JPH0823690A - Non-contact fixing device - Google Patents

Non-contact fixing device

Info

Publication number
JPH0823690A
JPH0823690A JP6155040A JP15504094A JPH0823690A JP H0823690 A JPH0823690 A JP H0823690A JP 6155040 A JP6155040 A JP 6155040A JP 15504094 A JP15504094 A JP 15504094A JP H0823690 A JPH0823690 A JP H0823690A
Authority
JP
Japan
Prior art keywords
permanent magnet
surface plate
vibration
oxide superconductor
magnet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP6155040A
Other languages
Japanese (ja)
Inventor
Masamoto Tanaka
將元 田中
Hidekazu Tejima
英一 手嶋
Katsuyoshi Miyamoto
勝良 宮本
Misao Hashimoto
操 橋本
Keita Noguchi
慶太 納口
Katsumi Hiuga
勝美 日向
Shiroshi Tohara
素 戸原
Tsutomu Tohara
勉 戸原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MEIRITSU SEIKI KK
Nippon Steel Corp
Original Assignee
MEIRITSU SEIKI KK
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MEIRITSU SEIKI KK, Nippon Steel Corp filed Critical MEIRITSU SEIKI KK
Priority to JP6155040A priority Critical patent/JPH0823690A/en
Publication of JPH0823690A publication Critical patent/JPH0823690A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Superconductor Devices And Manufacturing Methods Thereof (AREA)

Abstract

PURPOSE:To achieve positioning without any contact and at the same time suppress the displacement of a vibration-elimination stand etc., by connecting either a magnet or oxide superconductor to the vibration-elimination stand and installing the other at a base for device. CONSTITUTION:A surface plate 2 of a device is fixed on an installation floor 3 by an air spring 9 and a trestle 4, non-circular permanent magnet 6 is laid out at the tip of a surface plate fixing post 8 as a floating body, and the permanent magnet 6 is linked to the surface plate 2 in a form where the surface plate 2 mounting a precision equipment 1 can be balanced by the surface plate fixing post 8. On the other hand, a superconductive bulk body 5 is provided in a liquid nitrogen container 7 for cooling which is installed on the installation floor 3 and is cooled to a superconductive critical temperature or less in a magnetic field by the permanent magnet 6 by loading liquid nitrogen which is a refrigerant for lifting the floating body for generating pinning force, thus suppressing the displacement which is generated by enabling the precision equipment 1 to travel on the surface plate 2 and hence fixing the displacement of a stand due to the move of an object on the vibration-elimination stand without any contact and with a simple structure.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、超電導磁気浮上を利用
した非接触固定装置に関する。特に半導体製造ライン等
のように振動が製品の歩留まりに影響を与える設備にお
いて、除振台上で物体移動により除振台位置が変位する
等の、自己発生変位を抑制する非接触固定装置に関する
ものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a non-contact fixing device utilizing superconducting magnetic levitation. Particularly in non-contact fixing devices that suppress self-generated displacement, such as displacement of the vibration isolation table position due to object movement on the vibration isolation table, in equipment such as semiconductor manufacturing lines where vibration affects product yield Is.

【0002】[0002]

【従来の技術および発明が解決しようとする課題】従来
から、ステッパー等のLSI製造装置は、同じ場所へ回
路を重ね描きする際、床振動等からの振動により位置合
わせができなくなったり処理時間が長くなることを防ぐ
ため、除振装置上に載置して使用されてきた。LSIの
集積度が上がるに従い、要求される除振特性も高くなっ
ている。特に半導体製造ライン等で近年問題となりつつ
ある課題として、除振台上の製造設備をシリコンウェハ
等が移動することにより除振台の位置が変位するという
問題がある。将来の高集積度化LSIラインでは、除振
台上の設備での物体移動時に発生する除振台位置変位を
最小にする必要がある。すなわち、除振台等の自己発生
的変位を抑える固定装置が望まれている。加えて、固定
装置自身が振動を伝達しにくいような、非接触固定装置
が望まれている。
2. Description of the Related Art Conventionally, in an LSI manufacturing apparatus such as a stepper, when a circuit is overlaid on the same place, it becomes impossible to perform alignment due to vibrations such as floor vibrations and processing time. In order to prevent it from becoming long, it has been used by mounting it on a vibration isolation device. As the degree of integration of LSI increases, the required vibration isolation characteristics also increase. In particular, as a problem that has become a problem in recent years in a semiconductor manufacturing line or the like, there is a problem that the position of the vibration isolation table is displaced by the movement of the silicon wafer or the like in the manufacturing equipment on the vibration isolation table. In a highly integrated LSI line in the future, it is necessary to minimize the displacement of the vibration isolation table position that occurs when an object moves in equipment on the vibration isolation table. That is, there is a demand for a fixing device that suppresses self-generated displacement of a vibration isolation table or the like. In addition, there is a demand for a non-contact fixing device that makes it difficult for the fixing device to transmit vibrations.

【0003】非接触で、かつ除振台等の位置固定装置に
利用できるものとしては、永久磁石と永久磁石との間や
永久磁石と電磁石との間の磁気吸引力による非接触固定
が考えられる。しかしながら、これら磁石間の磁気吸引
力は、該磁石間位置がほんの僅かに離れた場合は、元の
位置に戻ろうとする力を与えるが、該磁石間の位置が近
づいた場合は復元力を与えない。
As a non-contact type which can be used for a position fixing device such as a vibration isolation table, non-contact fixing by magnetic attraction between permanent magnets and permanent magnets and electromagnets can be considered. . However, the magnetic attraction force between these magnets gives a force to return to the original position when the positions between the magnets are slightly separated, but gives a restoring force when the positions between the magnets approach each other. Absent.

【0004】また、磁気吸引力の不安定性を抑制し、非
接触固定装置と類似するシステムとして、磁気浮上型除
振台に位置変位センサーおよび変位抑制電磁石を組み合
わせたアクティブダンパー等があるが、複雑な電子制御
回路を必要とし、非常に高価なものとなっている。以上
の理由により、非接触でかつ安価な除振台等で利用可能
な固定システムは、これまでのところ存在していない。
Further, as a system which suppresses the instability of the magnetic attraction force and is similar to the non-contact fixing device, there is an active damper in which a position displacement sensor and a displacement suppressing electromagnet are combined with a magnetic levitation type vibration isolation table. It requires a large electronic control circuit and is very expensive. For the above reasons, there is no fixing system so far that can be used in a non-contact and inexpensive anti-vibration table or the like.

【0005】したがって、本発明は、非接触で位置決め
可能であり、除振台等の変位を抑制する安価な非接触固
定装置を提供することを目的とする。
Therefore, an object of the present invention is to provide an inexpensive non-contact fixing device which can be positioned in a non-contact manner and which suppresses displacement of a vibration isolation table or the like.

【0006】[0006]

【課題を解決するための手段】本発明者らは、液体窒素
温度以上の臨界温度を有し、かつ臨界電流密度特性に優
れた酸化物超電導材料を開発するために、研究を鋭意推
進してきた。特にYBCO系酸化物超電導材料を溶融法
で製造することにより、従来の焼結法に比較して2桁以
上高い臨界電流密度を有する材料を開発することに成功
してきた。
The present inventors have earnestly promoted research in order to develop an oxide superconducting material having a critical temperature higher than the liquid nitrogen temperature and excellent in critical current density characteristics. . In particular, by manufacturing a YBCO-based oxide superconducting material by a melting method, it has succeeded in developing a material having a critical current density higher than that of a conventional sintering method by two digits or more.

【0007】その研究過程において、我々が開発したY
系溶融酸化物超電導材料は非常に強いピンニング特性を
有することが明らかになった。そのピンニング力に注目
して研究を精力的に行なった結果、超電導材料を磁場中
に冷却した場合、非常に強い磁石との吸引固定力を有す
る材料開発に成功した。さらに加えて、超電導材料を磁
場中冷却した場合、安定な位置に常にとどまる性質を有
することを明らかにしてきた。これらを組み合わせるこ
とにより上記課題を解決できることを見出だし、この知
見に基づき本発明を完成するに至ったものである。
In the course of the research, we developed Y
It was revealed that the molten oxide superconducting materials have very strong pinning properties. As a result of vigorous research paying attention to the pinning force, we succeeded in developing a material that has a very strong attracting and fixing force with a magnet when the superconducting material is cooled in a magnetic field. Furthermore, it has been clarified that the superconducting material has the property of always staying in a stable position when cooled in a magnetic field. It has been found that the above problems can be solved by combining these, and the present invention has been completed based on this finding.

【0008】すなわち、本発明の目的は、具体的には、
(1) 浮上体および該浮上体を浮上させる手段を有
し、浮上体および該浮上体を浮上させる手段のいずれか
一方に非円形状の永久磁石または電磁石などの磁性部材
を配置し、他方にRE(Yを含む希土類元素の1種類ま
たはそれらの元素の組み合わせ)、Ba、Cuからなる
酸化物超電導体において、超電導相であるREBa2
3 7-x 結晶中に常電導相であるRE2 BaCuO5
が微細に均一分散した組織を有している酸化物超電導体
を設け、前記磁石および酸化物超電導体のいずれか一方
が除振台と連結され、他の一方が装置設置用土台に設置
されていることを特徴とする非接触固定装置の構成とす
ることにより達成される。
That is, the object of the present invention is, specifically,
(1) A levitation body and a means for levitating the levitation body are provided, and a magnetic member such as a non-circular permanent magnet or an electromagnet is arranged on one of the levitation body and the levitation body, and the other is arranged. REBa 2 C which is a superconducting phase in an oxide superconductor composed of RE (one kind of rare earth element including Y or a combination of those elements), Ba and Cu.
RE 2 BaCuO 5 which is a normal conducting phase in the u 3 O 7-x crystal
Is provided with an oxide superconductor having a finely and uniformly dispersed structure, one of the magnet and the oxide superconductor is connected to an anti-vibration table, and the other one is installed on the equipment installation base. It is achieved by the structure of the non-contact fixing device.

【0009】また、本発明の目的は、(2) 非円形状
の永久磁石または電磁石などの磁性部材と酸化物超電導
体との組み合わせが、水平方向と垂直方向に二組以上配
置されることを特徴とする上記(1)に示す非接触固定
装置の構成とすることにより達成される。
Another object of the present invention is (2) that two or more combinations of a magnetic member such as a non-circular permanent magnet or electromagnet and an oxide superconductor are arranged in a horizontal direction and a vertical direction. This is achieved by adopting the configuration of the non-contact fixing device as described in (1), which is a characteristic feature.

【0010】[0010]

【作用】本発明に係る非接触固定装置につき、その原理
に基づきより詳細に説明する。
The non-contact fixing device according to the present invention will be described in more detail based on its principle.

【0011】まず、溶融法で作製されたような強いピン
ニング力を有する本発明に係る超電導体では、該超電導
体と永久磁石または電磁石(以下、単に永久磁石等とも
いう)などの磁性部材を一定の距離をおいて磁場中冷却
すると、通常の永久磁石と永久磁石との間の磁気吸引力
とは大きく異なり、外部磁界の分布を受け継ぐ。
First, in the superconductor according to the present invention having a strong pinning force as produced by the melting method, the superconductor and a magnetic member such as a permanent magnet or an electromagnet (hereinafter, simply referred to as a permanent magnet) are fixed. When cooled in a magnetic field at a distance of, the magnetic attraction between the permanent magnets is very different from the ordinary magnetic attraction, and the distribution of the external magnetic field is inherited.

【0012】したがって、例えば、永久磁石等をスペー
サー等を用いて、超電導体と1cmの距離をおいた状態
で冷却すると、該超電導体には、永久磁石等の磁場分布
の一部が記憶されることになり、スペーサーを取り外し
ても永久磁石等は1cm離れた場所で空間に固定され
る。これは浮上体を浮上させる手段として設けられた溶
融法で作製されたような本発明に係る超電導体が、強い
ピンニングを有するため、磁場中冷却により導入された
磁場分布を保持しようとするからである。この磁場分布
を変えようとする外乱には電磁気的な力が働き、元に戻
そうとする。すなわち、永久磁石等により磁場中冷却し
た際に与えられた磁場分布が基本位置となり、永久磁石
等はその磁場分布を常に保つように一定距離をおいたと
ころで、浮上体として空間に固定配置される。なお、超
電導体と永久磁石等との距離は、除振台上で物体移動に
より除振台位置が変位する等の自己発生変位およひ床な
どからの外来振動に対し、十分な復元力を発現できるよ
うに設定されていればよく、用いる磁石や超電導体の種
類や大きさ、形状などに応じて適宜決定されるものであ
る。
Therefore, for example, when a permanent magnet or the like is cooled with a spacer or the like at a distance of 1 cm from the superconductor, a part of the magnetic field distribution of the permanent magnet or the like is stored in the superconductor. Even if the spacer is removed, the permanent magnet and the like can be fixed in the space at a distance of 1 cm. This is because the superconductor according to the present invention, which is produced by the melting method provided as a means for levitating the levitating body, has strong pinning and therefore tries to retain the magnetic field distribution introduced by cooling in the magnetic field. is there. Electromagnetic force acts on the disturbance that tries to change this magnetic field distribution, and tries to restore it. That is, the magnetic field distribution given when cooled in a magnetic field by a permanent magnet or the like becomes the basic position, and the permanent magnet or the like is fixedly placed in the space as a floating body at a certain distance so that the magnetic field distribution is always maintained. . In addition, the distance between the superconductor and the permanent magnet, etc., should have sufficient restoring force against self-generated displacement such as displacement of the vibration isolation table position due to object movement on the vibration isolation table, and external vibration from the floor. It may be set so that it can be expressed, and is appropriately determined according to the type, size, shape, etc. of the magnet or superconductor used.

【0013】また上記の場合において、磁性部材として
永久磁石を用いる場合には、該永久磁石の形状が、円盤
状あるいは球状などの場合は、その磁石は極めて低抵抗
で回転可能となる。これは、ピンニングで磁石が保持さ
れているということと矛盾しそうであるが、磁石と超電
導体の間の量子化されていない磁束の部分で、その解離
と再結合がほぼ抵抗なく起こり得ることを考えると理解
できる。したがって、磁束密度分布の対称性を悪くする
ことによって、超電導体内の磁束密度分布の対称性が乱
れ、回転に対して抵抗が生じさせられる。すなわち、四
角形等の非円盤形状や非球形状の磁石を用いれば、上下
方向のみならず面方向の振動に対しても復元力が生じ、
理想的な除振台等の非接触固定装置として作用すること
ができる。
In the above case, when a permanent magnet is used as the magnetic member, if the permanent magnet has a disk shape or a spherical shape, the magnet can rotate with extremely low resistance. This seems to be inconsistent with the fact that the pinning holds the magnet, but in the part of the unquantized magnetic flux between the magnet and the superconductor, its dissociation and recombination can occur with almost no resistance. It can be understood by thinking. Therefore, by degrading the symmetry of the magnetic flux density distribution, the symmetry of the magnetic flux density distribution in the superconductor is disturbed, and resistance is generated against rotation. That is, if a non-disc-shaped or non-spherical magnet such as a quadrangle is used, a restoring force is generated not only in the vertical direction but also in the surface direction,
It can act as a non-contact fixing device such as an ideal vibration isolation table.

【0014】これに加えて、本発明で用いる溶融法で作
製されたような超電導体は、それ自体が振動を減衰させ
るダンピング特性をある程度有している。すなわち、本
発明の非接触固定装置において、床等からの外来振動に
より浮上体である永久磁石等が振動した場合、超電導体
のピン止めされていた平衡点から磁束が振動しようとす
る。磁束が変位すると超電導体内に電場が形成される。
この電場に対応して量子化磁束内の常伝導電子が流れを
作り、常伝導電子が結晶格子と相互作用し、熱エネルギ
ーとして放出される。これにより、外来振動は超電導体
内の熱エネルギーロスとして吸収され、振動は減衰す
る。
In addition to this, the superconductor produced by the melting method used in the present invention has damping characteristics to some extent by itself. That is, in the non-contact fixing device of the present invention, when a permanent magnet or the like that is a floating body vibrates due to external vibration from the floor or the like, the magnetic flux tends to vibrate from the equilibrium point where the superconductor is pinned. When the magnetic flux is displaced, an electric field is formed in the superconductor.
Corresponding to this electric field, normal conduction electrons in the quantized magnetic flux form a flow, the normal conduction electrons interact with the crystal lattice, and are emitted as thermal energy. As a result, the external vibration is absorbed as heat energy loss in the superconductor, and the vibration is damped.

【0015】上記非接触固定装置おいて、永久磁石等を
一定の距離をおいて磁場中冷却することにより、ピンニ
ング力により磁石を浮上固定させ、これを除振台等と結
合させる。磁場中冷却された位置が、初期位置となり、
この点から変位しようとする力を、電子制御なしで抑制
する。さらに非接触固定装置への設置床からの外来振動
は超電導材料内等におけるエネルギーロスとして吸収さ
れるため、除振台の除振特性を損わない。
In the above non-contact fixing device, the permanent magnet or the like is cooled in a magnetic field at a constant distance, whereby the magnet is floated and fixed by the pinning force, and this is connected to the vibration isolation table or the like. The position cooled in the magnetic field becomes the initial position,
The force that tends to displace from this point is suppressed without electronic control. Further, external vibrations from the floor installed in the non-contact fixing device are absorbed as energy loss in the superconducting material and the like, so that the vibration isolation characteristics of the vibration isolation table are not impaired.

【0016】さらに、本発明に係る非接触固定装置とし
ては、上記永久磁石等と酸化物超電導体との組み合わせ
が、水平方向と垂直方向に二組以上配置されることが望
ましい。これは、上記非接触固定装置の固定力は、磁束
ピンニングにより生じているため、超電導体内に補足さ
れた磁束量を変化させる場合は大きな力を生じる。すな
わち、磁場中冷却した場合の印加磁場と平行な方向で、
超電導体に磁石を近づけたり、離したりする方向では磁
場変化が大きいため大きな固定力が得られる。しかしな
がら磁石を水平方向に変位させた場合は、超電導体に補
足された磁束にあたえる磁場変化はあまり大きくないた
め、印加磁場と平行な方向と比べると固定力は弱い。し
たがって、3次元的な変位に対して充分に強い固定力を
与える必要がある場合は、z軸方向(印加磁場と平行な
方向=垂直方向)のみならず、x軸およびy軸方向(水
平方向)にも永久磁石等と酸化物超電導体とを組合せて
配置することにより、固定力を付加するものである。
Further, in the non-contact fixing device according to the present invention, it is desirable that two or more combinations of the permanent magnets and the oxide superconductors are arranged in the horizontal direction and the vertical direction. This is because the fixing force of the non-contact fixing device is generated by the magnetic flux pinning, so that a large force is generated when the amount of magnetic flux captured in the superconductor is changed. That is, in the direction parallel to the applied magnetic field when cooled in a magnetic field,
A large fixing force can be obtained because the magnetic field changes greatly in the direction of moving the magnet closer to or further from the superconductor. However, when the magnet is displaced in the horizontal direction, the magnetic field change given to the magnetic flux supplemented by the superconductor is not so large, so that the fixing force is weak as compared with the direction parallel to the applied magnetic field. Therefore, when it is necessary to apply a sufficiently strong fixing force to a three-dimensional displacement, not only in the z-axis direction (direction parallel to applied magnetic field = vertical direction) but also in x-axis and y-axis directions (horizontal direction). Also in (), a fixing force is added by arranging a permanent magnet or the like and an oxide superconductor in combination.

【0017】以上の原理を有してなる本発明の非接触固
定装置につき、詳細に説明する。
The non-contact fixing device of the present invention having the above principle will be described in detail.

【0018】まず、本発明に用いられる超電導体は、R
E(Yを含む希土類元素の1種類またはそれらの元素の
組み合わせ)、Ba、Cuからなる酸化物超電導体であ
って、超電導相であるREBa2 Cu3 7-x 結晶中に
常電導相であるRE2 BaCuO5 が微細に均一分散し
た組織を有している酸化物超電導体であればよい。該酸
化物超電導体では、液体窒素の沸点温度(77K)以上
の臨界温度(Tc)、通常80〜95K(例えば、後述
する実施例1の特公平4−40289号公報によるQM
G法で作製したものでTc=93K程度)を有し、かつ
本発明に係る該酸化物超電導体では、従来の焼結法(T
c=90K、Jc=数10A/cm2 at1T)に比較し
て2桁以上高い優れた臨界電流密度(Jc)、通常1×
104〜4×104 A/cm2 (at77Kand at1T)
(例えば、後述する実施例1の特公平4−40289号
公報によるQMG法で作製したものでJc=3×104
A/cm2 程度)を有し、非常に強いピンニング力(F
p)、通常1×108 〜4×108 N/m3 (at77K
and at1T)(例えば、後述する実施例1の特公平4−
40289号公報によるQMG法で作製したものでFp
=2.5×108N/m3 程度)を有するため、該酸化
物超電導体を磁場中冷却した場合、非常に強い永久磁石
等、例えば、表面磁束密度が3000〜5000ガウス
である永久磁石等との間で、例えば、直径8cmのバル
ク体の場合、5〜20kgf程度の吸引固定力を有する
と共に安定な位置に常にとどまる性質を有するものであ
る。
First, the superconductor used in the present invention is R
An oxide superconductor composed of E (one kind of rare earth elements including Y or a combination of those elements), Ba, and Cu, which is a superconducting phase in a REBa 2 Cu 3 O 7-x crystal in a normal conducting phase. Any oxide superconductor having a structure in which RE 2 BaCuO 5 is finely and uniformly dispersed may be used. In the oxide superconductor, the critical temperature (Tc) of the boiling point temperature of liquid nitrogen (77 K) or higher, usually 80 to 95 K (for example, QM according to Japanese Patent Publication No. 4-40289 of Example 1 described later).
The oxide superconductor manufactured by the G method has Tc = about 93 K), and the oxide superconductor according to the present invention has the conventional sintering method (T
c = 90K, Jc = several 10 A / cm 2 at 1T), an excellent critical current density (Jc) higher by 2 digits or more, usually 1 ×
10 4 to 4 × 10 4 A / cm 2 (at 77Kand at 1T)
(For example, Jc = 3 × 10 4 manufactured by the QMG method according to Japanese Patent Publication No. 4-40289 of Example 1 described later.
A / cm 2 ) and very strong pinning force (F
p), usually 1 × 10 8 to 4 × 10 8 N / m 3 (at 77K
and at 1T) (for example, Japanese Patent Publication No.
Fp produced by the QMG method according to Japanese Patent No. 40289
= 2.5 × 10 8 N / m 3 ), when the oxide superconductor is cooled in a magnetic field, it is a very strong permanent magnet or the like, for example, a permanent magnet having a surface magnetic flux density of 3000 to 5000 gauss. For example, in the case of a bulk body having a diameter of 8 cm, it has a suction fixing force of about 5 to 20 kgf and has the property of always staying in a stable position.

【0019】上記酸化物超電導体において、超電導相で
あるREBa2 Cu3 7-x 結晶中に常電導相であるR
2 BaCuO5 が微細に均一分散した組織を有する構
造とは、該超電導相であるREBa2 Cu3 7-x 結晶
中に、直径20μm以下、好ましくは直径5μm以下の
大きさの常電導相であるRE2 BaCuO5 が5〜60
重量%、好ましくは20〜40重量%の割合で均一分散
した組織構造を有するものである。
In the above oxide superconductor, the normal conducting phase R is contained in the REBa 2 Cu 3 O 7-x crystal which is the superconducting phase.
The structure having a structure in which E 2 BaCuO 5 is finely and uniformly dispersed means that a normal-conducting phase having a diameter of 20 μm or less, preferably 5 μm or less in the REBa 2 Cu 3 O 7-x crystal that is the superconducting phase. RE 2 BaCuO 5 is 5 to 60
It has a structural structure in which it is uniformly dispersed in a weight ratio of 20 to 40% by weight.

【0020】また、上記酸化物超電導体の製造方法とし
ては、例えば、RE(Yを含む希土類元素)、Ba、C
uの酸化物からなる酸化物超電導体において、前記RE
(Yを含む希土類元素)、Ba、Cuの酸化物超電導体
の組織REBa2 Cu3 7- x 相中に直径20ミクロン
以下のRE2 BaCuO5 相が分散した組織を有するこ
とを特徴とする酸化物超電導バルク材料を得るとするも
のとして、上述した原理で説明したような溶融法により
作製されるものである、RE(Yを含む希土類元素)、
Ba、Cu元素を含む溶融体を急冷凝固し、またはRE
2 3 (RE:Yを含む希土類元素)とBaCu酸化物
とを混合して得られた、厚さ5mm以下の板もしくは線
状成形体を一旦1000℃から1350℃の高温に加熱
せしめ半溶融状態にした後、200℃/hr以下の速度
で徐冷し、高臨界電流密度の超電導体を得ることを特徴
とする酸化物超電導バルク材料の製造方法(特公平4−
40289号公報、QMG(Qench and Me
lt Growth)法)、または金属元素比でBa元
素の割合が25mol%から75mol%であるBaお
よびCu元素を含む酸化物体中にRE(Yを含む希土類
元素の1種類またはそれらの元素の組み合わせ)を有す
るRE2 3 が体積率で5から50%分散した前駆体
を、酸化性雰囲気中で一旦、950℃から1350℃ま
での温度領域に加熱し前記前駆体を半溶融状態にした
後、900℃から1100℃の領域に冷却し、前駆体中
のREBa2 Cu3 7-x 相の生成温度のRE組成より
も高い生成温度を有するRE組成のREBa2 Cu3
7-x 相の単結晶状の種結晶を前駆体に接触させ、種結晶
と同じ任意に方位を有する超電導相を800℃から10
60℃の温度領域まで均一温度中あるいは温度勾配中で
徐冷あるいは保定することによってREBa2 Cu3
7-x を連続的に成長させることを特徴とする酸化物高温
超電導体の製造方法(特開平5−301797号公報、
改良QMG法)などが挙げられるが、本発明に係る酸化
物超電導体の製造方法は、上記方法に制限されるもので
なく、従来公知の他の方法を用いて得られたものであっ
てもよい。また、該酸化物超電導体の形状については、
組合せる永久磁石の形状を非対称性の非円形状のものを
用いているため、特に制限されるものでなく、任意の形
状のものを用いることができる。
As a method for producing the above oxide superconductor, for example, RE (rare earth element containing Y), Ba, C
In an oxide superconductor consisting of an oxide of u, the RE
(Rare earth element including Y), Ba, Cu oxide superconductor structure REBa 2 Cu 3 O 7- x phase having a structure in which a RE 2 BaCuO 5 phase having a diameter of 20 μm or less is dispersed As a material for obtaining an oxide superconducting bulk material, RE (rare earth element containing Y), which is manufactured by the melting method as described in the above-mentioned principle,
Rapidly solidifies a melt containing Ba and Cu elements, or RE
Semi-molten by once heating a plate or linear compact having a thickness of 5 mm or less obtained by mixing 2 O 3 (RE: rare earth element including Y) and BaCu oxide to a high temperature of 1000 ° C. to 1350 ° C. After being brought into a state, it is slowly cooled at a rate of 200 ° C./hr or less to obtain a superconductor having a high critical current density, and a method for producing an oxide superconducting bulk material (Japanese Patent Publication No.
40289, QMG (Qench and Me)
lt Growth method), or RE (one kind of rare earth element including Y or a combination of those elements) in an oxide body containing Ba and Cu elements whose ratio of Ba element is 25 mol% to 75 mol% in terms of metal element ratio). A precursor in which RE 2 O 3 having 5 to 50% by volume is dispersed is once heated in an oxidizing atmosphere in a temperature range from 950 ° C. to 1350 ° C. to bring the precursor into a semi-molten state, then cooled 900 ° C. in the region of 1100 ℃, REBa 2 Cu 3 O of RE composition having a forming temperature higher than the RE composition of the product temperature of REBa 2 Cu 3 O 7-x phase in the precursor
A 7-x phase single crystal seed crystal is brought into contact with a precursor to form a superconducting phase having an arbitrary orientation same as that of the seed crystal from 800 ° C. to 10 ° C.
REBa 2 Cu 3 O can be obtained by gradually cooling or retaining the temperature within a temperature range of 60 ° C. in a uniform temperature or a temperature gradient.
Method for producing high temperature oxide superconductor characterized by continuously growing 7-x (JP-A-5-301797,
Improved QMG method), etc., but the method for producing an oxide superconductor according to the present invention is not limited to the above method, and may be one obtained by using another conventionally known method. Good. Regarding the shape of the oxide superconductor,
Since the shape of the permanent magnet to be combined is an asymmetric non-circular shape, it is not particularly limited, and any shape can be used.

【0021】また、本発明に用いられる永久磁石または
電磁石などの磁性部材としては、上記原理で示したよう
に、非対称性である非円形状の永久磁石および電磁石な
どを用いることができる。また、用いる永久磁石等の磁
束密度の大きさは、本発明の装置を設置する除振台上で
物体が移動し変位を与える際に加わる力に対し、上記酸
化物超電導体との組合せにより得られる磁束ピンニング
力による固定力がより大きな力となるように、適宜選択
されるものである。
As the magnetic member such as the permanent magnet or electromagnet used in the present invention, as shown in the above principle, an asymmetric non-circular permanent magnet and electromagnet can be used. In addition, the magnitude of the magnetic flux density of the permanent magnet or the like used is obtained by combining the above-mentioned oxide superconductor with the force applied when the object moves and gives a displacement on the vibration isolation table on which the device of the present invention is installed. It is appropriately selected so that the fixing force by the generated magnetic flux pinning force becomes larger.

【0022】次に、本発明に係る浮上体としては、上述
の酸化物超電導体および上記永久磁石等のいずれか一方
が配置されるものであればよく、該浮上体は、適当な連
結方法、例えば、浮上体に永久磁石等を用いる場合に
は、除振台全体のバランスがとれるように円柱または角
柱などの連結部材などを除振台下面に固定し、該連結部
材の先端部近傍に永久磁石等を除振台上面(下面)に対
して垂直方向および水平方向に取り付けて配置する方法
等があり、また、浮上体に酸化物超電導体を用いる場合
にも、永久磁石と同様に連結部材を用いて、該連結部材
の先端部近傍に固定配置する方法があるが、この場合、
該浮上体である酸化物超電導体は、以下に説明する該浮
上体を浮上させる手段として液体窒素等の冷媒を用い
て、磁場中冷却する必要があることから、該酸化物超電
導体の固定には、接着等の化学的な方法によらず、挟持
等による機械的な方法により固定することが望ましい。
なお、本発明に係る浮上体の連結方法としては、上記方
法に特に制限されるものでなく、実際の設備に適合する
ように、従来公知の他の方法を用いることができる。
Next, the levitation body according to the present invention may be any one in which any one of the above-mentioned oxide superconductor and the above-mentioned permanent magnet is arranged, and the levitation body can be connected by a suitable connecting method, For example, when using a permanent magnet or the like for the levitation body, a connecting member such as a cylinder or a prism is fixed to the lower surface of the vibration isolation table so that the entire vibration isolation table is balanced, and the permanent member is provided near the tip of the connection member. There is a method of mounting magnets and the like vertically and horizontally with respect to the upper surface (lower surface) of the vibration isolation table, and also when an oxide superconductor is used for the levitation body, as with permanent magnets, a connecting member. There is a method of fixedly disposing near the tip of the connecting member by using
Since the oxide superconductor which is the levitation body needs to be cooled in a magnetic field using a coolant such as liquid nitrogen as a means for levitation of the levitation body described below, it is necessary to fix the oxide superconductor. Is preferably fixed by a mechanical method such as sandwiching, instead of a chemical method such as adhesion.
The method for connecting the floating bodies according to the present invention is not particularly limited to the above method, and other conventionally known methods can be used so as to be suitable for actual equipment.

【0023】次に、本発明に係る浮上体を浮上させる手
段としては、上述の酸化物超電導体および上記永久磁石
等のうち、上記浮上体として用いた以外の一方を設け、
これを装置設置用土台に設置したものであればよく、例
えば、浮上体側を上記永久磁石等を用いた連結方法とし
て、該浮上体を浮上させる手段として酸化物超電導体を
設ける場合には、該酸化物超電導体を磁場中冷却するこ
とで強い磁束ピンニング力を生じさせ、これにより該浮
上体を浮上させることができることから、まず磁場中冷
却を行うために、装置設置用土台に設置された冷却装置
中に、該浮上体である永久磁石等と一定の距離となるよ
うに該酸化物超電導体を適当な支持固定部材を用いて支
持固定して設ける。これにより、永久磁石等の外部磁界
により該酸化物超電導体は、常温で磁場中におかれる。
続いて、該冷却装置を作動させて超電導臨界温度以下の
沸点を有する冷媒、例えば、液体窒素(沸点77K)を
直接系外より導入することにより、もしくは直接装置内
で窒素ガスを冷却して液化することにより、磁場中、超
電導臨界温度以下まで冷却して、超電導転移させて該浮
上体を浮上させる手段などがあり、また、浮上体側を上
記酸化物超電導体を用いた連結方法として、該浮上体を
浮上させる手段として永久磁石等を設ける場合にも、浮
上体である酸化物超電導体を磁場中冷却することで強い
磁束ピンニング力を生じさせ、これにより該浮上体を浮
上させることができることから、まず磁場中冷却を行う
ために、まず装置設置用土台に設置された適当な支持固
定部材に該浮上体である酸化物超電導体と一定の距離と
なるように該永久磁石等を支持固定して設ける。また、
除振台に連結された浮上体を封入する形で冷却装置を除
振台または装置設置用土台に設置する。この場合に浮上
体の連結部材等との境界部分には、液体窒素が漏出しな
いように適当なシール部材を用いる。これにより、永久
磁石等の外部磁界により該酸化物超電導体は、常温で磁
場中におかれる。続いて、該冷却装置を作動させて超電
導臨界温度以下の沸点を有する冷媒、例えば、液体窒素
(沸点77K)を直接系外より導入することにより、も
しくは直接装置内で窒素ガスを冷却して液化することに
より、磁場中、超電導臨界温度以下まで冷却して、超電
導転移させて該浮上体を浮上させる手段などがある。な
お、本発明に係る浮上体を浮上させる手段としては、上
記方法に特に制限されるものでなく、実際の設備に適合
するように、従来公知の他の手段を用いて、適宜設計さ
れるものである。
Next, as means for levitating the levitating body according to the present invention, one of the above-mentioned oxide superconductor, the above-mentioned permanent magnet and the like other than the one used as the above-mentioned levitating body is provided.
It may be installed on the base for installing the device. For example, when the levitation body side is a connecting method using the permanent magnet or the like and an oxide superconductor is provided as a means for levitating the levitation body, By cooling the oxide superconductor in a magnetic field, a strong magnetic flux pinning force is generated, which allows the levitation body to levitate.Therefore, in order to perform the cooling in the magnetic field, the cooling installed on the base for installing the device. In the apparatus, the oxide superconductor is supported and fixed by using an appropriate supporting and fixing member so as to have a fixed distance from the floating magnet such as a permanent magnet. As a result, the oxide superconductor is placed in a magnetic field at room temperature by an external magnetic field such as a permanent magnet.
Subsequently, the cooling device is operated to introduce a refrigerant having a boiling point equal to or lower than the superconducting critical temperature, for example, liquid nitrogen (boiling point 77K) directly from outside the system, or directly cools the nitrogen gas in the device to liquefy. In this way, there is a means for levitating the levitation body by cooling to a superconducting critical temperature or lower in a magnetic field to cause superconducting transition, and the levitation side is connected as a connecting method using the oxide superconductor. Even when a permanent magnet or the like is provided as means for levitating the body, a strong magnetic flux pinning force is generated by cooling the oxide superconductor, which is the levitator, in the magnetic field, and thus the levitator can be levitated. First, in order to perform cooling in a magnetic field, first, the permanent magnet is attached to an appropriate supporting and fixing member installed on the base for installing the apparatus so that the levitation body has a constant distance from the oxide superconductor. Providing a stone such as support fixed to. Also,
The cooling device is installed on the vibration isolation table or the equipment installation base so as to enclose the levitation body connected to the vibration isolation table. In this case, a suitable sealing member is used at the boundary between the floating member and the connecting member so that liquid nitrogen does not leak out. As a result, the oxide superconductor is placed in a magnetic field at room temperature by an external magnetic field such as a permanent magnet. Subsequently, the cooling device is operated to introduce a refrigerant having a boiling point equal to or lower than the superconducting critical temperature, for example, liquid nitrogen (boiling point 77K) directly from outside the system, or directly cools the nitrogen gas in the device to liquefy. By doing so, there is a means for cooling to a superconducting critical temperature or lower in a magnetic field to cause a superconducting transition to levitate the levitation body. The means for levitating the levitating body according to the present invention is not particularly limited to the above method, and is appropriately designed by using other conventionally known means so as to be suitable for actual equipment. Is.

【0024】また、本発明に係る除振台は、特に制限さ
れるものでなく、ステッパー等のLSI製造装置など外
来振動を防ぐために用いられている除振装置を含む極め
て広い意味での除振台をさすものである。また、本明細
書中では、一般的な除振台に備えられた搭載盤を便宜
上、除振台と称している。この種の搭載盤として、例え
ば、ハニカム定盤、石定盤、制振鋼板定盤、鋳鉄定盤、
あるいはセラミックス定盤などが一般的に知られてい
る。
The anti-vibration table according to the present invention is not particularly limited, and is an anti-vibration in a very broad sense including an anti-vibration device used for preventing external vibration such as an LSI manufacturing apparatus such as a stepper. It is a table. Further, in the present specification, a mounting board provided on a general vibration isolation table is referred to as an isolation table for convenience. As this type of mounting plate, for example, honeycomb surface plate, stone surface plate, damping steel plate surface plate, cast iron surface plate,
Alternatively, a ceramic surface plate or the like is generally known.

【0025】さらに、本発明に係る装置設置用土台は、
特に制限されるものでなく、上述の除振台などを固定し
ている設置床など、これら製造設備を固定している建屋
の床などであればよいが、好ましくは、該装置設置用土
台からの外来振動を低減させることができるように、該
設置床面に防振ゴムなどの適当な除振部材を設けてなる
装置設置用土台などが望ましい。
Furthermore, the base for installing the device according to the present invention is
It is not particularly limited, as long as it is a floor of a building that secures these manufacturing facilities, such as an installation floor that secures the above-mentioned vibration isolation table, etc., but preferably from the foundation for installing the device. In order to reduce the external vibrations, it is desirable to use a base for installing a device or the like, which is provided with an appropriate vibration-damping member such as a vibration-proof rubber on the installation floor surface.

【0026】[0026]

【実施例】以下、本発明の非接触固定装置の一実施例を
図1および図2を参照して説明する。図1は、移動装置
を内載した精密機器を搭載した空気除振台設備に本発明
の一実施態様として1組の磁石と超電導体(垂直方向;
z軸方向)を用いた非接触固定装置を用いてなる実施例
の概略構成図であり、図2は、移動装置を内載した精密
機器を搭載した空気除振台設備に本発明の他の一実施態
様として5組の磁石と超電導体(z軸方向に1組、x軸
方向およびy軸方向に各2組、水平方向のうち、移動装
置の移動方向;x軸方向)を用いた非接触固定装置を用
いてなる実施例の概略構成図であって、該非接触固定装
置の近傍部分を示す部分断面図である。
DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the non-contact fixing device of the present invention will be described below with reference to FIGS. FIG. 1 shows a set of a magnet and a superconductor (vertical direction;
FIG. 2 is a schematic configuration diagram of an embodiment in which a non-contact fixing device using (z-axis direction) is used, and FIG. 2 shows another example of the present invention in an air isolation table facility equipped with precision equipment having a moving device mounted therein. As one embodiment, a non-use using five sets of magnets and a superconductor (one set in the z-axis direction, two sets in each of the x-axis direction and the y-axis direction, of the horizontal direction, the moving direction of the moving device; the x-axis direction) It is a schematic block diagram of the Example which uses a contact fixing device, Comprising: It is a partial cross section figure which shows the vicinity of this non-contact fixing device.

【0027】実施例1 図1において、移動装置を内載した精密機器1を搭載し
た定盤2は、通常の空気除振台用のハニカム定盤であ
り、該定盤2は、空気バネ9と架台4により設置床3上
に固定されている。定盤2は、本発明を構成する液体窒
素温度以上で超電導転移する超電導バルク体5、永久磁
石6、冷却用液体窒素容器7、永久磁石6と定盤2とを
連結する定盤固定支柱8の非接触固定装置により固定さ
れる。
Example 1 In FIG. 1, a surface plate 2 on which a precision device 1 having a moving device mounted therein is mounted is a honeycomb surface plate for a normal air vibration isolation table, and the surface plate 2 is an air spring 9 It is fixed on the installation floor 3 by the gantry 4. The surface plate 2 is composed of a superconducting bulk body 5, which has a superconducting transition at a liquid nitrogen temperature or higher, which constitutes the present invention, a permanent magnet 6, a cooling liquid nitrogen container 7, and a surface plate fixed column 8 which connects the permanent magnet 6 and the surface plate 2. It is fixed by the non-contact fixing device.

【0028】すなわち、本実施例の非接触固定装置は、
浮上体として非円形状の永久磁石6を定盤固定支柱8の
先端部分に配置し、さらに永久磁石6を定盤固定支柱8
によって精密機器1を搭載した定盤2全体のバランスが
とれる形で定盤2と連結し、他方、超電導バルク体5を
設置床3上に設置された冷却用液体窒素容器7内に設け
た装置であって、該冷却用液体窒素容器7中に冷媒であ
る液体窒素を入れて該永久磁石6による磁場中、超電導
臨界温度以下に冷却してピンニング力を生じさせる浮上
体を浮上させる手段を有するものである。
That is, the non-contact fixing device of this embodiment is
A non-circular permanent magnet 6 is placed as a floating body at the tip of the surface plate fixing column 8, and the permanent magnet 6 is further attached to the surface plate fixing column 8.
An apparatus in which a superconducting bulk body 5 is provided in a cooling liquid nitrogen container 7 installed on an installation floor 3 while the superconducting bulk body 5 is connected to the surface plate 2 in such a manner that the whole surface plate 2 carrying the precision equipment 1 can be balanced. And has means for levitating a levitation body that puts liquid nitrogen as a cooling medium in the cooling liquid nitrogen container 7 and cools it to a superconducting critical temperature or lower in a magnetic field by the permanent magnet 6 to generate a pinning force. It is a thing.

【0029】この構成により、定盤2上を精密機器1が
移動運動することにより生じる変位を抑制するものであ
る。。
With this configuration, the displacement caused by the movement of the precision instrument 1 on the surface plate 2 is suppressed. .

【0030】本実施例においては、液体窒素の沸点(7
7K)温度以上で超電導転移し、強いピンニング力を有
する超電導バルク体5として、先述した特公平4−40
289号公報に示すQMG(Qench and Me
lt Growth)法、すなわち、Y、Ba、Cu元
素を含む溶融体を急冷凝固して得られた、厚さ5mm以
下の板状成形体を1150℃の高温に加熱せしめ半溶融
状態にした後、1℃/hrの速度で徐冷する方法により
作製されたY、Ba、Cuの酸化物からなる酸化物超電
導体において、Y、Ba、Cuの酸化物超電導体の組織
YBa2 Cu37-x 相中に直径20ミクロン以下のY
2 BaCuO5 相が30重量%の割合で均一分散した組
織を有する酸化物超電導体であって、直径80mm、厚
さ20mmに成型されてなる超電導バルク材料(Tc=
92K、Jc=2×104 A/cm2 )を用いた。この
超電導バルク体5の磁気吸引力特性は、インストロンタ
イプの引張試験機に直径60mmφ、厚さ20mmで、
表面磁束密度4500ガウスのNd−Fe−B永久磁石
を付けて測定したところ、約10kgfの吸引力特性を
示した。
In this embodiment, the boiling point of liquid nitrogen (7
7K) Superconducting transition above temperature, and as the superconducting bulk body 5 having a strong pinning force, the above-mentioned Japanese Patent Publication No. 4-40
QMG (Qench and Me) disclosed in Japanese Patent No. 289
lt Growth) method, that is, after a plate-shaped compact having a thickness of 5 mm or less obtained by rapidly solidifying a melt containing Y, Ba, and Cu elements is heated to a high temperature of 1150 ° C. to be in a semi-molten state, In an oxide superconductor made of an oxide of Y, Ba, Cu produced by a method of gradually cooling at a rate of 1 ° C./hr, a texture of an oxide superconductor of Y, Ba, Cu YBa 2 Cu 3 O 7- Y with diameter less than 20 microns in x phase
An oxide superconductor having a structure in which 2 BaCuO 5 phase is uniformly dispersed at a ratio of 30 wt%, and is a superconducting bulk material (Tc = 80 mm in diameter and 20 mm in thickness) formed.
92K, Jc = 2 × 10 4 A / cm 2 ) was used. The magnetic attraction force characteristic of this superconducting bulk body 5 has a diameter of 60 mmφ and a thickness of 20 mm in an Instron type tensile tester.
When an Nd-Fe-B permanent magnet having a surface magnetic flux density of 4500 gauss was attached and measured, an attraction force characteristic of about 10 kgf was shown.

【0031】さらに、本実施例では、磁石形状選定のた
め、厚さ1cmで、それぞれの形状が円盤、正方形、長
方形のSm系永久磁石を用いて、回転自由度に関する固
定力を調査した。磁石円盤状の磁石の場合、回転力に対
する抵抗は全くなく、縦横のアスペクト比が1対1の正
方形(2cm×2cm)の磁石と、1対2の長方形(2
cm×4cm)の磁石とでは回転に対する抵抗はそれぞ
れ、約0.5kgf、約1kgfであった。このことか
ら、回転方向に対する固定力を高めるためには、角型磁
石の形状において、磁石形状の縦横アスペクト比を持た
せるか、磁石内の磁場分布を不均一にすることが望まし
い。一方、強い固定力を得るためには、超電導バルク体
5に補足される磁束量を多くする必要があり、強力で面
積の大きい磁石が望ましい。以上のことから、本実施例
では、アスペクト比が1対2程度の磁石を用いることに
した。
Further, in this embodiment, in order to select the magnet shape, an Sm-based permanent magnet having a thickness of 1 cm and each of a disk shape, a square shape, and a rectangular shape was used to investigate the fixing force with respect to the rotational freedom. Magnet In the case of a disk-shaped magnet, there is no resistance to rotational force, and a square (2 cm x 2 cm) magnet with a vertical and horizontal aspect ratio of 1: 1 and a rectangular (2
The resistance to rotation was about 0.5 kgf and about 1 kgf, respectively. From this, in order to increase the fixing force in the rotation direction, it is desirable that the shape of the rectangular magnet has a vertical and horizontal aspect ratio of the magnet shape or that the magnetic field distribution in the magnet is nonuniform. On the other hand, in order to obtain a strong fixing force, it is necessary to increase the amount of magnetic flux supplemented by the superconducting bulk body 5, and a strong magnet having a large area is desirable. From the above, in this embodiment, a magnet having an aspect ratio of about 1: 2 was used.

【0032】直径80mm、厚さ20mmのQMG法に
より作製された超電導バルク体5を冷却用液体窒素容器
7に固定し、表面磁束密度4500ガウスのNd−Fe
−B系の角型永久磁石6(幅:4cm×長さ:6cm×
厚さ:2cm)を超電導バルク体5の表面から5mm離
して固定した後、冷却用液体窒素容器7に液体窒素を入
れ、磁場中冷却し、非接触固定装置とし動作させた。本
実施例では垂直方向(z軸方向)の変位に対して10k
gfの引張力を示し、水平方向(x軸およびy軸方向)
に対しては3〜5kgfの引張力を示した。この数kg
fという値は、一般的な大きさの空気除振台上で物体が
移動し変位を与える際に加わる力が数百gf以下である
ので、十分な固定力であった。
A superconducting bulk body 5 having a diameter of 80 mm and a thickness of 20 mm and manufactured by the QMG method is fixed to a cooling liquid nitrogen container 7, and Nd-Fe having a surface magnetic flux density of 4500 gauss.
-B type square permanent magnet 6 (width: 4 cm x length: 6 cm x
(Thickness: 2 cm) was fixed at a distance of 5 mm from the surface of the superconducting bulk body 5, and then liquid nitrogen was put into the cooling liquid nitrogen container 7, cooled in a magnetic field, and operated as a non-contact fixing device. In the present embodiment, it is 10 k with respect to the displacement in the vertical direction (z-axis direction).
Indicates gf tensile force, horizontal direction (x-axis and y-axis direction)
The tensile strength was 3 to 5 kgf. This few kg
The value f was a sufficient fixing force because the force applied when an object moves and gives a displacement on an air vibration isolation table of a general size is several hundred gf or less.

【0033】また、本実施例に作製した非接触固定装置
に、外部より100Hzの振動を印加し、振動ダンピン
グ特性を調べた。振動ダンピング係数は1N・sec/
mであり、本非接触固定装置により100Hzの外部振
動は、100分の1以下に低下し、除振台である定盤2
への振動伝達を抑えていることが明らかになった。
Further, vibration of 100 Hz was applied from the outside to the non-contact fixing device manufactured in this example, and the vibration damping characteristic was examined. Vibration damping coefficient is 1N · sec /
The external vibration of 100 Hz is reduced to 1/100 or less by the non-contact fixing device, and the surface plate 2 serving as a vibration isolation table
It became clear that the vibration transmission to the is suppressed.

【0034】また、本実施例では、磁石6としてNd−
Fe−B系やSm−Co系の永久磁石を用いたが、永久
磁石の代わりに電磁石を用いても同様の効果があること
はいうまでもない。
In this embodiment, the magnet 6 is Nd-.
Although the Fe-B type or Sm-Co type permanent magnet is used, it goes without saying that the same effect can be obtained by using an electromagnet instead of the permanent magnet.

【0035】実施例2 実施例1で説明した図1のような一組の永久磁石6と超
電導バルク体5の固定力に加えて、図2に示すような定
盤固定支柱8の側面に水平方向の固定力を向上させるた
めに、永久磁石6と超電導バルク体6の組み合わせを付
加した。z軸方向と同様、x軸方向およびy軸方向(本
実施例では、精密機器1に内載された移動装置の移動方
向をx軸方向とし、z軸およびx軸方向と互いに垂直な
軸方向をy軸方向とした)に実施例1と同様に直径80
mm、厚さ20mmのQMG法により作製された超電導
バルク体5を冷却用液体窒素容器7中に固定した。表面
磁束密度4500ガウスのNd−Fe−B系の角型永久
磁石6(幅:4cm×長さ:6cm×厚さ:2cm)を
定盤固定支柱8に固定し、x、yおよびz軸固定用超電
導バルク体5の表面から約5mm離して、磁場中冷却し
た。これにより、x、yおよびz方向の固定力として垂
直方向と同様の10kgfの引張力が得られ、3次元的
固定力が高まった。
Example 2 In addition to the fixing force of the set of permanent magnets 6 and the superconducting bulk body 5 as shown in FIG. 1 described in Example 1, the side surface of the surface plate fixing column 8 as shown in FIG. A combination of the permanent magnet 6 and the superconducting bulk body 6 was added in order to improve the fixing force in the direction. Similar to the z-axis direction, the x-axis direction and the y-axis direction (in the present embodiment, the moving direction of the moving device mounted in the precision instrument 1 is defined as the x-axis direction, and the z-axis direction and the x-axis direction are perpendicular to each other. In the y-axis direction) and a diameter of 80
The superconducting bulk body 5 having a thickness of 20 mm and a thickness of 20 mm and manufactured by the QMG method was fixed in the cooling liquid nitrogen container 7. An Nd-Fe-B system square permanent magnet 6 (width: 4 cm x length: 6 cm x thickness: 2 cm) having a surface magnetic flux density of 4500 gauss is fixed to a surface plate fixing column 8 and x, y and z axes are fixed. It was separated from the surface of the superconducting bulk body 5 by about 5 mm and cooled in a magnetic field. As a result, a tensile force of 10 kgf similar to that in the vertical direction was obtained as the fixing force in the x, y, and z directions, and the three-dimensional fixing force was increased.

【0036】さらに加えて、これら実施例1および2の
磁石と超電導体の配置は、逆(すなわち、浮上体として
配置するものが逆)でも可能であることはいうまでもな
い。
In addition, it goes without saying that the magnets and the superconductors in Examples 1 and 2 can be arranged in reverse (that is, the arrangement as a floating body is opposite).

【0037】また非接触固定装置に対して、設置床3よ
り振動伝達を減少させるために、非接触固定装置下部、
例えば、図2に示すように、設置床3と冷却用液体窒素
容器7との間に防振ゴム等のそれ自身が引張力により大
きく変位せず、かつある程度の除振能力を有する簡易除
振部材10を併せて使うことにより、より効果的に動作
する。
For the non-contact fixing device, in order to reduce vibration transmission from the installation floor 3, the lower part of the non-contact fixing device,
For example, as shown in FIG. 2, a simple vibration isolator having a vibration isolating ability such that the vibration isolating rubber itself is not largely displaced by a tensile force between the installation floor 3 and the cooling liquid nitrogen container 7. By using the member 10 in combination, it operates more effectively.

【0038】[0038]

【発明の効果】以上の説明から明らかなように、本発明
の非接触固定装置によれば、簡単な構造で除振台上の物
の移動による台の変位を固定することができる。さらに
従来の変位センサーや電磁石を利用したような除振台変
位制御装置のように複雑な制御を行なう必要もなく、し
かも安価である。したがって、本発明は、除振台分野に
おいて、画期的な非接触固定装置の実現を可能にする。
As is apparent from the above description, according to the non-contact fixing device of the present invention, the displacement of the table due to the movement of the object on the vibration isolation table can be fixed with a simple structure. Furthermore, it is not necessary to perform complicated control unlike the conventional vibration sensor displacement control device using a displacement sensor or an electromagnet, and it is inexpensive. Therefore, the present invention makes it possible to realize an epoch-making non-contact fixing device in the vibration isolation table field.

【図面の簡単な説明】[Brief description of drawings]

【図1】 移動装置を内載した精密機器を搭載した空気
除振台設備に本発明の一実施態様として1組の磁石と超
電導体を用いた非接触固定装置を用いてなる実施例の概
略構成図である。
FIG. 1 is a schematic view of an embodiment in which a non-contact fixing device using a set of magnets and a superconductor is used as an embodiment of the present invention in an air vibration isolation table equipment equipped with a precision device having a moving device mounted therein. It is a block diagram.

【図2】 移動装置を内載した精密機器を搭載した空気
除振台設備に本発明の他の一実施態様として5組の磁石
と超電導体を用いた非接触固定装置を用いてなる実施例
の概略構成図であって、該非接触固定装置の近傍部分を
示す部分断面図である。
FIG. 2 is an example in which a non-contact fixing device using five sets of magnets and superconductors is used as another embodiment of the present invention in an air isolation table equipment equipped with a precision device having a moving device mounted therein. FIG. 3 is a schematic configuration diagram of FIG. 3, which is a partial cross-sectional view showing a portion near the non-contact fixing device.

【符号の説明】[Explanation of symbols]

1…除振台上で移動する精密機器、 2…定盤、3…
設置床、 4…架台、5…超電
導バルク体、 6…永久磁石、7…冷却
用液体窒素容器、 8…定盤固定支柱、9…
空気バネ、 10…簡易除振部材。
1 ... Precision equipment that moves on a vibration isolation table, 2 ... surface plate, 3 ...
Installation floor, 4 ... Stand, 5 ... Superconducting bulk body, 6 ... Permanent magnet, 7 ... Liquid nitrogen container for cooling, 8 ... Plate fixed column, 9 ...
Air spring, 10 ... Simple vibration isolation member.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 手嶋 英一 神奈川県川崎市中原区井田1618番地 新日 本製鐵株式会社先端技術研究所内 (72)発明者 宮本 勝良 神奈川県川崎市中原区井田1618番地 新日 本製鐵株式会社先端技術研究所内 (72)発明者 橋本 操 神奈川県川崎市中原区井田1618番地 新日 本製鐵株式会社先端技術研究所内 (72)発明者 納口 慶太 神奈川県横浜市神奈川区栄町16−18 明立 精機株式会社内 (72)発明者 日向 勝美 神奈川県横浜市神奈川区栄町16−18 明立 精機株式会社内 (72)発明者 戸原 素 神奈川県横浜市神奈川区栄町16−18 明立 精機株式会社内 (72)発明者 戸原 勉 神奈川県横浜市神奈川区栄町16−18 明立 精機株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Eiichi Teshima 1618 Ida, Nakahara-ku, Kawasaki-shi, Kanagawa Inside Nippon Steel Corporation Advanced Technology Research Institute (72) Inventor Katsuyoshi Miyamoto 1618 Ida, Nakahara-ku, Kawasaki-shi, Kanagawa Address Nippon Steel Co., Ltd. Advanced Technology Research Laboratory (72) Inventor Misao Hashimoto 1618 Ida, Nakahara-ku, Kawasaki-shi, Kanagawa Nippon Steel Co., Ltd. Advanced Technology Research Laboratory (72) Inventor Keita Noguchi Yokohama, Kanagawa Prefecture 16-18 Sakaemachi, Kanagawa-ku, Kanagawa, Meiji Seiki Co., Ltd. (72) Inventor Katsumi Hinata 16-18, Sakaemachi, Kanagawa-ku, Yokohama, Kanagawa Prefecture 16-18 Meiritsu Seiki Co., Ltd. (72) Inventor Tsutomu Tohara 16-18 Sakaemachi, Kanagawa-ku, Yokohama, Kanagawa Prefecture Meiritsu Seiki Co., Ltd.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 浮上体および該浮上体を浮上させる手段
を有し、浮上体および該浮上体を浮上させる手段のいず
れか一方に非円形状の永久磁石または電磁石などの磁性
部材を配置し、他方にRE(Yを含む希土類元素の1種
類またはそれらの元素の組み合わせ)、Ba、Cuから
なる酸化物超電導体において、超電導相であるREBa
2 Cu3 7-x 結晶中に常電導相であるRE2 BaCu
5 が微細に均一分散した組織を有している酸化物超電
導体を設け、前記磁石および酸化物超電導体のいずれか
一方が除振台と連結され、他の一方が装置設置用土台に
設置されていることを特徴とする非接触固定装置。
1. A levitation body and a means for levitating the levitation body, wherein a magnetic member such as a non-circular permanent magnet or an electromagnet is arranged on one of the levitation body and the levitation body. On the other hand, RE (a rare earth element including Y or a combination of those elements), Ba, and Cu, which is a superconducting phase in the oxide superconductor REBa
RE 2 BaCu which is a normal conducting phase in 2 Cu 3 O 7-x crystal
An oxide superconductor having a structure in which O 5 is finely and uniformly dispersed is provided, and either one of the magnet and the oxide superconductor is connected to a vibration isolation table, and the other one is installed on a base for device installation. A non-contact fixing device characterized by being provided.
【請求項2】 前記非円形状の永久磁石または電磁石な
どの磁性部材と前記酸化物超電導体との組み合わせが、
水平方向と垂直方向に二組以上配置されることを特徴と
する請求項1に記載の非接触固定装置。
2. A combination of a magnetic member such as the non-circular permanent magnet or electromagnet and the oxide superconductor,
The non-contact fixing device according to claim 1, wherein two or more sets are arranged in a horizontal direction and a vertical direction.
JP6155040A 1994-07-06 1994-07-06 Non-contact fixing device Withdrawn JPH0823690A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6155040A JPH0823690A (en) 1994-07-06 1994-07-06 Non-contact fixing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6155040A JPH0823690A (en) 1994-07-06 1994-07-06 Non-contact fixing device

Publications (1)

Publication Number Publication Date
JPH0823690A true JPH0823690A (en) 1996-01-23

Family

ID=15597363

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6155040A Withdrawn JPH0823690A (en) 1994-07-06 1994-07-06 Non-contact fixing device

Country Status (1)

Country Link
JP (1) JPH0823690A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006162562A (en) * 2004-12-10 2006-06-22 Yokohama Rubber Co Ltd:The Method and apparatus for measuring rubber thickness of tire surface
CN107659210A (en) * 2017-10-10 2018-02-02 北京紫晶立方科技有限公司 The auxiliary of magnetic expelling type magnetic levitation product places fixture, system and laying method
CN114459180A (en) * 2022-02-08 2022-05-10 山东万能干细胞生物技术有限公司 Vehicle-mounted circulating cold supply type liquid nitrogen storage box

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006162562A (en) * 2004-12-10 2006-06-22 Yokohama Rubber Co Ltd:The Method and apparatus for measuring rubber thickness of tire surface
CN107659210A (en) * 2017-10-10 2018-02-02 北京紫晶立方科技有限公司 The auxiliary of magnetic expelling type magnetic levitation product places fixture, system and laying method
CN114459180A (en) * 2022-02-08 2022-05-10 山东万能干细胞生物技术有限公司 Vehicle-mounted circulating cold supply type liquid nitrogen storage box
CN114459180B (en) * 2022-02-08 2023-08-08 山东万能干细胞生物技术有限公司 Vehicle-mounted circulating cooling type liquid nitrogen preservation box

Similar Documents

Publication Publication Date Title
KR100282088B1 (en) Apparatus for damping relative motion and for modifying relative motion by restrained flux profiles
US5831362A (en) Magnet-superconductor flywheel and levitation systems
US5214981A (en) Flywheel energy storage with superconductor magnetic bearings
US6231011B1 (en) Satellite angular momentum control system using magnet-superconductor flywheels
Ma et al. Superconductor and magnet levitation devices
US4797386A (en) Superconductor-magnet induced separation
JPH11507710A (en) High performance magnetic bearing system using high temperature superconductor
US5334965A (en) Superconductive material and magnetic field for damping and levitation support and damping of cryogenic instruments
US5726512A (en) Vibration-free levitated platform
US5567672A (en) Method and apparatus for damping mechanical vibration with a high Tc superconductor
JPH0823690A (en) Non-contact fixing device
US5479059A (en) Thin film superconductor magnetic bearings
Weinberger et al. Characterization of composite high temperature superconductors for magnetic bearing applications
JPH0510388A (en) Vibration insulating device
Yu et al. Vibration isolation for space structures using HTS-magnet interaction
US20100244343A1 (en) Thermally switched ferromagnetic latching support system
JP3388868B2 (en) Superconducting levitation device
Postrekhin et al. Oscillation stability of levitated HTSC in inhomogeneous magnetic field
Ma et al. Magnetic interaction force between high-Tc superconductor-ring and magnet
JPH08326839A (en) Superconductive-magnetically floating type vibration removing device
JPH1174114A (en) Superconducting magnet device
JPH0533828A (en) Vibration isolation method
JPH02237485A (en) Magnetic levitating apparatus
Murakami Applications of bulk high temperature superconductors
Wolfshtein et al. A superconducting magnetic levitation device for the transport of light payloads

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20011002