JP3324319B2 - Magnetic bearing device - Google Patents

Magnetic bearing device

Info

Publication number
JP3324319B2
JP3324319B2 JP02270495A JP2270495A JP3324319B2 JP 3324319 B2 JP3324319 B2 JP 3324319B2 JP 02270495 A JP02270495 A JP 02270495A JP 2270495 A JP2270495 A JP 2270495A JP 3324319 B2 JP3324319 B2 JP 3324319B2
Authority
JP
Japan
Prior art keywords
magnetic bearing
bearing
permanent magnet
rotating member
superconducting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP02270495A
Other languages
Japanese (ja)
Other versions
JPH08219157A (en
Inventor
寛正 福山
岳史 滝澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NSK Ltd
Original Assignee
NSK Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NSK Ltd filed Critical NSK Ltd
Priority to JP02270495A priority Critical patent/JP3324319B2/en
Publication of JPH08219157A publication Critical patent/JPH08219157A/en
Application granted granted Critical
Publication of JP3324319B2 publication Critical patent/JP3324319B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C32/00Bearings not otherwise provided for
    • F16C32/04Bearings not otherwise provided for using magnetic or electric supporting means
    • F16C32/0406Magnetic bearings
    • F16C32/0408Passive magnetic bearings
    • F16C32/0436Passive magnetic bearings with a conductor on one part movable with respect to a magnetic field, e.g. a body of copper on one part and a permanent magnet on the other part
    • F16C32/0438Passive magnetic bearings with a conductor on one part movable with respect to a magnetic field, e.g. a body of copper on one part and a permanent magnet on the other part with a superconducting body, e.g. a body made of high temperature superconducting material such as YBaCuO
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2300/00Application independent of particular apparatuses
    • F16C2300/40Application independent of particular apparatuses related to environment, i.e. operating conditions
    • F16C2300/62Application independent of particular apparatuses related to environment, i.e. operating conditions low pressure, e.g. elements operating under vacuum conditions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2361/00Apparatus or articles in engineering in general
    • F16C2361/55Flywheel systems

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】この発明に係る磁気軸受装置は、
例えば夜間の余剰電力を運動エネルギに変換して貯蔵
し、昼間にこの運動エネルギを電気エネルギに変換して
取り出す電力貯蔵装置を構成する超電導フライホイール
装置等、各種超高速回転機械装置に組み込んだ状態で使
用する。
BACKGROUND OF THE INVENTION A magnetic bearing device according to the present invention
For example, a state in which surplus electric power at night is converted into kinetic energy and stored, and this kinetic energy is converted into electric energy during daytime and incorporated into various super-high-speed rotating machine devices such as a superconducting flywheel device constituting a power storage device. Used in.

【0002】[0002]

【従来の技術】小規模事業所や一般家庭に設置して夜間
の余剰電力を貯蔵できる装置として、回転軸にモーメン
トの大きなフライホイールを固定すると共に、この回転
軸に発電機兼用モータを組み付けた電力貯蔵装置が研究
されている。この電力貯蔵装置の場合、夜間には上記発
電機兼用モータに余剰電力を供給する事により、上記回
転軸及びフライホイールを回転させ、上記余剰電力を運
動エネルギに変換して、フライホイールの回転運動エネ
ルギとして貯蔵する。そして昼間には、この回転運動エ
ネルギに基づいて、上記発電機兼用モータにより発電
し、電力を取り出して使用する。
2. Description of the Related Art A flywheel having a large moment is fixed to a rotating shaft, and a generator / motor is mounted on the rotating shaft as a device that can be installed in a small-scale business establishment or a general household to store excess power at night. Energy storage devices are being studied. In the case of this power storage device, by supplying surplus power to the generator / motor at night, the rotating shaft and the flywheel are rotated, the surplus power is converted into kinetic energy, and the rotational movement of the flywheel is performed. Store as energy. In the daytime, based on the rotational kinetic energy, power is generated by the generator / motor, and power is taken out and used.

【0003】この様なフライホイールを使用した電力貯
蔵装置の効率を高める為には、上記フライホイールを回
転支持する為の軸受装置として、回転抵抗が少なく、し
かも運転に要するエネルギが少ないものを使用する必要
がある。この為従来から、特開平5−248437号公
報に記載されている様に、軸受装置として超電導磁気軸
受装置を使用した電力貯蔵装置が提案されている。図2
は、この公報に記載された、超電導磁気軸受装置を組み
込んだ電力貯蔵装置を示している。
In order to increase the efficiency of such an electric power storage device using a flywheel, a bearing device for rotating and supporting the flywheel, which has a low rotational resistance and requires less energy for operation, is used. There is a need to. For this reason, a power storage device using a superconducting magnetic bearing device as a bearing device has been conventionally proposed as described in Japanese Patent Application Laid-Open No. 5-248439. FIG.
Shows a power storage device incorporating a superconducting magnetic bearing device described in this publication.

【0004】密閉された真空ハウジング1の中心部に回
転軸2を、鉛直方向に配設している。上記真空ハウジン
グ1の内側には、この回転軸2の周囲を囲む様にして保
持筒3を固定している。そして、この保持筒3の下半部
内周面と上記回転軸2の中間部外周面との間に、それぞ
れが磁性リング4、4と電磁石5、5とから成る能動型
磁気軸受6、6を設けて、上記回転軸2のラジアル方向
に亙る位置決めを図っている。又、上記保持筒3の上半
部内周面と上記回転軸2の上端部との間には、ロータ7
とステータ8とから成る発電機兼用モータ9を設けてい
る。
[0004] A rotary shaft 2 is disposed vertically in the center of a sealed vacuum housing 1. A holding cylinder 3 is fixed inside the vacuum housing 1 so as to surround the rotation shaft 2. Active magnetic bearings 6, each comprising a magnetic ring 4, 4 and electromagnets 5, are provided between the inner peripheral surface of the lower half of the holding cylinder 3 and the outer peripheral surface of the intermediate portion of the rotary shaft 2. The positioning of the rotary shaft 2 in the radial direction is provided. A rotor 7 is provided between the inner peripheral surface of the upper half of the holding cylinder 3 and the upper end of the rotating shaft 2.
A generator / motor 9 including a stator 8 and a generator 8 is provided.

【0005】又、上記回転軸2の下端部には、回転部材
であるフライホイール10を固定し、このフライホイー
ル10の下面に円環状の永久磁石11を固定している。
この永久磁石11は、軸方向(図2の上下方向)に亙っ
て着磁されており、上記フライホイール10の回転中心
である、上記回転軸2と同心に固定されている。更に、
上記真空ハウジング1の底面には、固定部材を兼ねる冷
却ジャケット12を固定し、この冷却ジャケット12の
上面に設けた超電導体13の上面を、上記永久磁石11
の下面に対向させている。この超電導体13は、上記永
久磁石11と同様に円環状とし、この永久磁石11と同
心に配置する事が望ましい。但し、円環状に造る事が難
しい場合には、それぞれが円板状、円弧状等に造られた
複数の超電導体を、上記永久磁石11と同心の円弧上に
等間隔に配置する。又、上記冷却ジャケット12内に
は、液体窒素等の冷却剤を流通自在とし、上記超電導体
13を超電導状態にできる様にしている。超電導体13
が超電導状態にある場合には、ピン止め効果により、こ
の超電導体13と上記永久磁石11との距離が変化する
事が阻止される。従って、これら超電導体13と永久磁
石11とが、非接触型の超電導スラスト磁気軸受14を
構成する。
[0005] A flywheel 10 as a rotating member is fixed to the lower end of the rotating shaft 2, and an annular permanent magnet 11 is fixed to the lower surface of the flywheel 10.
The permanent magnet 11 is magnetized in the axial direction (vertical direction in FIG. 2), and is fixed concentrically with the rotation shaft 2, which is the center of rotation of the flywheel 10. Furthermore,
A cooling jacket 12 also serving as a fixing member is fixed to the bottom surface of the vacuum housing 1, and the upper surface of the superconductor 13 provided on the upper surface of the cooling jacket 12 is fixed to the permanent magnet 11.
Is opposed to the lower surface. It is desirable that the superconductor 13 is formed in an annular shape like the above-described permanent magnet 11 and is arranged concentrically with the permanent magnet 11. However, when it is difficult to form a ring shape, a plurality of superconductors each formed in a disk shape or an arc shape are arranged at equal intervals on an arc concentric with the permanent magnet 11. A coolant such as liquid nitrogen is allowed to flow freely in the cooling jacket 12 so that the superconductor 13 can be brought into a superconducting state. Superconductor 13
Is in a superconducting state, the pinning effect prevents the distance between the superconductor 13 and the permanent magnet 11 from changing. Therefore, the superconductor 13 and the permanent magnet 11 constitute a non-contact type superconducting thrust magnetic bearing 14.

【0006】上述の様に構成される従来の電力貯蔵装置
の作用は、次の通りである。夜間等に余剰電力を貯蔵す
る際には、発電機兼用モータ9のステータ8に余剰電力
を供給する事で、前記回転軸2及びフライホイール10
を回転させる。この際、前記能動型磁気軸受6により、
回転軸2のラジアル方向に亙る位置決めを図ると共に、
冷却ジャケット12内に冷却剤を送り込んで、超電導体
13を冷却しておく。超電導体13が冷却され、超電導
状態になると、永久磁石11から出た磁束が超電導体1
3内に拘束される、所謂ピン止め効果により、永久磁石
11が超電導体13に対して軸方向及び半径方向に移動
するのを阻止する力が作用する。この力によって、上記
回転軸2とフライホイール10とに作用する、スラスト
方向の力及びラジアル方向の力が支承される。この様
に、能動型磁気軸受6と超電導スラスト磁気軸受14と
を機能させた状態で、上記回転軸2とフライホイール1
0とは浮上状態で支持される。従って、これら両部材
2、10が回転する事に対する抵抗は極く小さくなる。
[0006] The operation of the conventional power storage device configured as described above is as follows. When storing the surplus electric power at night or the like, the surplus electric power is supplied to the stator 8 of the generator / motor 9 so that the rotating shaft 2 and the flywheel 10 can be stored.
To rotate. At this time, the active magnetic bearing 6
While positioning the rotating shaft 2 in the radial direction,
A coolant is fed into the cooling jacket 12 to cool the superconductor 13. When the superconductor 13 is cooled and enters a superconducting state, the magnetic flux emitted from the permanent magnet 11
Due to the so-called pinning effect, which is constrained in the interior 3, a force acts on the superconductor 13 to prevent the permanent magnet 11 from moving axially and radially. By this force, a thrust force and a radial force acting on the rotating shaft 2 and the flywheel 10 are supported. In this way, with the active magnetic bearing 6 and the superconducting thrust magnetic bearing 14 functioning, the rotary shaft 2 and the flywheel 1
0 is supported in a floating state. Therefore, the resistance to rotation of these two members 2, 10 is extremely small.

【0007】回転軸2とフライホイール10との回転速
度は、上記ステータ8への通電に伴って徐々に上昇する
為、電力を機械的運動エネルギに変換した状態で貯蔵で
きる。回転軸2及びフライホイール10は、真空ハウジ
ング1内に設けられている為、回転する部材の表面と空
気とが摩擦し合う事はなく、一度上昇したフライホイー
ル10の回転速度は、上記発電機兼用モータ9による電
力取り出しを行なわない限り、殆ど低下する事がなくな
る。昼間等、貯蔵したエネルギを取り出して使用する場
合には、上記ステータ8を負荷(電気設備)に接続す
る。この結果、上記フライホイール10の回転運動に基
づいて上記ステータ8に電力が惹起される。
Since the rotation speed of the rotating shaft 2 and the flywheel 10 gradually increases with energization of the stator 8, the electric power can be stored in a state converted into mechanical kinetic energy. Since the rotating shaft 2 and the flywheel 10 are provided in the vacuum housing 1, the surface of the rotating member and the air do not rub against each other. Unless the electric power is taken out by the dual-purpose motor 9, almost no reduction occurs. When the stored energy is taken out and used in the daytime or the like, the stator 8 is connected to a load (electric equipment). As a result, electric power is generated in the stator 8 based on the rotational movement of the flywheel 10.

【0008】尚、図示は省略したが、回転軸2のラジア
ル方向の変位を防止する為の、非接触型のラジアル軸受
を、超電導磁気軸受とする事もできる。この場合には、
上記回転軸2の中間部外周面に、前記磁性リング4、4
に代えて直径方向若しくは軸方向に着磁された円環状の
永久磁石を固定すると共に、前記保持筒3の下半部内周
面に、前記電磁石5、5に代えて超電導体を固定する。
又、保持筒3の内部にこの超電導体を冷却する為の冷却
ジャケットを設ける。
Although not shown, a non-contact type radial bearing for preventing displacement of the rotating shaft 2 in the radial direction may be a superconducting magnetic bearing. In this case,
On the outer peripheral surface of the intermediate portion of the rotating shaft 2, the magnetic rings 4, 4
In place of the above, an annular permanent magnet magnetized in the diametrical or axial direction is fixed, and a superconductor is fixed to the inner peripheral surface of the lower half of the holding cylinder 3 in place of the electromagnets 5,5.
Further, a cooling jacket for cooling the superconductor is provided inside the holding cylinder 3.

【0009】[0009]

【発明が解決しようとする課題】ところで、例えば上述
の様に構成され作用する電力貯蔵装置の電力貯蔵能力を
向上させるべく、フライホイール10の重量を大きく
(重く)した場合には、前記超電導スラスト磁気軸受1
4の負荷容量を大きくする必要がある。又、各種機械装
置の回転軸に加わる大きなスラスト荷重を支持する場合
にも、やはり大きな負荷容量が必要になる。ところが、
現状に於いて実用可能な超電導スラスト磁気軸受14の
負荷容量は限度があり、超電導スラスト磁気軸受14の
みで支持可能なフライホイール10を使用して電力貯蔵
装置の性能向上を図ったり、或は大きなスラスト荷重が
加わる回転軸を支持する事は難しかった。
By the way, when the weight of the flywheel 10 is increased (heavy) in order to improve the power storage capacity of the power storage device constructed and operated as described above, for example, Magnetic bearing 1
It is necessary to increase the load capacity of No. 4. Also, when supporting a large thrust load applied to the rotating shafts of various mechanical devices, a large load capacity is also required. However,
There is a limit to the load capacity of the superconducting thrust magnetic bearing 14 that can be practically used at present, and the flywheel 10 that can be supported only by the superconducting thrust magnetic bearing 14 is used to improve the performance of the power storage device, or It was difficult to support a rotating shaft to which a thrust load was applied.

【0010】この様な超電導スラスト磁気軸受14の負
荷容量の不足を補うべく、上記フライホイール10等の
回転部材とハウジング等の固定部材との間に、超電導ス
ラスト磁気軸受14に加えて受動型磁気軸受を組み込む
事も考えられる。ところが、強磁性体部分と永久磁石と
により構成され、この強磁性体部分を永久磁石に向けて
引き付けるだけの作用しか持たない受動型磁気軸受のば
ね定数は本来的に負であり、この受動型磁気軸受による
軸受作用は不安定になる。従って、単に超電導スラスト
磁気軸受14に受動型磁気軸受を付加しただけでは、回
転部材を安定して支持する事が難しくなる。本発明の磁
気軸受装置は、この様な事情に鑑みて発明したものであ
る。
In order to compensate for such a shortage of the load capacity of the superconducting thrust magnetic bearing 14, a passive magnetic member is provided between the rotating member such as the flywheel 10 and a fixed member such as a housing in addition to the superconducting thrust magnetic bearing 14. It is also conceivable to incorporate a bearing. However, the passive magnetic bearing, which is composed of a ferromagnetic material portion and a permanent magnet and has only an action of attracting the ferromagnetic material portion toward the permanent magnet, is inherently negative in spring constant. The bearing action by the magnetic bearing becomes unstable. Therefore, simply adding a passive magnetic bearing to the superconducting thrust magnetic bearing 14 makes it difficult to stably support the rotating member. The magnetic bearing device of the present invention has been made in view of such circumstances.

【0011】[0011]

【課題を解決するための手段】本発明の磁気軸受装置
は、回転部材と、この回転部材に対向して設けられた固
定部材と、これら回転部材と固定部材との間に設けられ
た超電導磁気軸受及び受動型磁気軸受とを備える。そし
て、このうちの超電導磁気軸受は、上記回転部材の一部
にこの回転部材の回転中心と同心に固定された円環状若
しくは円板状の第一永久磁石と、この第一永久磁石に対
向した状態で固定部材の一部に支持された超電導体とを
備える。又、上記受動型磁気軸受は、上記回転部材の一
部で上記第一永久磁石から外れた部分にこの回転部材と
同心に設けられた強磁性体部分と、上記固定部材の一部
で上記超電導体から外れた部分に固定された第二永久磁
石とを備える。更に、上記超電導磁気軸受の軸受剛性が
上記受動型磁気軸受の軸受剛性よりも大きい。
According to the present invention, there is provided a magnetic bearing device comprising: a rotating member; a fixed member provided to face the rotating member; and a superconducting magnet provided between the rotating member and the fixed member. A bearing and a passive magnetic bearing. The superconducting magnetic bearing among them is an annular or disk-shaped first permanent magnet fixed to a part of the rotating member concentrically with the rotation center of the rotating member, and faces the first permanent magnet. And a superconductor supported by a part of the fixing member in a state. Further, the passive type magnetic bearing includes a ferromagnetic part provided concentrically with the rotating member at a part of the rotating member deviating from the first permanent magnet, and a superconducting part provided at a part of the fixed member. A second permanent magnet fixed to a part off the body. Further, the bearing rigidity of the superconducting magnetic bearing is greater than the bearing rigidity of the passive magnetic bearing.

【0012】[0012]

【作用】上述の様に構成される本発明の磁気軸受装置に
よれば、重量の嵩む回転部材を安定して支持できる。即
ち、回転部材の重量は超電導磁気軸受と受動型磁気軸受
との双方で支承する為、磁気軸受全体としての負荷容量
を十分に確保できる。又、超電導磁気軸受の軸受剛性が
上記受動型磁気軸受の軸受剛性よりも大きい為、受動型
磁気軸受の持つ不安定性を抑え込む事ができる。即ち、
超電導体が永久磁石から出た磁束を捕捉したままとする
所謂ピン止め効果により、永久磁石と超電導体との距離
が変化する事を防止する超電導磁気軸受のばね定数は正
であり、この超電導磁気軸受によって上記回転部材は安
定する傾向となる。本発明の磁気軸受装置の場合には、
超電導磁気軸受の軸受剛性が上記受動型磁気軸受の軸受
剛性よりも大きく、従って受動型磁気軸受のばね定数K
J の絶対値|KJ |が超電導磁気軸受のばね定数KT
絶対値|KT |よりも小さい(|KJ |<|KT |)。
この結果、磁気軸受装置全体としてのばね定数は正とな
り、運転時に上記回転部材は安定する。
According to the magnetic bearing device of the present invention configured as described above, a heavy rotating member can be stably supported. That is, since the weight of the rotating member is supported by both the superconducting magnetic bearing and the passive magnetic bearing, the load capacity of the entire magnetic bearing can be sufficiently secured. Further, since the bearing rigidity of the superconducting magnetic bearing is greater than the bearing rigidity of the passive magnetic bearing, the instability of the passive magnetic bearing can be suppressed. That is,
The spring constant of the superconducting magnetic bearing, which prevents the superconductor from changing the distance between the permanent magnet and the superconductor due to the so-called pinning effect that keeps the magnetic flux from the permanent magnet captured, is positive. The bearing tends to stabilize the rotating member. In the case of the magnetic bearing device of the present invention,
The bearing rigidity of the superconducting magnetic bearing is greater than the bearing rigidity of the passive magnetic bearing.
The absolute value of J | K J | is an absolute value of the spring constant K T of the superconducting magnetic bearings | K T | smaller than (| K J | <| K T |).
As a result, the spring constant of the entire magnetic bearing device becomes positive, and the rotating member is stabilized during operation.

【0013】尚、受動型磁気軸受の負荷容量を確保し、
しかもこの受動型磁気軸受の軸受剛性を低くする為に
は、例えば上記強磁性体部分と第二永久磁石との対向面
積を広くし、且つ、これら強磁性体部分と第二永久磁石
との距離を大きくする。対向面積を広くする事で、これ
ら強磁性体部分と第二永久磁石との間に作用する磁気吸
引力が大きくなり、負荷容量が大きくなる。永久磁石の
強度を強くする(磁束密度を高くする)事も、負荷容量
の増大には有効である。又、強磁性体部分と第二永久磁
石との距離を大きくする事で、この距離、即ち軸受隙間
の変化に伴う負荷容量(強磁性体部分と第二永久磁石と
の間に働く磁気吸引力)の変化が少なくなって、軸受剛
性が低下する。
Incidentally, the load capacity of the passive type magnetic bearing is secured,
Moreover, in order to reduce the bearing stiffness of the passive type magnetic bearing, for example, the facing area between the ferromagnetic portion and the second permanent magnet is increased, and the distance between the ferromagnetic portion and the second permanent magnet is increased. To increase. Increasing the facing area increases the magnetic attraction acting between these ferromagnetic portions and the second permanent magnet, thereby increasing the load capacity. Increasing the strength of the permanent magnet (increase the magnetic flux density) is also effective in increasing the load capacity. In addition, by increasing the distance between the ferromagnetic portion and the second permanent magnet, the distance, that is, the load capacity (the magnetic attraction force acting between the ferromagnetic portion and the second permanent magnet) accompanying the change in the bearing clearance is increased. ) Changes and bearing rigidity decreases.

【0014】[0014]

【実施例】図1は本発明の実施例を示している。回転部
材である回転軸2の中間部外周面には、この回転軸2と
共に回転部材を構成するフランジ15を固定している。
このフランジ15の内周側半部の上下両面には、それぞ
れが円環状に造られた複数ずつ(図示の例では4個ずつ
合計8個)の第一永久磁石16a〜16d、16a′〜
16d′を支持固定している。これら各第一永久磁石1
6a〜16d、16a′〜16d′は、それぞれ軸方向
(図1の上下方向)に亙って着磁されている。各第一永
久磁石16a〜16d、16a′〜16d′の着磁方向
は、直径方向同位置の第一永久磁石16a〜16d、1
6a′〜16d′が上面と下面とで互いに逆方向として
いる。又、同一の面で見た場合には、それぞれ直径方向
内外両端部の第一永久磁石16a、16b(又は16
a′、16b′)の着磁方向が互いに同じで、中間に位
置する2個の第一永久磁石16c、16d(又は、16
c′、16d′)がこれとは逆方向に着磁されている。
従って、上記フランジ15の上下両面で、外周側2個の
第一永久磁石16b、16d(又は、16b′、16
d′)の端面同士の間、内周側2個の第一永久磁石16
a、16c(又は、16a′、16c′)の端面同士の
間に、それぞれ高密度の磁束が流れる。
FIG. 1 shows an embodiment of the present invention. On an outer peripheral surface of an intermediate portion of the rotating shaft 2 which is a rotating member, a flange 15 which forms a rotating member together with the rotating shaft 2 is fixed.
On the upper and lower surfaces of the inner peripheral half of the flange 15, a plurality of (in the example shown, four in total, eight in total) first permanent magnets 16a to 16d, 16a 'to
16d 'is fixedly supported. Each of these first permanent magnets 1
6a to 16d and 16a 'to 16d' are respectively magnetized in the axial direction (vertical direction in FIG. 1). The magnetization directions of the first permanent magnets 16a to 16d, 16a 'to 16d' are the same as those of the first permanent magnets 16a to 16d,
6a 'to 16d' are opposite to each other on the upper surface and the lower surface. Also, when viewed from the same plane, the first permanent magnets 16a, 16b (or 16
a ', 16b') have the same magnetization direction, and the two first permanent magnets 16c, 16d (or 16
c ', 16d') are magnetized in the opposite direction.
Therefore, on the upper and lower surfaces of the flange 15, two outer peripheral first permanent magnets 16 b, 16 d (or 16 b ′, 16 b) are provided.
d ′) between the end faces, two inner permanent magnets 16
A high-density magnetic flux flows between the end faces of a and 16c (or 16a 'and 16c').

【0015】一方、上記回転軸2並びにフランジ15の
周囲には、固定部材である軸受ハウジング17を設けて
いる。この軸受ハウジング17の内部には、上記フラン
ジ15の外寸よりも少し大きな内寸を有する軸受空間1
8を設けている。そして、この軸受空間18の内周側半
部の上下両面に、それぞれ円環状の超電導体13、13
を固定している。これら各超電導体13、13の下面又
は上面を、上記各第一永久磁石16a〜16d、16
a′〜16d′の上端面又は下端面に、第一の軸受隙間
19a、19bを介して対向させて、上下1対の超電導
磁気軸受23、23を構成している。又、図示は省略し
たが、上記軸受ハウジング17内には冷却ジャケットを
設けて、上記超電導体13を超電導状態となる温度にま
で冷却自在としている。
On the other hand, a bearing housing 17 as a fixed member is provided around the rotary shaft 2 and the flange 15. Inside the bearing housing 17, a bearing space 1 having an inner dimension slightly larger than the outer dimension of the flange 15 is provided.
8 are provided. The annular superconductors 13 and 13 are respectively provided on the upper and lower surfaces of the inner peripheral half of the bearing space 18.
Is fixed. The lower surface or the upper surface of each of the superconductors 13, 13 is connected to the first permanent magnets 16a to 16d, 16
A pair of upper and lower superconducting magnetic bearings 23, 23 are configured to face upper end surfaces or lower end surfaces of a 'to 16d' via first bearing gaps 19a, 19b. Although not shown, a cooling jacket is provided in the bearing housing 17 so that the superconductor 13 can be cooled to a temperature at which the superconductor 13 becomes a superconductive state.

【0016】更に、前記フランジ15の上面外周寄り部
分には、鋼板等の強磁性材製で円環状のプレート20を
固定して、この上面外周寄り部分を強磁性体部分として
いる。そして、上記軸受空間18の上面外周寄り部分に
円環状の第二永久磁石21を固定し、この第二永久磁石
21の下面と上記プレート20の上面とを、第二軸受隙
間22を介して対向させて、吸引式の受動型磁気軸受2
4を構成している。この第二軸受隙間22の厚さ寸法T
22は、上側の第一軸受隙間19aの厚さ寸法T19よりも
大きい(T22>T19)。
Further, an annular plate 20 made of a ferromagnetic material such as a steel plate is fixed to a portion near the outer periphery of the upper surface of the flange 15, and the portion closer to the outer periphery of the upper surface is a ferromagnetic portion. Then, an annular second permanent magnet 21 is fixed to a portion of the bearing space 18 near the outer periphery of the upper surface, and the lower surface of the second permanent magnet 21 and the upper surface of the plate 20 face each other via a second bearing gap 22. Then, the passive magnetic bearing of suction type 2
4. The thickness dimension T of the second bearing gap 22
22 is greater than the thickness T 19 of the upper first bearing gap 19a (T 22> T 19) .

【0017】上述の様に構成される本発明の磁気軸受装
置を作動させる際には、例えば、超電導体13を冷却せ
ずにこの超電導体13を常電導状態のまま、上記回転軸
2に上昇方向の力を付与し、上記フランジ15の上面を
軸受空間18の上面に近付ける。次いで上記超電導体1
3を冷却して、この超電導体13を超電導状態とした
後、上記回転軸2に加えていた浮上方向の力を解除す
る。この結果この回転軸2及びフランジ15は、超電導
体13のピン止め力に基づいて超電導体13、13と前
記第一永久磁石16a〜16d、16a′〜16d′と
の間に働く力によって、浮上状態に支持される。上記各
第一永久磁石16a〜16d、16a′〜16d′の端
面同士の間を流れ、上記超電導体13、13内にピン止
めされる磁束の量は多く、超電導磁気軸受の軸受剛性は
十分に大きくなる。
When operating the magnetic bearing device of the present invention configured as described above, for example, the superconductor 13 is raised to the rotating shaft 2 without cooling the superconductor 13 in the normal conducting state. A directional force is applied to bring the upper surface of the flange 15 closer to the upper surface of the bearing space 18. Next, the superconductor 1
After cooling the superconductor 3 to bring the superconductor 13 into a superconducting state, the force in the floating direction applied to the rotating shaft 2 is released. As a result, the rotating shaft 2 and the flange 15 float by the force acting between the superconductors 13 and 13 and the first permanent magnets 16a to 16d and 16a 'to 16d' based on the pinning force of the superconductor 13. Supported by the state. The amount of magnetic flux flowing between the end faces of the first permanent magnets 16a to 16d and 16a 'to 16d' and pinned in the superconductors 13 and 13 is large, and the bearing rigidity of the superconducting magnetic bearing is sufficient. growing.

【0018】又、上述の様に回転軸2及びフランジ15
を浮上状態に支持する力は、前記プレート20と第二永
久磁石21との間に作用する磁気吸引力によっても得ら
れる。従って、磁気軸受全体としての負荷容量を十分に
確保でき、重量の嵩むフライホイールを支持したり、或
は大きなスラスト荷重が加わる回転軸を支持できる。
Also, as described above, the rotating shaft 2 and the flange 15
Is supported also by a magnetic attraction force acting between the plate 20 and the second permanent magnet 21. Therefore, the load capacity of the magnetic bearing as a whole can be sufficiently secured to support a heavy flywheel or a rotating shaft to which a large thrust load is applied.

【0019】更に、それぞれ超電導体13、13と複数
ずつの永久磁石16a〜16d、16a′〜16d′と
で構成される超電導磁気軸受23、23の軸受剛性が、
プレート20と第二永久磁石21とにより構成される受
動型磁気軸受24の軸受剛性よりも大きい。即ち、上記
プレート20と第二永久磁石21との対向面積が広い
為、これらプレート20と第二永久磁石21との間に作
用する磁気吸引力は大きく、上記受動型磁気軸受24の
負荷容量は十分に大きいが、これらプレート20と第二
永久磁石21との間に存在する第二軸受隙間22の厚さ
寸法T22が大きい為、上記受動型磁気軸受24の軸受剛
性が低下する。この為、前述した様な機構により、受動
型磁気軸受の持つ不安定性を抑え込む事ができる。尚、
図2に示す様に、フライホイール10が回転軸2の端部
に固定されている構造に本発明を適用する場合、第一永
久磁石及び超電導体の形状を円板状としても良い。
Furthermore, the bearing rigidity of the superconducting magnetic bearings 23, 23 each comprising a superconductor 13, 13 and a plurality of permanent magnets 16a to 16d, 16a 'to 16d',
It is larger than the bearing rigidity of the passive magnetic bearing 24 constituted by the plate 20 and the second permanent magnet 21. That is, since the opposing area between the plate 20 and the second permanent magnet 21 is large, the magnetic attraction acting between the plate 20 and the second permanent magnet 21 is large, and the load capacity of the passive magnetic bearing 24 is small. sufficiently large, since the thickness T 22 of the second bearing gap 22 that exists between the plates 20 and the second permanent magnet 21 is large, the bearing rigidity of the passive magnetic bearing 24 is reduced. For this reason, the instability of the passive magnetic bearing can be suppressed by the above-described mechanism. still,
As shown in FIG. 2, when the present invention is applied to a structure in which the flywheel 10 is fixed to the end of the rotating shaft 2, the first permanent magnet and the superconductor may have a disk shape.

【0020】[0020]

【発明の効果】本発明の磁気軸受装置は、以上に述べた
通り構成され作用するので、十分に大きな負荷容量を確
保して、回転部分に加わる大きな荷重を支承できるだけ
でなく、安定した運転を可能にして、回転部分を有する
各種機械装置の性能向上を図れる。
Since the magnetic bearing device of the present invention is constructed and operates as described above, it is possible to secure a sufficiently large load capacity and not only support a large load applied to the rotating part, but also perform a stable operation. It is possible to improve the performance of various types of mechanical devices having a rotating part.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例を示す断面図。FIG. 1 is a sectional view showing an embodiment of the present invention.

【図2】従来から知られた超電導磁気軸受装置を組み込
んだ電力貯蔵装置を示す縦断面図。
FIG. 2 is a longitudinal sectional view showing a power storage device incorporating a conventionally known superconducting magnetic bearing device.

【符号の説明】[Explanation of symbols]

1 真空ハウジング 2 回転軸 3 保持筒 4 磁性リング 5 電磁石 6 能動型磁気軸受 7 ロータ 8 ステータ 9 発電機兼用モータ 10 フライホイール 11 永久磁石 12 冷却ジャケット 13 超電導体 14 超電導スラスト磁気軸受 15 フランジ 16a〜16d、16a′〜16d′ 第一永久磁石 17 軸受ハウジング 18 軸受空間 19a、19b 第一軸受隙間 20 プレート 21 第二永久磁石 22 第二軸受隙間 23 超電導磁気軸受 24 受動型磁気軸受 REFERENCE SIGNS LIST 1 vacuum housing 2 rotating shaft 3 holding cylinder 4 magnetic ring 5 electromagnet 6 active magnetic bearing 7 rotor 8 stator 9 generator / motor 10 flywheel 11 permanent magnet 12 cooling jacket 13 superconductor 14 superconducting thrust magnetic bearing 15 flange 16a to 16d , 16a 'to 16d' First permanent magnet 17 Bearing housing 18 Bearing space 19a, 19b First bearing gap 20 Plate 21 Second permanent magnet 22 Second bearing gap 23 Superconducting magnetic bearing 24 Passive magnetic bearing

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) F16C 32/04 H02J 15/00 ──────────────────────────────────────────────────続 き Continued on the front page (58) Field surveyed (Int. Cl. 7 , DB name) F16C 32/04 H02J 15/00

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 回転部材と、この回転部材に対向して設
けられた固定部材と、これら回転部材と固定部材との間
に設けられた超電導磁気軸受及び受動型磁気軸受とを備
え、 このうちの超電導磁気軸受は、上記回転部材の一部にこ
の回転部材の回転中心と同心に固定された円環状若しく
は円板状の第一永久磁石と、この第一永久磁石に対向し
た状態で固定部材の一部に支持された超電導体とを備
え、 上記受動型磁気軸受は、上記回転部材の一部で上記第一
永久磁石から外れた部分にこの回転部材と同心に設けら
れた強磁性体部分と、上記固定部材の一部で上記超電導
体から外れた部分に固定された第二永久磁石とを備え、 上記超電導磁気軸受の軸受剛性が上記受動型磁気軸受の
軸受剛性よりも大きい磁気軸受装置。
A rotating member, a fixed member provided facing the rotating member, a superconducting magnetic bearing and a passive magnetic bearing provided between the rotating member and the fixed member. The superconducting magnetic bearing includes an annular or disk-shaped first permanent magnet fixed to a part of the rotating member concentrically with the rotation center of the rotating member, and a fixed member facing the first permanent magnet. A superconductor supported on a portion of the rotating member, wherein the passive magnetic bearing comprises a ferromagnetic portion provided concentrically with the rotating member at a portion of the rotating member deviating from the first permanent magnet. A magnetic bearing device comprising: a second permanent magnet fixed to a part of the fixing member deviating from the superconductor; and a bearing rigidity of the superconducting magnetic bearing is larger than a bearing rigidity of the passive magnetic bearing. .
JP02270495A 1995-02-10 1995-02-10 Magnetic bearing device Expired - Lifetime JP3324319B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP02270495A JP3324319B2 (en) 1995-02-10 1995-02-10 Magnetic bearing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP02270495A JP3324319B2 (en) 1995-02-10 1995-02-10 Magnetic bearing device

Publications (2)

Publication Number Publication Date
JPH08219157A JPH08219157A (en) 1996-08-27
JP3324319B2 true JP3324319B2 (en) 2002-09-17

Family

ID=12090257

Family Applications (1)

Application Number Title Priority Date Filing Date
JP02270495A Expired - Lifetime JP3324319B2 (en) 1995-02-10 1995-02-10 Magnetic bearing device

Country Status (1)

Country Link
JP (1) JP3324319B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4561121B2 (en) * 2004-02-25 2010-10-13 株式会社島津製作所 Turbo molecular pump
EP3752748A4 (en) * 2018-02-15 2021-10-20 Bergan Technology AS Large scale flywheel for energy storage

Also Published As

Publication number Publication date
JPH08219157A (en) 1996-08-27

Similar Documents

Publication Publication Date Title
US6043577A (en) Flywheel energy accumulator
EP0585351B1 (en) Magnet-superconductor systems having high thrust and high stability
US6570286B1 (en) Full magnetic bearings with increased load capacity
US6703735B1 (en) Active magnetic thrust bearing
EP0829655B1 (en) Superconducting bearing device
JPH08178011A (en) Flywheel device
EP0870124A1 (en) Backup bearings for extreme speed touch down applications
US6369476B1 (en) High temperature superconductor bearings
JP3554070B2 (en) Superconducting magnetic bearing device
JP3324319B2 (en) Magnetic bearing device
JP3358362B2 (en) Superconducting magnetic bearing device
JPH08296645A (en) Magnetic bearing device
JPH04282050A (en) Electric power storage device
JP2799802B2 (en) Superconducting levitation type rotating device
JP3385771B2 (en) Superconducting magnetic bearing device
JPH08219158A (en) Magnetic bearing device
JPH06233479A (en) Electric power storage apparatus
JP3663472B2 (en) Permanent magnet bearing device and permanent magnet rotating device
JP3168596B2 (en) Superconducting bearing device
JPH09233803A (en) Braking device for high-speed rotating equipment
JP3236925B2 (en) Superconducting bearing device
JPH0681845A (en) Supercondctive bearing device
JPH08111946A (en) Superconducting flywheel device
JP3677320B2 (en) Superconducting bearing for rotating equipment and flywheel for power storage using the same
JP2001343020A (en) Superconductive magnetic bearing and superconductive flywheel

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070705

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080705

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080705

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090705

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100705

Year of fee payment: 8