnetic flux of the superconductor
Is given by ρf = (H / Hc2) ρn where H is the strength of the magnetic field at the position of the superconductor, the upper critical magnetic field of the Hc2 superconductor, and ρn is the electrical resistance of the superconductor in the normal conducting state.

【0015】したがって、ダンピング特性を向上させる
には、Hc2 が大きく、ρnの小さい材料が望ましい。
Hc2 の大きいものとして、Y系あるいはBi系あるい
はTl系あるいはHg系酸化物超電導材料がある。さら
に、超電導体内の磁束の動き易さは、臨界電流密度Jc
にも関係する。超電導体のJcが大きい場合、磁束の動
きを止める力が大きいため、超電導体内の磁束の変位は
Jcの小さなものに比べて小さくなる。全損失エネルギ
ーは体積に比例するため、Hc2 が同じ材料の場合、J
cが小さい材料の方がより高いダンピングを達成するこ
とになる。したがって、Y系あるいはBi系あるいはT
l系あるいはHg系酸化物超電導材料でJcの低い材料
ほど高ダンピング材として好適である。低Jcの超電導
材料は浮上力が小さく、超電導非接触浮上装置に適さな
い材料であるが、これまでとは全く逆の発想により、低
Jcの超電導材料を高ダンピング材として利用するので
ある。浮上機能を担う超電導材料のJcは数Kg程度の
重量を浮上させることを想定すると10000A/cm
2 を超えるものが望ましいが、逆にダンピング機能を担
う超電導材料のJcは小さい方が望ましい。酸化物の標
準的な作製方法である焼結法で作製した酸化物超電導材
料のJcは一般的には1000A/cm2 を超えること
がないので、作製方法が簡便な焼結体をダンピング材と
して用いることを考慮すると、ダンピング機能を担う超
電導材料のJcは、1000A/cm2 以下が望まし
い。
Therefore, in order to improve the damping characteristics, a material having a large Hc2 and a small ρn is desirable.
Materials having a large Hc2 include Y-based, Bi-based, Tl-based, and Hg-based oxide superconducting materials. Furthermore, the ease of movement of the magnetic flux in the superconductor depends on the critical current density Jc.
Also related to. When the Jc of the superconductor is large, the force for stopping the movement of the magnetic flux is large, so that the displacement of the magnetic flux in the superconductor is smaller than that of the one having a small Jc. Since the total energy loss is proportional to the volume, J
Higher damping will be achieved for materials with smaller c. Therefore, Y system or Bi system or T system
A material having a lower Jc and an l-based or Hg-based oxide superconducting material is more suitable as a high damping material. A low Jc superconducting material has a small levitation force and is not suitable for a superconducting non-contact levitation device. However, based on a completely opposite idea, a low Jc superconducting material is used as a high damping material. The superconducting material Jc, which has a levitating function, has a Jc of 10,000 A / cm, assuming that a weight of several Kg is levitated.
It is desirable that the number exceeds 2 , but conversely, it is desirable that the superconducting material having a damping function has a small Jc. Since the Jc of an oxide superconducting material produced by a sintering method, which is a standard method for producing oxides, generally does not exceed 1000 A / cm 2 , a sintered body that is easy to produce is used as a damping material. Considering the use, Jc of the superconducting material having a damping function is preferably 1000 A / cm 2 or less.

【0016】一方、電導性材料におけるエネルギー損失
は、電磁誘導によって渦電流が導電性材料中に流れるこ
とによるジュール熱に起因する。このような渦電流によ
る損失は、高い電気伝導率、すなわち低い電気抵抗率を
有する材料ほど大きくなる。したがって、銅や銀のよう
な電気抵抗率が10-8Ωm以下の金属材料が、高ダンピ
ング材として好適である。このような銅や銀等の高い電
気伝導率を有する金属材料は、非接触浮上装置を構成す
る材料としても利用できるので、装置全体の構造を簡素
化するのに役立つ。
On the other hand, the energy loss in the conductive material is caused by Joule heat due to the eddy current flowing in the conductive material due to electromagnetic induction. The loss due to such an eddy current becomes larger in a material having a higher electric conductivity, that is, a lower electric resistivity. Therefore, a metal material having an electrical resistivity of 10 −8 Ωm or less, such as copper or silver, is suitable as the high damping material. Since such a metal material having high electric conductivity such as copper or silver can be used as a material for a non-contact floating device, it is useful for simplifying the structure of the entire device.

【0017】超電導を利用した非接触浮上装置におい
て、浮上体の振動エネルギーを材料における熱エネルギ
ーで吸収するという発想は、これまでの常識に反するも
のである。すなわち、超電導現象を発現させるには冷却
装置が必要であり、材料における熱エネルギーで吸収す
ることは、超電導状態を常電導状態にクエンチさせる危
険があるからである。これに対し、発明者は、液体ヘリ
ウム温度に比べて液体窒素温度では比熱が十分大きいこ
とに注目し、液体窒素温度以上の臨界温度を有する酸化
物超電導材料を使用することにより、本発明の方法によ
って高ダンピング特性を有する超電導非接触浮上装置を
開発し得たのである。
In the non-contact levitation device utilizing superconductivity, the idea that the vibration energy of the levitation body is absorbed by the thermal energy of the material is contrary to conventional wisdom. That is, a cooling device is required to develop the superconducting phenomenon, and absorption by the heat energy of the material has a risk of quenching the superconducting state into the normal conducting state. On the other hand, the inventor has noticed that the specific heat is sufficiently large at the liquid nitrogen temperature as compared with the liquid helium temperature, and by using an oxide superconducting material having a critical temperature higher than the liquid nitrogen temperature, the method of the present invention can be obtained. We were able to develop a superconducting non-contact levitation device with high damping characteristics.

【0018】[0018]

【実施例】以下、本発明の実施例を図を用いて説明す
る。
Embodiments of the present invention will be described below with reference to the drawings.

【0019】(実施例1)図1は、本発明の超電導浮上
装置の一実施例を示すものである。実施例1は、ダンピ
ング機能を有する材料として低Jcの超電導材料3を用
いた場合である。この超電導浮上装置においては、浮上
体1が永久磁石2を用いて形成されており、この浮上体
の対向する位置に低Jcの超電導材料3と高Jcの超電
導材料5が固定部6側に配置されている。低Jcの超電
導材料3は、高Jcの超電導材料5の上に置かれてい
る。
(Embodiment 1) FIG. 1 shows an embodiment of the superconducting levitation apparatus of the present invention. Example 1 is a case where a low Jc superconducting material 3 is used as a material having a damping function. In this superconducting levitation device, the levitation body 1 is formed by using the permanent magnets 2, and the low Jc superconducting material 3 and the high Jc superconducting material 5 are arranged on the fixed portion 6 side at the opposing positions of the levitation body. Has been done. The low Jc superconducting material 3 is placed on the high Jc superconducting material 5.

【0020】本実施例で使用した高Jcの超電導材料
は、QMG材と呼ばれるもので、単結晶状のREBa2
Cu3 7-x 相(REは希土類元素およびそれらの組み
合わせ)中にRE2 BaCuO5 が分散している酸化物
超電導材料で、液体窒素温度でピン止め力の強い材料で
ある(特願昭63−261607)。具体的に、高Jc
の超電導材料の作製方法を以下に述べる。まず最初に、
イットリウム(Y)、バリウム(Ba)、銅(Cu)の
酸化物をそれぞれ1.3:1.7:2.4の比で秤量
し、それに白金を0.5重量%加える。
The high Jc superconducting material used in this embodiment is called a QMG material, and is a single crystal REBa 2
An oxide superconducting material in which RE 2 BaCuO 5 is dispersed in a Cu 3 O 7-x phase (RE is a rare earth element and a combination thereof), and has a strong pinning force at liquid nitrogen temperature (Japanese Patent Application No. 63-261607). Specifically, high Jc
The method for producing the superconducting material of is described below. First,
Yttrium (Y), barium (Ba), and copper (Cu) oxides are weighed in a ratio of 1.3: 1.7: 2.4, respectively, and platinum is added thereto in an amount of 0.5% by weight.

【0021】次に、この原料粉を十分混練してから仮焼
をする。それから、仮焼粉を成形して、摂氏900度か
ら1200度の温度域で熱処理をして結晶成長させる。
最後に、酸素雰囲気中でアニールして酸素付加を行なう
ことにより、超電導材料の臨界温度が絶対温度90度を
超えるものが作製できる。最終的な超電導材料の大きさ
は、直径が46mmで、厚さが20mmである。この材
料のJcは、試料振動型磁化測定装置(VSM)を使っ
て求めると、絶対温度77Kで磁場1Tにおいて100
00A/cm2 を超える非常に高いものである。
Next, the raw material powder is sufficiently kneaded and then calcined. Then, the calcined powder is molded and heat-treated in a temperature range of 900 to 1200 degrees Celsius to grow crystals.
Finally, by annealing in an oxygen atmosphere to add oxygen, a superconducting material having a critical temperature exceeding 90 ° C. can be manufactured. The final size of the superconducting material is 46 mm in diameter and 20 mm in thickness. The Jc of this material is 100 when the magnetic field is 1T at an absolute temperature of 77K when determined using a sample vibration type magnetization measuring device (VSM).
It is extremely high, exceeding 00 A / cm 2 .

【0022】本実施例で使用したダンピング機能を有す
る低Jcの超電導材料は、Y系の結晶体である。具体的
に、低Jcの超電導材料の作製方法を以下に述べる。ま
ず最初に、イットリウム(Y)、バリウム(Ba)、銅
(Cu)の酸化物をそれぞれ1:2:3の比で秤量す
る。次に、この原料粉を十分混練してから仮焼をする。
それから、仮焼粉を成形して、摂氏800度から100
0度の温度域で熱処理をして結晶させる。最後に、酸素
雰囲気中でアニールして酸素付加を行なうことにより、
超電導材料の臨界温度が絶対温度90度を超えるものが
作製できる。最終的な超電導材料の大きさは、直径が4
6mmで、厚さが3mmである。この材料のJcは、試
料振動型磁化測定装置(VSM)を使って求めると、絶
対温度77Kでゼロ磁場付近においても1000A/c
2 以下の低いものである。本実施例の作製の容易さか
らY系酸化物超電導材料の結晶体を用いたが、Y系の結
晶体の代わりに欠陥の少ない、すなわちピン止め点の少
ない単結晶試料を用いても同様の効果があることは言う
までもない。また、Bi系あるいはTl系あるいはHg
系等の他の酸化物超電導材料を用いても同様の効果があ
ることは言うまでもない。
The low Jc superconducting material having a damping function used in this embodiment is a Y-based crystal. Specifically, a method for producing a low Jc superconducting material will be described below. First, yttrium (Y), barium (Ba), and copper (Cu) oxides are weighed in a ratio of 1: 2: 3, respectively. Next, this raw material powder is sufficiently kneaded and then calcined.
Then, the calcined powder is molded into a temperature range of 800 to 100 degrees Celsius.
Heat treatment is performed in a temperature range of 0 degree to crystallize. Finally, by annealing in an oxygen atmosphere and adding oxygen,
A superconducting material having a critical temperature exceeding 90 ° C. can be produced. The final size of the superconducting material has a diameter of 4
It has a thickness of 6 mm and a thickness of 3 mm. The Jc of this material is 1000 A / c at an absolute temperature of 77 K even in the vicinity of a zero magnetic field, when determined using a sample vibration type magnetization measuring device (VSM).
It is as low as m 2 or less. Although a crystal of a Y-based oxide superconducting material was used because of the ease of production in this example, the same result can be obtained by using a single crystal sample with few defects, that is, with few pinning points, instead of the Y-based crystal. It goes without saying that it is effective. In addition, Bi-based or Tl-based or Hg
It is needless to say that the same effect can be obtained by using other oxide superconducting materials such as those of the series.

【0023】実施例1の効果を調べるため、上記QMG
材とY系結晶体が一体となったもの(実施例1)とQM
G材だけのもの(比較例)について、浮上特性とダンピ
ング特性を測定し、比較した。
In order to investigate the effect of Example 1, the above QMG
Material and Y-based crystal integrated (Example 1) and QM
The levitation characteristics and the damping characteristics of the G material alone (comparative example) were measured and compared.

【0024】浮上特性の測定は、特開平4−17228
0の方法に基づいて行なわれた。具体的には、測定試料
を容器中の液体窒素に浸漬し、表面磁界0.3TのSm
−Co系永久磁石をロッドに取り付けた後、クロスヘッ
ドを5mm/分の速度で降下させ、測定試料と永久磁石
の距離が0.1mmとなった時の磁気反発力を測定し
た。その結果、実施例1のQMG材とY系結晶体が一体
となったものの反発力は、10.5kgで、比較例のQ
MG材だけのものの反発力は12kgであった。
The floating characteristics are measured by the method described in JP-A-4-17228.
It was carried out based on the 0 method. Specifically, the measurement sample is immersed in liquid nitrogen in a container, and Sm with a surface magnetic field of 0.3 T
After the Co-based permanent magnet was attached to the rod, the crosshead was lowered at a speed of 5 mm / min, and the magnetic repulsion force was measured when the distance between the measurement sample and the permanent magnet was 0.1 mm. As a result, the repulsive force of the integrated QMG material of Example 1 and the Y-based crystal was 10.5 kg.
The repulsive force of the MG material alone was 12 kg.

【0025】また、ダンピング特性は、測定試料を容器
中の液体窒素に浸漬し、表面磁界0.45TのNe−F
eB系永久磁石を3mmの浮上高さに保った状態で、磁
石を取り付けたロッドに0.2〜200Hzの振動数の
力を加え、振れの大きさから測定および評価された。共
振を起こす振動数の力が加わったときの振れの大きさか
らダンピング係数を計算した。ダンピング係数が大きい
と、振れが小さくなる。測定の結果、実施例1のQMG
材とY系焼結体が一体となったもののダンピング係数
は、4.75Ns/mで、比較例のQMG材だけのもの
のダンピング係数は1.54Ns/mであった。本発明
の方法でY系焼結体をダンピング機能を有する材料とし
たものでは、Y系焼結体を用いないものに比べて、浮上
特性はほとんど変わらないが、ダンピング特性が約3倍
程向上しており、高浮上力で高ダンピング特性を有する
ことが分かる。
The damping characteristic is that the sample to be measured is immersed in liquid nitrogen in a container and Ne-F with a surface magnetic field of 0.45 T is used.
While the eB-based permanent magnet was kept at a flying height of 3 mm, a force having a frequency of 0.2 to 200 Hz was applied to the rod to which the magnet was attached, and measurement and evaluation were performed based on the magnitude of shake. The damping coefficient was calculated from the magnitude of the shake when a frequency force causing resonance was applied. When the damping coefficient is large, the shake becomes small. As a result of the measurement, QMG of Example 1
The damping coefficient of the integrated material and the Y-based sintered body was 4.75 Ns / m, and the damping coefficient of only the QMG material of the comparative example was 1.54 Ns / m. With the method of the present invention, when the Y-based sintered body is made of a material having a damping function, the floating characteristics are almost the same as those without the Y-based sintered body, but the damping characteristics are improved by about 3 times. Therefore, it can be seen that it has a high levitation force and a high damping characteristic.

【0026】(実施例2)実施例2は、図1において、
ダンピング機能を有する材料として高い電気伝導率の導
電性材料4を用いた場合である。この超電導浮上装置に
おいては、浮上体1が永久磁石2を用いて形成されてお
り、この浮上体1の対向する位置に高い電気伝導率の導
電性材料4と高Jcの超電導材料5が固定部6側に配置
されている。低Jcの超電導材料3は、高Jcの超電導
材料5の上に置かれている。
(Embodiment 2) Embodiment 2 is the same as FIG.
This is the case where the conductive material 4 having high electric conductivity is used as the material having the damping function. In this superconducting levitation device, a levitation body 1 is formed by using a permanent magnet 2, and a conductive material 4 having a high electric conductivity and a superconducting material 5 having a high Jc are fixed to a position where the levitation body 1 faces each other. It is located on the 6 side. The low Jc superconducting material 3 is placed on the high Jc superconducting material 5.

【0027】本実施例で使用した高Jcの超電導材料
は、QMG材と呼ばれるもので、実施例1と同じもので
ある。本実施例で使用したダンピング機能を有する導電
性材料は、抵抗率が0.2×10-8Ωmの銅板である。
その大きさは、直径が46mmで、厚さが3mmであ
る。
The high Jc superconducting material used in this example is called a QMG material, which is the same as that in Example 1. The conductive material having a damping function used in this example is a copper plate having a resistivity of 0.2 × 10 −8 Ωm.
Its size is 46 mm in diameter and 3 mm in thickness.

【0028】実施例2の効果を調べるため、上記QMG
材と銅板が一体となったもの(実施例2)とQMG材だ
けのもの(比較例)について、浮上特性とダンピング特
性を測定し、比較した。浮上特性とダンピング特性の測
定方法は実施例1と同じである。測定の結果、実施例2
のQMG材と銅板が一体となったものの反発力は、10
kgで、比較例のQMG材だけのものの反発力は12k
gであった。
In order to investigate the effect of the second embodiment, the above QMG
The levitation characteristics and damping characteristics were measured and compared for the one in which the material and the copper plate were integrated (Example 2) and the one for only the QMG material (Comparative Example). The method for measuring the floating characteristic and the damping characteristic is the same as in the first embodiment. Measurement results, Example 2
The repulsive force of the integrated QMG material and copper plate is 10
kg, the repulsive force of the QMG material of the comparative example is 12 k
It was g.

【0029】また、実施例2のQMG材と銅板が一体と
なったもののダンピング係数は、4.87Ns/mで、
比較例のQMG材だけのもののダンピング係数は1.5
4Ns/mであった。本発明の方法で銅板をダンピング
機能を有する材料としたものでは、銅板を用いないもの
に比べて、浮上特性はほとんど変わらないが、ダンピン
グ特性が約3倍程向上しており、高浮上力で高ダンピン
グ特性を有することが分かる。
Further, the damping coefficient of the QMG material of Example 2 and the copper plate integrated with each other is 4.87 Ns / m.
The damping coefficient of only the QMG material of the comparative example is 1.5.
It was 4 Ns / m. With the method of the present invention, the copper plate made of a material having a damping function has almost the same levitation characteristics as those without a copper plate, but the damping characteristics are improved by about 3 times, and high levitation force is obtained. It can be seen that it has high damping characteristics.

【0030】実施例1や実施例2では、冷却の容易さか
ら図1のように、浮上体側に永久磁石を配置し、固定側
に超電導材料やダンピング機能を有する材料を配置した
が、図2のように逆の構成でも同様の効果があることは
言うまでもない。
In Embodiments 1 and 2, the permanent magnet is arranged on the floating body side and the superconducting material or the material having a damping function is arranged on the fixed side, as shown in FIG. It is needless to say that the same effect can be obtained even if the configuration is reversed.

【0031】本実施例では、磁石としてNe−Fe−B
系やSm−Co系の永久磁石を用いたが、永久磁石の代
わりとして電磁石でも同様の効果があることは言うまで
もない。
In this embodiment, the magnet is Ne-Fe-B.
Although a system type or Sm-Co type permanent magnet was used, it goes without saying that a similar effect can be obtained with an electromagnet instead of the permanent magnet.

【0032】[0032]

【発明の効果】以上のように、本発明は、ダンピング特
性が向上するように、低Jcの超電導材料や電気伝導度
の高い導電性材料を含むことを特徴とする超電導浮上装
置に関するものである。この発明の超電導浮上装置を用
いれば、簡単な構造で浮上体を安定的に支持することが
できるとともに、電磁石を利用した非接触浮上装置のよ
うに複雑な制御を行なう必要もなく、しかも安価であ
る。したがって、本発明は、広範な技術分野において、
超電導浮上装置の実用化を可能にする。
INDUSTRIAL APPLICABILITY As described above, the present invention relates to a superconducting levitation device including a superconducting material having a low Jc or a conductive material having a high electric conductivity so as to improve damping characteristics. . If the superconducting levitation device of the present invention is used, it is possible to stably support the levitation body with a simple structure, and it is not necessary to perform complicated control like a non-contact levitation device using an electromagnet, and at a low cost. is there. Therefore, the present invention has broad technical fields.
Enables practical application of superconducting levitation equipment.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の超電導浮上装置の一つの実施例を示
す概略構成図である。
FIG. 1 is a schematic configuration diagram showing one embodiment of a superconducting levitation device of the present invention.

【図2】 本発明の超電導浮上装置の他の実施例を示す
概略構成図である。
FIG. 2 is a schematic configuration diagram showing another embodiment of the superconducting levitation device of the present invention.

【符号の説明】[Explanation of symbols]

1…浮上体、 2…磁石、 3…低臨界電流密度の超電導材料、 4…高電気伝導率の導電性材料、 5…高臨界電流密度の超電導材料、 6…固定部。 DESCRIPTION OF SYMBOLS 1 ... Floating body, 2 ... Magnet, 3 ... Superconducting material with low critical current density, 4 ... Conductive material with high electrical conductivity, 5 ... Superconducting material with high critical current density, 6 ... Fixed part.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 森田 充 神奈川県川崎市中原区井田1618番地 新日 本製鐵株式会社先端技術研究所内 ─────────────────────────────────────────────────── ─── Continuation of front page (72) Inventor Mitsuru Morita 1618 Ida, Nakahara-ku, Kawasaki-shi, Kanagawa Nippon Steel Corporation Advanced Technology Research Laboratories

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 超電導材料と磁石とからなる浮上装置に
おいて、ダンピング機能を有する材料が該超電導材料と
一体となっていることを特徴とする超電導浮上装置。
1. A levitation device comprising a superconducting material and a magnet, wherein a material having a damping function is integrated with the superconducting levitation device.
【請求項2】 前記ダンピング機能を有する材料とし
て、超電導材料を使用したことを特徴とする請求項1記
載の超電導浮上装置。
2. The superconducting levitation apparatus according to claim 1, wherein a superconducting material is used as the material having the damping function.
【請求項3】 前記ダンピング機能を有する材料とし
て、導電性材料を使用したことを特徴とする請求項1記
載の超電導浮上装置。
3. The superconducting levitation apparatus according to claim 1, wherein a conductive material is used as the material having the damping function.
【請求項4】 前記ダンピング機能を有する材料とし
て、超電導材料と導電性材料とを使用したことを特徴と
する請求項1記載の超電導浮上装置。
4. The superconducting levitation apparatus according to claim 1, wherein a superconducting material and a conductive material are used as the material having the damping function.
JP06493794A 1994-04-01 1994-04-01 Superconducting levitation device Expired - Lifetime JP3388868B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP06493794A JP3388868B2 (en) 1994-04-01 1994-04-01 Superconducting levitation device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP06493794A JP3388868B2 (en) 1994-04-01 1994-04-01 Superconducting levitation device

Publications (2)

Publication Number Publication Date
JPH07274563A true JPH07274563A (en) 1995-10-20
JP3388868B2 JP3388868B2 (en) 2003-03-24

Family

ID=13272450

Family Applications (1)

Application Number Title Priority Date Filing Date
JP06493794A Expired - Lifetime JP3388868B2 (en) 1994-04-01 1994-04-01 Superconducting levitation device

Country Status (1)

Country Link
JP (1) JP3388868B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0836034A2 (en) * 1996-10-04 1998-04-15 University of Houston Vibration-free levitated platform

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0836034A2 (en) * 1996-10-04 1998-04-15 University of Houston Vibration-free levitated platform
EP0836034A3 (en) * 1996-10-04 2000-11-22 University of Houston Vibration-free levitated platform

Also Published As

Publication number Publication date
JP3388868B2 (en) 2003-03-24

Similar Documents

Publication Publication Date Title
EP0596018B1 (en) Flywheel energy storage with superconducting magnetic bearings
Brandt Rigid levitation and suspension of high‐temperature superconductors by magnets
Moon et al. Hysteretic levitation forces in superconducting ceramics
KR100282088B1 (en) Apparatus for damping relative motion and for modifying relative motion by restrained flux profiles
US4797386A (en) Superconductor-magnet induced separation
Teshima et al. Effect of eddy current dampers on the vibrational properties in superconducting levitation using melt-processed YBaCuO bulk superconductors
US5559384A (en) Controlled levitation/suspension in a magnet-superconductor system
US5567672A (en) Method and apparatus for damping mechanical vibration with a high Tc superconductor
US5117139A (en) Superconducting bearings with levitation control configurations
US5726512A (en) Vibration-free levitated platform
JP3388868B2 (en) Superconducting levitation device
EP0772747B1 (en) Thin film superconductor magnetic bearings
Teshima Combination of additional noncontact dampers and superconducting levitation using melt-processed YBaCuO bulk superconductors
EP0404147A1 (en) Controlled levitation/suspension in a magnet-superconductor system
JP3084132B2 (en) Magnetic levitation device
Lee Electromagnetic properties of Bi system superconductor for magnetic levitation car maglev
Mipamoto et al. Development of non-contact transport system along vertical guideway using QMG bulk materials
JP3328073B2 (en) Magnetic levitation device with damping function
Ma et al. Magnetic interaction force between high-Tc superconductor-ring and magnet
JPH0823690A (en) Non-contact fixing device
JPH0510388A (en) Vibration insulating device
JP3677088B2 (en) Superconducting magnetic bearing
JPH0533827A (en) Vibration isolation device
JPH1174114A (en) Superconducting magnet device
KR930009527B1 (en) Non-touch bearing and shaft turning device using high temperature conductor

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20021203

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090117

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100117

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110117

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120117

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130117

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130117

Year of fee payment: 10

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130117

Year of fee payment: 10

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130117

Year of fee payment: 10

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130117

Year of fee payment: 10

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140117

Year of fee payment: 11

EXPY Cancellation because of completion of term