JPH07327338A - Superconducting levitation rotary system - Google Patents

Superconducting levitation rotary system

Info

Publication number
JPH07327338A
JPH07327338A JP6140921A JP14092194A JPH07327338A JP H07327338 A JPH07327338 A JP H07327338A JP 6140921 A JP6140921 A JP 6140921A JP 14092194 A JP14092194 A JP 14092194A JP H07327338 A JPH07327338 A JP H07327338A
Authority
JP
Japan
Prior art keywords
permanent magnet
superconductor
superconducting
levitation
outer peripheral
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6140921A
Other languages
Japanese (ja)
Inventor
Masao Nakajima
正男 中島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Metals Ltd
Original Assignee
Sumitomo Special Metals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Special Metals Co Ltd filed Critical Sumitomo Special Metals Co Ltd
Priority to JP6140921A priority Critical patent/JPH07327338A/en
Publication of JPH07327338A publication Critical patent/JPH07327338A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C32/00Bearings not otherwise provided for
    • F16C32/04Bearings not otherwise provided for using magnetic or electric supporting means
    • F16C32/0406Magnetic bearings
    • F16C32/0408Passive magnetic bearings
    • F16C32/0436Passive magnetic bearings with a conductor on one part movable with respect to a magnetic field, e.g. a body of copper on one part and a permanent magnet on the other part
    • F16C32/0438Passive magnetic bearings with a conductor on one part movable with respect to a magnetic field, e.g. a body of copper on one part and a permanent magnet on the other part with a superconducting body, e.g. a body made of high temperature superconducting material such as YBaCuO

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Connection Of Motors, Electrical Generators, Mechanical Devices, And The Like (AREA)
  • Superconductor Devices And Manufacturing Methods Thereof (AREA)

Abstract

PURPOSE:To obtain a superconducting levitation rotary system comprising a permanent magnet and a superconductor arranged oppositely each other in which stabilized rotation free from shift of the shaft is ensured for a levitation rotor. CONSTITUTION:Permanent ring magnets 11, 12 are supported on a rotary disc 10 and an annular auxiliary permanent magnet 14 producing a field in the radial direction is disposed independently on the outer peripheral surface of the permanent ring magnet 12. Consequently, repelling force is generated between the annular auxiliary permanent magnet 14 and the superconductor to increase the horizontal locking power of the rotary disc 10. Since the outer peripheral repelling force effect is superposed on the magnetic levitation effect and/or the pinning effect, a large centripetal force is produced and stabilized rotary characteristics free from shift of the shaft can be obtained.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、超電導体の超電導磁
気浮上力を利用した電力貯蔵装置用のフライホイールや
磁気軸受装置に使用する非接触の超電導浮上型回転装置
の改良に係り、回転側の回転軸ずれを抑制し回転盤の極
めて円滑な回転を可能にした超電導浮上型回転装置に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a non-contact superconducting levitation type rotating device for use in a flywheel or a magnetic bearing device for a power storage device utilizing the superconducting magnetic levitation force of a superconductor, and to a rotating side. The present invention relates to a superconducting levitation-type rotating device that suppresses the rotational axis deviation of the above and enables an extremely smooth rotation of a turntable.

【0002】[0002]

【従来の技術】従来より、超電導体の物理的特性を生か
した技術の研究が盛んに行われているが、特に最近で
は、磁気浮上効果及びピン止め効果による超電導浮上力
を利用した非接触の超電導浮上型回転装置は、原理的に
それがエネルギー不要、低摩擦、高速回転等を可能とす
るため、磁気軸受装置や、電力貯蔵装置用大型フライホ
イール等への利用が研究されている。
2. Description of the Related Art Conventionally, a lot of research has been conducted on techniques utilizing the physical characteristics of superconductors. In particular, recently, a non-contact type utilizing the superconducting levitation force by the magnetic levitation effect and the pinning effect has been developed. The superconducting levitation type rotating device has been studied for use in magnetic bearing devices, large flywheels for electric power storage devices, etc., because it enables energy-free, low friction, and high-speed rotation in principle.

【0003】特に、液体窒素温度領域で作動する酸化物
超電導体の発見によって、冷却体として安価で取扱いの
容易な液体窒素が使用できるようになったこと、及び強
い超電導浮上力を持つ高温超電導バルク材料が開発され
たことが超電導体に対する浮上力を利用した研究の大き
な契機となった。
In particular, the discovery of oxide superconductors operating in the liquid nitrogen temperature range has made it possible to use liquid nitrogen as a cooling body, which is inexpensive and easy to handle, and high-temperature superconducting bulk having a strong superconducting levitation force. The development of the material was a major impetus for research that used the levitation force on superconductors.

【0004】フライホイールによる電力貯蔵は、電力を
回転エネルギーに蓄え、必要な時に電力として取り出し
て使用するものである。超電導フライホイールを大型化
すれば、より多くの電力貯蔵が可能となり、このような
装置の大型化は、永久磁石と超電導体の数を増やすこと
によって達成できる。
The electric power storage by the flywheel is one in which electric power is stored in rotational energy and is taken out and used as electric power when necessary. Larger superconducting flywheels allow more power storage, and such larger devices can be achieved by increasing the number of permanent magnets and superconductors.

【0005】磁気軸受においても、大きな負荷が加わる
場合でも安定した回転を維持するために、又用途の拡大
等の観点から、これらの大型化が要求されている。軸受
の具体的な構成としては下記の如き構成が知られてい
る。すなわち、図5(四国電力(株)、(株)四国総合
研究所、平成3年6月発行の研究期報No.57に所載
(52〜61頁)の芝山宗昭、高畑良一ら執筆の「超電
導磁気軸受の基本特性および大型フライホイール軸受へ
の適用化検討」より転用)を参照して説明すると、8個
の円板形イットリウム系超電導体6を環状に埋め込んだ
一対の円盤5を空隙を形成して対向させ、その空隙内に
両面にリング状永久磁石1を埋め込んだ回転盤3を、各
超電導体表面から所定の隙間を設けて前記円盤と同心状
に配置する。リング状永久磁石1は通常、複数に分割さ
れた弓形状のNd−Fe−B系永久磁石から構成され、
軸2に一体化された非磁性材からなる回転盤3に埋め込
む。軸2の上方には駆動モーター7が設置されている。
Also in the magnetic bearing, in order to maintain stable rotation even when a large load is applied, and from the viewpoint of expansion of applications, it is required to increase their size. The following configurations are known as specific configurations of the bearing. 5 (Shikoku Electric Power Co., Inc., Shikoku Research Institute, published in June 1991, Research Bulletin No. 57 (pages 52 to 61), written by Muneaki Shibayama and Ryoichi Takahata. This is explained with reference to “Basic characteristics of superconducting magnetic bearings and study of application to large flywheel bearings”), and a pair of discs 5 in which eight disc-shaped yttrium-based superconductors 6 are annularly embedded are provided as voids. The rotating discs 3 are formed so as to face each other, and the ring-shaped permanent magnets 1 are embedded on both surfaces in the space, and are arranged concentrically with the discs with a predetermined gap from the surface of each superconductor. The ring-shaped permanent magnet 1 is usually composed of a plurality of arc-shaped Nd-Fe-B-based permanent magnets,
It is embedded in the rotary disk 3 made of a non-magnetic material and integrated with the shaft 2. A drive motor 7 is installed above the shaft 2.

【0006】[0006]

【発明が解決しようとする課題】上記の装置において、
永久磁石を組み込んだ回転盤3に駆動モーター7によっ
て回転力を付与すると、永久磁石による磁場と、それを
打ち消すように超電導体に流れるしゃへい電流の形成す
る対向面での同極性磁場によって発生する浮上力によ
り、原理的には非接触状態を維持したまま半永久的に回
転する。しかし、現実的には高速回転中の超電導体特有
のピン止め効果による向心力を超える、軸中心よりの重
心ずれや中心からの磁場の不均一などの要因により、過
大な外力が作用して浮上回転体が軸ずれを起こして回転
が停止したり、浮上回転体が脱落したりする。
In the above device,
When a rotating force is applied to the turntable 3 incorporating the permanent magnets by the drive motor 7, the magnetic field generated by the permanent magnets and the levitation generated by the same polarity magnetic field on the opposing surface forming the shielding current flowing in the superconductor so as to cancel it. In principle, the force causes semi-permanent rotation while maintaining the non-contact state. However, in reality, due to factors such as exceeding the centripetal force due to the pinning effect peculiar to a superconductor during high-speed rotation, deviation of the center of gravity from the axis center, and non-uniformity of the magnetic field from the center, an excessive external force acts to cause levitation rotation. The body may be misaligned to stop rotation, or the levitation body may fall off.

【0007】この発明は、上述の問題に鑑み、永久磁石
と超電導体とを対向配置してなる超電導浮上型回転装置
において、浮上回転体の軸ずれのない安定した回転を確
保した構成の提供を目的としている。
In view of the above-mentioned problems, the present invention provides a superconducting levitation type rotating device in which a permanent magnet and a superconductor are arranged so as to face each other, and a structure in which stable rotation of the levitation rotor without axial misalignment is secured. Has an aim.

【0008】[0008]

【課題を解決するための手段】この発明は、空隙を形成
して対向する永久磁石体と超電導体とを相対的に回転可
能に配置した超電導浮上型回転装置において、該永久磁
石体外周部側にラジアル方向の磁化方向成分を有する環
状補助永久磁石を配置したことを特徴とする超電導浮上
型回転装置である。
SUMMARY OF THE INVENTION The present invention is a superconducting levitation type rotating device in which a permanent magnet body and a superconductor facing each other with a gap therebetween are rotatably arranged, and the permanent magnet body outer peripheral side. The superconducting levitation type rotating device is characterized in that an annular auxiliary permanent magnet having a magnetization direction component in the radial direction is arranged in the.

【0009】この発明において、使用する超電導体は強
力な超電導磁気反発力を要するため、YBa2Cu
3x、Bi2Sr2Ca2Cu3x等の酸化物高温超電導
体が用いられる。特に、強い反発力と軸ずれに対する安
定性の得られるイットリウム系およびサマリウム系超電
導体が適している。
In the present invention, since the superconductor used requires strong superconducting magnetic repulsion, YBa 2 Cu is used.
3 O x, an oxide high-temperature superconductor such as Bi 2 Sr 2 Ca 2 Cu 3 O x is used. In particular, yttrium-based and samarium-based superconductors, which can obtain strong repulsive force and stability against axis deviation, are suitable.

【0010】この発明に用いる永久磁石体としては、従
来の鋳造磁石やフェライト磁石等が用いられるが、特に
超電導体への対向面に強力な磁束を発生させ、装置の小
型化を可能にする最大エネルギー積の高いNd−Fe−
B系および低温特性にすぐれたPr−Fe−B系磁石等
の希土類永久磁石が好ましい。また、永久磁石体は、均
一性の高い磁界が得られる構成であれば、いずれの構成
でもよいが、複数のリング状永久磁石を回転軸と同心円
状に配置する構成が好ましい。リング状永久磁石の外径
が小さい場合は継ぎ目のない一体型の永久磁石も利用で
き、外径が大きい場合は実施例の如く複数の弓型磁石を
接続して所要内外径のリング状永久磁石に組み立てるこ
とができる。超電導体はこれらの永久磁石による良好な
磁気浮上効果及び/又はピン止め効果を達成する構成で
あればいずれの構成でも良く、円板状の複数の超電導体
を前記永久磁石に対向させて環状に配置する等、要求さ
れる諸特性に応じて適宜選定することができる。
Conventional permanent magnet bodies used in the present invention include conventional cast magnets and ferrite magnets. In particular, a strong magnetic flux is generated on the surface facing the superconductor, which enables the miniaturization of the apparatus. High energy product Nd-Fe-
A rare earth permanent magnet such as a Pr-Fe-B magnet having excellent B-system and low-temperature characteristics is preferable. Further, the permanent magnet body may have any structure as long as a magnetic field having high uniformity can be obtained, but a structure in which a plurality of ring-shaped permanent magnets are arranged concentrically with the rotating shaft is preferable. When the outer diameter of the ring-shaped permanent magnet is small, a seamless integrated permanent magnet can also be used, and when the outer diameter is large, a plurality of bow-shaped magnets are connected as in the embodiment so that the ring-shaped permanent magnet has a required inner and outer diameter. Can be assembled into The superconductor may have any structure as long as it achieves a good magnetic levitation effect and / or pinning effect by these permanent magnets, and a plurality of disc-shaped superconductors are opposed to the permanent magnet to form an annular shape. It can be appropriately selected according to various characteristics required such as arrangement.

【0011】永久磁石体と超電導体は、永久磁石体の一
方の磁極対向面にのみ超電導体を配置する構成だけでな
く、一対の超電導体間に少なくとも1つの永久磁石を同
心状に配置する等、種々の構成が採用できる。永久磁石
体の磁化方向は、いずれの場合も超電導体との対向方向
と同一方向となるが、各対向面に形成される磁極(N,
S)は、永久磁石体と超電導体との空隙寸法(対向距
離)によって選定することが望ましい。
In the permanent magnet body and the superconductor, not only the superconductor is arranged only on one magnetic pole facing surface of the permanent magnet body, but at least one permanent magnet is arranged concentrically between a pair of superconductors. Various configurations can be adopted. The magnetizing direction of the permanent magnet body is the same as the facing direction to the superconductor in any case, but the magnetic poles (N,
It is desirable that S) be selected according to the gap size (opposing distance) between the permanent magnet body and the superconductor.

【0012】磁気特性の良好な純鉄や鋼板等の金属軟質
磁性材料を、永久磁石体の回転盤対向面に継鉄として固
着することにより、またはそれらを回転盤として永久磁
石体を固着することにより、永久磁石体の表面磁束密度
を均一化することが好ましい。金属軟質磁性材料は、飽
和磁束密度の高い材料、例えばパーメンジュール等が望
ましいが、パーマロイ、純鉄でも良い。金属軟質磁性材
料の厚みは、後述の材質や永久磁石の寸法などにより適
宜選定する。金属軟質磁性材料と永久磁石との接合方法
は、ただ永久磁石上に金属軟質磁性材料を設置して永久
磁石の吸着力によって固着させてもよいが、高速回転で
の使用を考慮すると、接着剤等で強固に固着させること
が望ましい。
By fixing a soft metal magnetic material such as pure iron or a steel plate having good magnetic characteristics as a yoke on the surface of the permanent magnet body facing the rotary disk as a yoke, or by fixing them as a rotary disk to the permanent magnet body. Therefore, it is preferable to make the surface magnetic flux density of the permanent magnet body uniform. The metal soft magnetic material is preferably a material having a high saturation magnetic flux density, such as permendur, but may be permalloy or pure iron. The thickness of the metallic soft magnetic material is appropriately selected depending on the material described later and the dimensions of the permanent magnet. As for the method of joining the metal soft magnetic material and the permanent magnet, the metal soft magnetic material may simply be installed on the permanent magnet and fixed by the attractive force of the permanent magnet, but considering the use at high speed rotation, the adhesive It is desirable to firmly fix them by using such means as.

【0013】上記の永久磁石体を支持する回転盤は、実
施例で図示する円盤状の構成に限定されるものではな
く、1つのリング状磁石あるいは複数のリング状磁石を
同心状に支持でき、超電導体との相対的な回転を阻害し
ない構成であればいずれの形態でも良く、材質にはA
l、Cu等の非磁性材が用いられる。
The rotary disk for supporting the above-mentioned permanent magnet body is not limited to the disk-shaped structure shown in the embodiment, but can support one ring-shaped magnet or a plurality of ring-shaped magnets concentrically. Any form may be used as long as it does not hinder the relative rotation with the superconductor, and the material is A
A non-magnetic material such as l or Cu is used.

【0014】この発明において、環状補助永久磁石は、
永久磁石体あるいは永久磁石体を支持する回転盤の外周
端面に周設されるが、中心軸に対しラジアル方向の磁化
方向成分を有する構成であれば、どのような磁石でもよ
く、例えば、一体物で環状のもののほか、複数の弓形永
久磁石を接合させ一体化したもの、複数の径が異なる環
状永久磁石を接合させ一体化したものなど種々の構成が
選択できる。また、材質的にはNdやPrを含有するR
−Fe−B系永久磁石を用いると最大エネルギー積が高
く、より大きな向心力が得られ、さらに、磁石断面形状
も後述するごとく、矩形の他、直角三角形または略台形
とすることにより発生する磁束を超電導体に対向させる
ことが可能でより大きな向心力が得られる。また、外周
端面は純鉄等の継鉄との組み合せによる複合磁石、ある
いは外周部は周波が大のため、高周波特性に卓越したソ
フトフェライト磁石などで構成しても、本発明の目的が
達成される。
In the present invention, the annular auxiliary permanent magnet is
The permanent magnet is provided around the outer peripheral end surface of the permanent magnet body or the turntable supporting the permanent magnet body, and any magnet may be used as long as it has a magnetization direction component in the radial direction with respect to the central axis. In addition to the annular one, various configurations can be selected such as a plurality of arcuate permanent magnets joined and integrated, and a plurality of annular permanent magnets having different diameters joined and integrated. Also, in terms of material, R containing Nd or Pr
When the -Fe-B system permanent magnet is used, the maximum energy product is high and a larger centripetal force can be obtained. Furthermore, as will be described later, the cross-sectional shape of the magnet is not only rectangular but also a magnetic flux generated by a right triangle or a substantially trapezoid. It is possible to face the superconductor and a greater centripetal force can be obtained. Further, the object of the present invention can be achieved even if the outer peripheral end surface is composed of a composite magnet in combination with a yoke such as pure iron, or the outer peripheral portion has a high frequency, so that it is composed of a soft ferrite magnet excellent in high frequency characteristics. It

【0015】[0015]

【作用】この発明による超電導浮上型回転装置の作用を
図面に基づいて詳述する。図1、図2にこの発明による
超電導浮上型回転装置用の永久磁石回転盤及び超電導体
回転盤の一例を示している。図3のA,B,C,Dはこ
の発明による回転盤の他の実施例を示す直径方向の縦断
説明図であり、図の下側が超電導体との対向面となる。
非磁性材の回転盤10の片面には回転軸を中心として同
心状にNd−Fe−B系永久磁石からなり、超電導体と
の対向方向に磁化方向(M)を有するリング状永久磁石
体11,12,13が埋設配置され、さらに、外リング
状永久磁石体13の外周面には回転軸のラジアル方向の
磁化方向成分を有するNd−Fe−B系永久磁石からな
る環状補助永久磁石14を周設してある。超電導体は、
図2に示すごとく複数の超電導体ブロック15を配列し
て内外2つの疑似リング状超電導体16,17を形成し
てある。
The operation of the superconducting levitation type rotating device according to the present invention will be described in detail with reference to the drawings. 1 and 2 show an example of a permanent magnet turntable and a superconductor turntable for a superconducting levitation type rotating device according to the present invention. 3A, 3B, 3C and 3D are longitudinal explanatory views in the diametrical direction showing another embodiment of the rotating disk according to the present invention, and the lower side of the drawing is the surface facing the superconductor.
A ring-shaped permanent magnet body 11 made of Nd-Fe-B system permanent magnets concentrically around the rotation axis on one surface of the non-magnetic rotary disk 10 and having a magnetization direction (M) in the direction opposite to the superconductor. , 12, 13 are embedded, and an annular auxiliary permanent magnet 14 composed of an Nd-Fe-B system permanent magnet having a magnetization direction component in the radial direction of the rotation axis is further provided on the outer peripheral surface of the outer ring-shaped permanent magnet body 13. It is set around. The superconductor is
As shown in FIG. 2, a plurality of superconductor blocks 15 are arranged to form two inner and outer pseudo ring-shaped superconductors 16 and 17.

【0016】この環状補助永久磁石14は、断面台形で
外周面側の傾斜面に対して直交方向に磁化方向(M)を
有しており、該リング状永久磁石11,12,13を支
持する回転盤10の外周面側に軸のラジアル方向に磁場
を与える別の環状永久磁石を配置したことにより、環状
補助永久磁石14と超電導体との間に反発力が発生し、
これにより回転盤10の水平方向の向心力が増大するこ
とになり、前述の対向面に垂直なしゃへい電流による磁
気浮上効果及び同面に平行なピン止め効果以外に外周反
発力効果が重畳され、大きな向心力が得られ、軸ずれの
ない安定した回転特性が得られる。
The annular auxiliary permanent magnet 14 has a trapezoidal cross section and has a magnetization direction (M) perpendicular to the inclined surface on the outer peripheral surface side, and supports the ring-shaped permanent magnets 11, 12, 13. By disposing another annular permanent magnet that gives a magnetic field in the radial direction of the shaft on the outer peripheral surface side of the rotating disk 10, a repulsive force is generated between the annular auxiliary permanent magnet 14 and the superconductor,
As a result, the centripetal force in the horizontal direction of the turntable 10 is increased, and in addition to the magnetic levitation effect due to the shielding current perpendicular to the facing surface and the pinning effect parallel to the facing surface, the outer peripheral repulsive force effect is superimposed, which is large. A centripetal force can be obtained, and stable rotation characteristics without axis deviation can be obtained.

【0017】図1の環状補助永久磁石14の断面を矩形
にすることもできるが、図3に示すように、環状補助永
久磁石14の断面形状を略直角三角形として、傾斜面か
ら発生する磁束を対向する超電導体に作用させて、回転
盤10により強い求心反発力を作用させることが好まし
い。また、図3のAに示すごとく、回転盤10の外周面
に断面略直角三角形の環状補助永久磁石14を設け、3
本のリング状永久磁石体11,12,13を埋設配置し
た構成とすることができる。さらに、図3のB,Dに示
すごとく、リング状永久磁石体11,12,13の超電
導体との対向面とは反対側に板状のバックヨーク18を
設けることもでき、図3のCに示すごとく、3本のリン
グ状永久磁石体11,12,13にそれぞれリング状バ
ックヨーク19を設けることもできる。
Although it is possible to make the cross section of the annular auxiliary permanent magnet 14 in FIG. 1 rectangular, as shown in FIG. 3, the annular auxiliary permanent magnet 14 has a substantially right-angled triangular cross section so that the magnetic flux generated from the inclined surface is generated. It is preferable to exert a strong centripetal repulsive force on the rotating disk 10 by acting on opposing superconductors. Further, as shown in FIG. 3A, an annular auxiliary permanent magnet 14 having a cross section of a substantially right triangle is provided on the outer peripheral surface of the rotating disk 10 and 3
The ring-shaped permanent magnet bodies 11, 12, 13 may be embedded and arranged. Further, as shown in FIGS. 3B and 3D, a plate-shaped back yoke 18 can be provided on the opposite side of the ring-shaped permanent magnet bodies 11, 12, 13 from the surface facing the superconductor. It is also possible to provide the ring-shaped back yokes 19 on the three ring-shaped permanent magnet bodies 11, 12, and 13, respectively, as shown in FIG.

【0018】[0018]

【実施例】外径89mm、高さ10mm寸法からなる図
1に示す上述の回転盤10に、外径99mm、内径89
mm、高さ10mmのNd−Fe−B系永久磁石からな
る環状永久磁石を周設し、これを図4に示す構成のイッ
トリウム系超電導体を用いた超電導浮上型回転装置に組
み込み、回転特性を測定した。図4の超電導浮上型回転
装置は、図1の回転盤10を駆動モーター20のシャフ
ト21に水平回転可能に垂架し、これに対向させて固定
盤22を配置するが、その超電導体は図2に示すごとく
配列され、断熱材23の凹部に配置されたタンク24に
溜めた液体窒素25に浸漬されている。また、この発明
による環状永久磁石を設けない以外は同等の超電導浮上
型回転装置においても、同様に回転特性を測定した。回
転特性は、比較例装置では回転盤の回転の振れが大きい
が、この発明による環状永久磁石を用いた装置では、
縦、横方向とも回転振れが8%程度改善され、回転盤の
回転が安定して長時間の高速回転が可能であった。
EXAMPLE An outer diameter of 99 mm and an inner diameter of 89 were added to the above-described turntable 10 shown in FIG. 1 having an outer diameter of 89 mm and a height of 10 mm.
mm, and a height of 10 mm, a ring-shaped permanent magnet made of Nd-Fe-B system permanent magnet was installed, and this was incorporated into a superconducting levitation-type rotating device using the yttrium-based superconductor having the configuration shown in FIG. It was measured. In the superconducting levitation type rotation device of FIG. 4, the rotating plate 10 of FIG. 1 is suspended horizontally on a shaft 21 of a drive motor 20 and a fixed plate 22 is arranged facing the shaft 21. 2 is arranged and is immersed in the liquid nitrogen 25 stored in the tank 24 arranged in the concave portion of the heat insulating material 23. The rotation characteristics were also measured in the same superconducting levitation type rotating device except that the annular permanent magnet according to the present invention was not provided. Regarding the rotation characteristics, in the comparative example device, the swing of the rotation of the turntable is large, but in the device using the annular permanent magnet according to the present invention,
Rotational runout was improved by about 8% in both the vertical and horizontal directions, the rotation of the turntable was stable, and high-speed rotation for a long time was possible.

【0019】[0019]

【発明の効果】この発明による超電導浮上型回転装置
は、超電導体上で磁気浮上する永久磁石体あるいは永久
磁石体を支持する回転盤の外周部に中心軸ラジアル方向
への反発力を保有する永久磁石を接合することにより、
超電導現象におけるピニング効果以外に外周反発力効果
が加えられ、大きな向心力が得られるため回転軸ずれの
ない安定した回転特性が得られる。
The superconducting levitation type rotating device according to the present invention has a permanent magnet body which is magnetically levitated on the superconductor or a permanent disk which supports the permanent magnet body and has a permanent repulsive force in the radial direction of the central axis. By joining the magnet,
In addition to the pinning effect in the superconducting phenomenon, an outer peripheral repulsive force effect is added, and a large centripetal force is obtained, so that stable rotation characteristics without rotation axis deviation can be obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】(A)はこの発明による超電導浮上型回転装置
に用いる回転盤の一例を示す一部破断上面説明図であ
り、(B)は(A)における直径方向の縦断説明図であ
る。
FIG. 1 (A) is a partially cutaway top view showing an example of a turntable used in a superconducting levitation type rotating device according to the present invention, and FIG. 1 (B) is a longitudinal cross-section view in FIG. 1 (A).

【図2】この発明による超電導浮上型回転装置に用いる
超電導体の配列の一例を示す説明図である。
FIG. 2 is an explanatory view showing an example of an arrangement of superconductors used in the superconducting levitation type rotating device according to the present invention.

【図3】(A),(B),(C),(D)はこの発明に
よる回転盤の他の実施例を示す直径方向の縦断説明図で
ある。
3 (A), (B), (C) and (D) are longitudinal diametrical explanatory views showing another embodiment of the rotating disk according to the present invention.

【図4】この発明による超電導浮上型回転装置の縦断説
明図である。
FIG. 4 is a vertical cross-sectional explanatory view of a superconducting levitation type rotating device according to the present invention.

【図5】超電導浮上型回転装置の一例を示す一部破断斜
視説明図である。
FIG. 5 is a partially cutaway perspective view showing an example of a superconducting levitation type rotating device.

【符号の説明】[Explanation of symbols]

1 リング状永久磁石 2 軸 3,10 回転盤 4 金属軟質磁性材料 5 円盤 6 イットリウム系超電導体 7,20 駆動モーター 11,12,13 リング状永久磁石体 14 環状補助永久磁石 15 超電導体ブロック 16,17 リング状超電導体 18,19 バックヨーク 21 シャフト 22 固定盤 23 断熱材 24 タンク 25 液体窒素 1 Ring-shaped permanent magnet 2 Axis 3, 10 Rotating disk 4 Metal soft magnetic material 5 Disk 6 Yttrium-based superconductor 7, 20 Drive motor 11, 12, 13 Ring-shaped permanent magnet body 14 Annular auxiliary permanent magnet 15 Superconductor block 16, 17 ring-shaped superconductor 18, 19 back yoke 21 shaft 22 fixed plate 23 heat insulating material 24 tank 25 liquid nitrogen

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 空隙を形成して対向する永久磁石体と超
電導体とを相対的に回転可能に配置した超電導浮上型回
転装置において、該永久磁石体外周部あるいは永久磁石
体を支持する回転盤外周部側にラジアル方向の磁化方向
を有する環状補助永久磁石を配置したことを特徴とする
超電導浮上型回転装置。
1. A superconducting levitation type rotating device in which a permanent magnet body and a superconductor which face each other with a gap are formed so as to be rotatable relative to each other, and a rotary disk supporting the outer peripheral portion of the permanent magnet body or the permanent magnet body. A superconducting levitation type rotating device, wherein an annular auxiliary permanent magnet having a radial magnetization direction is arranged on the outer peripheral side.
JP6140921A 1994-05-30 1994-05-30 Superconducting levitation rotary system Pending JPH07327338A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6140921A JPH07327338A (en) 1994-05-30 1994-05-30 Superconducting levitation rotary system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6140921A JPH07327338A (en) 1994-05-30 1994-05-30 Superconducting levitation rotary system

Publications (1)

Publication Number Publication Date
JPH07327338A true JPH07327338A (en) 1995-12-12

Family

ID=15279918

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6140921A Pending JPH07327338A (en) 1994-05-30 1994-05-30 Superconducting levitation rotary system

Country Status (1)

Country Link
JP (1) JPH07327338A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008295251A (en) * 2007-05-28 2008-12-04 Railway Technical Res Inst Magnetic levitation type rotor mechanism mountable on vehicle
WO2016001478A1 (en) * 2014-07-04 2016-01-07 Teraloop Oy System and method for storing high capacity electric energy

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008295251A (en) * 2007-05-28 2008-12-04 Railway Technical Res Inst Magnetic levitation type rotor mechanism mountable on vehicle
WO2016001478A1 (en) * 2014-07-04 2016-01-07 Teraloop Oy System and method for storing high capacity electric energy
US10840737B2 (en) 2014-07-04 2020-11-17 Teraloop Oy System and method for storing high capacity electric energy

Similar Documents

Publication Publication Date Title
RU2411624C2 (en) Electric motor with superconducting winding with axial gap
US7315103B2 (en) Superconducting rotating machines with stationary field coils
US5831362A (en) Magnet-superconductor flywheel and levitation systems
WO1995020264A1 (en) Magnetic levitation device
US6703735B1 (en) Active magnetic thrust bearing
JPH07229517A (en) Magnetic bearing device of rotor shaft
US6169352B1 (en) Trapped field internal dipole superconducting motor generator
JPH05180225A (en) Superconductive bearing device
JP3675010B2 (en) Superconducting bearing device
JPH0549191A (en) Power storage system
JP2799802B2 (en) Superconducting levitation type rotating device
JPH07327338A (en) Superconducting levitation rotary system
JPH10136609A (en) Motor and storage apparatus using the wire
JP3554054B2 (en) Superconducting bearing device
JPH07312885A (en) Superconducting actuator
JPH08296645A (en) Magnetic bearing device
JPH08288124A (en) Superconducting magnetic levitation apparatus and magnetizing method of its superconductor
JP3271330B2 (en) Magnet magnetizing device
JPH0681845A (en) Supercondctive bearing device
JP3397823B2 (en) Superconducting bearing device
JP3324319B2 (en) Magnetic bearing device
JP2009232510A (en) Cylindrical power generating equipment floated by high temperature superconductor, with two-magnetic pole axes rotator
JP3385771B2 (en) Superconducting magnetic bearing device
JPH11257354A (en) Rotor for magnetic bearing and superconductive magnetic bearing
JP3471441B2 (en) Energy storage device with ring flywheel

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040524