JP3663472B2 - Permanent magnet bearing device and permanent magnet rotating device - Google Patents

Permanent magnet bearing device and permanent magnet rotating device Download PDF

Info

Publication number
JP3663472B2
JP3663472B2 JP31625394A JP31625394A JP3663472B2 JP 3663472 B2 JP3663472 B2 JP 3663472B2 JP 31625394 A JP31625394 A JP 31625394A JP 31625394 A JP31625394 A JP 31625394A JP 3663472 B2 JP3663472 B2 JP 3663472B2
Authority
JP
Japan
Prior art keywords
permanent magnet
rotating
magnetic
annular
fitted
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP31625394A
Other languages
Japanese (ja)
Other versions
JPH08170644A (en
Inventor
良一 高畑
拓知 上山
和夫 六角
正二 江口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Koyo Seiko Co Ltd
Original Assignee
Koyo Seiko Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Koyo Seiko Co Ltd filed Critical Koyo Seiko Co Ltd
Priority to JP31625394A priority Critical patent/JP3663472B2/en
Publication of JPH08170644A publication Critical patent/JPH08170644A/en
Application granted granted Critical
Publication of JP3663472B2 publication Critical patent/JP3663472B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C32/00Bearings not otherwise provided for
    • F16C32/04Bearings not otherwise provided for using magnetic or electric supporting means
    • F16C32/0406Magnetic bearings
    • F16C32/0408Passive magnetic bearings
    • F16C32/0436Passive magnetic bearings with a conductor on one part movable with respect to a magnetic field, e.g. a body of copper on one part and a permanent magnet on the other part
    • F16C32/0438Passive magnetic bearings with a conductor on one part movable with respect to a magnetic field, e.g. a body of copper on one part and a permanent magnet on the other part with a superconducting body, e.g. a body made of high temperature superconducting material such as YBaCuO
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2361/00Apparatus or articles in engineering in general
    • F16C2361/55Flywheel systems

Description

【0001】
【産業上の利用分野】
この発明は、たとえば高速回転を必要とする流体機械や工作機械、余剰電力をフライホイールの回転運動エネルギに変換して貯蔵する電力貯蔵装置、あるいはジャイロスコープなどに使用される永久磁石使用軸受装置および永久磁石回転装置に関し、とくに垂直軸を中心に回転する回転体を支持する永久磁石使用軸受装置および永久磁石回転装置に関する。
【0002】
この明細書において、永久磁石使用軸受装置という用語は、永久磁石と超伝導体とで回転体を非接触支持する超伝導軸受、永久磁石同志の磁気反発力または磁気吸引力で回転体を非接触支持する非制御型磁気軸受など、永久磁石を使用して回転体を非接触支持する軸受装置の総称として用いられる。また、永久磁石回転装置という用語は、永久磁石使用軸受装置において回転体とともに永久磁石を回転させる装置の名称として用いられる。
【0003】
【従来の技術】
近年、回転体の高速回転と高剛性を可能にした軸受装置として、非接触状態で回転体を支持しうる永久磁石使用軸受装置が開発されている。
【0004】
垂直軸を中心に回転する回転体を非接触支持する永久磁石使用軸受装置として、回転体に設けられた永久磁石回転装置の非磁性体よりなる部分の上向きまたは下向きの端面に複数の環状の回転永久磁石が同心状に配置され、回転体の軸心方向に回転永久磁石と対向するように磁気支持装置が固定部分に配置されているものが考えられている。
【0005】
超伝導軸受装置の場合、磁気支持装置は超伝導体を備えており、永久磁石回転装置の複数の環状の回転永久磁石が、磁束分布が回転軸心に対して対称になり、かつ回転軸心のまわりの磁束分布が回転によって変化しないように、同心状に配置され、磁気支持装置の超伝導体が、回転永久磁石の磁束が所定量侵入する離隔位置であってかつ回転体の回転によって侵入磁束の分布が変化しない位置に、回転永久磁石と回転軸心方向に対向するように配置されている。この超伝導軸受装置では、回転永久磁石から発生する磁束を超伝導体の内部に侵入させて拘束し、その結果、いわゆるピン止め力により、固定部分に対して回転体をアキシアル方向およびラジアル方向に非接触状態で支持するようになっている。この超伝導軸受装置は回転体をアキシアル方向にもラジアル方向にも支持することができるが、とくに回転体の回転開始時および回転停止時のラジアル方向の安定性を高めるために、制御型ラジアル磁気軸受装置などの非接触型軸受装置が併用されることがある。
【0006】
非制御型磁気軸受装置の場合、磁気支持装置は、回転永久磁石の下方に配置されて磁気反発力により回転永久磁石を上向きに付勢する固定永久磁石、あるいは回転永久磁石の上方に配置されて磁気吸引力により回転永久磁石を上向きに付勢する固定永久磁石を備えており、この磁気反発力あるいは磁気吸引力により固定部分に対して回転体をアキシアル方向に非接触状態で支持するようになっている。この磁気軸受装置は回転体をアキシアル方向にだけ支持するものであるから、回転体をラジアル方向に支持するために、制御型ラジアル磁気軸受装置などの非接触型軸受装置が併用される。
【0007】
上記のような永久磁石使用軸受装置の永久磁石回転装置に設けられる環状の回転永久磁石には、内周側と外周側に磁極が形成されてものと、アキシアル方向の両端部に磁極が形成されたものとがある。内周側と外周側に磁極が形成された永久磁石を使用する場合、ラジアル方向に隣接する2つの永久磁石の間に強磁性体よりなるヨーク部材が配置され、永久磁石回転装置の端面に形成された1つの凹所内に、複数の永久磁石の間にヨーク部材が挟まれたものが組込まれる。すなわち、凹所内の外周側の壁の内周部分に最も外側の永久磁石が圧入され、その内側に、ヨーク部材と永久磁石が交互に圧入される。アキシアル方向の両端部に磁極が形成された永久磁石を使用する場合も、ラジアル方向に隣接する2つの永久磁石の間に非磁性体リングが配置され、上記同様、永久磁石回転装置の端面に形成された1つの凹所内に、複数の永久磁石の間に非磁性体リングが挟まれたものが組込まれる。
【0008】
【発明が解決しようとする課題】
上記の従来の永久磁石使用軸受装置のように、永久磁石回転装置の端面に形成された1つの凹所内に、内周側と外周側に磁極が形成された複数の環状の永久磁石の間にヨーク部材が挟まれたものが組込まれている場合、次のような問題がある。
【0009】
外側の永久磁石あるいはヨーク部材については、遠心膨張しにくい永久磁石回転装置の壁に近いため、遠心膨張は小さいが、ある永久磁石あるいはヨーク部材が遠心膨張すると、その内側のヨーク部材あるいは永久磁石も遠心膨張しやすくなるため、内側の永久磁石あるいはヨーク部材については、遠心膨張が大きくなる。このため、内側の永久磁石あるいはヨーク部材については、その外側にあるヨーク部材あるいは永久磁石の遠心膨張を考慮した大きなしめ代を設定しなければならず、寸法管理が困難で、組立も困難である。また、内側の永久磁石については、遠心膨張すなわちラジアル方向の変位が大きいため、回転体が停止している初期位置決め時と高速回転時とで永久磁石のラジアル方向の位置に変化が生じる。永久磁石が環状の一体物であれば、その内周側と外周側に磁極を形成することができないので、永久磁石の内周側と外周側に磁極を形成する場合には、永久磁石は円周方向に複数のセグメントに分割される。この場合、遠心膨張により、永久磁石のセグメント間に円周方向の隙間が生じることもある。このため、永久磁石による磁束分布が初期位置決め時と高速回転時とで変化したり、回転軸心の周囲の磁束分布が一様でなくなったりする。また、とくに内側の永久磁石については、大きな遠心膨張が生じるため、遠心破壊を起こすおそれがある。超伝導軸受の場合、回転軸心の周囲の磁束の分布が一様で、磁束分布が回転によって変化しないことが重要であり、上記のように回転軸心の周囲の磁束分布が変化したり一様でなくなったりすると、超伝導軸受装置の動作が不安定になる。
【0010】
アキシアル方向の両端部に磁極が形成されている場合は、永久磁石を環状の一体物にすることができる。しかし、永久磁石回転装置の端面に形成された1つの凹所内に、アキシアル方向の両端部に磁極が形成された複数の環状の永久磁石の間に非磁性体リングが挟まれたものが組込まれている場合にも、上記と同様の問題がある。
【0011】
この発明の目的は、上記の問題を解決し、回転永久磁石の寸法管理および組立が容易で、永久磁石の遠心膨張が小さく、永久磁石が遠心破壊を起こすおそれのない永久磁石使用軸受装置および永久磁石回転装置を提供することにある。
【0012】
【課題を解決するための手段】
この発明による永久磁石使用軸受装置は、垂直軸を中心に回転する回転体の永久磁石回転装置に設けられた回転永久磁石と、固定部分に設けられた磁気支持装置とで、磁気力により回転体を非接触支持する装置であって、永久磁石回転装置の円板状の非磁性体製回転部材の軸方向端面に複数の環状の回転永久磁石が同心状に配置され、回転体の軸心方向に回転永久磁石と対向するように磁気支持装置が配置されている永久磁石使用軸受装置において、非磁性体製回転部材の軸方向端面に複数の環状凹みぞが同心状に形成され、各凹みぞ内に回転永久磁石が1つずつはめられて固定され、回転永久磁石の外周部分が、凹みぞの外周側の壁の内周部分に圧入され、回転永久磁石の内周部分が、凹みぞの内周側の壁の外周部分に対して、ほとんど隙間がないかあるいはわずかな隙間をあけてゆるくはめあわされており、非磁性体製回転部材の外周に環状の複合繊維強化プラスチック製補強部材が一体状に固定されていることを特徴とするものである。
【0013】
この発明による永久磁石使用軸受装置は、また、垂直軸を中心に回転する回転体の永久磁石回転装置に設けられた回転永久磁石と、固定部分に設けられた磁気支持装置とで、磁気力により回転体を非接触支持する装置であって、永久磁石回転装置の円板状の非磁性体製回転部材の軸方向端面に複数の環状の回転永久磁石が同心状に配置され、回転体の軸心方向に回転永久磁石と対向するように磁気支持装置が配置されている永久磁石使用軸受装置において、非磁性体製回転部材の軸方向端面に複数の環状凹みぞが同心状に形成され、各凹みぞ内に、1つの回転永久磁石と1つの環状の強磁性体製ヨーク部材とが、回転永久磁石が外側になるようにはめられて固定され、回転永久磁石の外周部分が、凹みぞの外周側の壁の内周部分に圧入され、ヨーク部材が、凹みぞの内周側の壁の外周部分または外側にある回転永久磁石の内側に圧入されており、非磁性体製回転部材の外周に環状の複合繊維強化プラスチック製補強部材が一体状に固定されていることを特徴とするものである
【0014】
たとえば、磁気支持装置が超伝導体を備えており、永久磁石回転装置の複数の環状の回転永久磁石が、磁束分布が上記回転軸心に対して対称になり、かつ上記回転軸心のまわりの磁束分布が回転によって変化しないように、同心状に配置され、磁気支持装置の超伝導体が、回転永久磁石の磁束が所定量侵入する離隔位置であってかつ回転体の回転によって侵入磁束の分布が変化しない位置に、回転永久磁石と上記回転軸心方向に対向するように配置されている。
【0015】
たとえば、磁気支持装置が、永久磁石回転装置の回転永久磁石を磁気反発力または磁気吸引力により上向きに付勢する固定永久磁石を備えている。
【0016】
この発明による永久磁石回転装置は、円板状の非磁性体製回転部材と、回転部材の軸方向端面に同心状に設けられた複数の環状の回転永久磁石とを備えている永久磁石回転装置において、非磁性体製回転部材の軸方向端面に複数の環状凹みぞが同心状に形成され、各凹みぞ内に回転永久磁石が1つずつはめられて固定され、回転永久磁石の外周部分が、凹みぞの外周側の壁の内周部分に圧入され、回転永久磁石の内周部分が、凹みぞの内周側の壁の外周部分に対して、ほとんど隙間がないかあるいはわずかな隙間をあけてゆるくはめあわされており、非磁性体製回転部材の外周に環状の複合繊維強化プラスチック製補強部材が一体状に固定されていることを特徴とするものである
【0017】
この発明による永久磁石回転装置は、また、円板状の非磁性体製回転部材と、回転部材の軸方向端面に同心状に設けられた複数の環状の回転永久磁石とを備えている永久磁石回転装置において、非磁性体製回転部材の軸方向端面に複数の環状凹みぞが同心状に形成され、各凹みぞ内に、1つの回転永久磁石と1つの環状の強磁性体製ヨーク部材とが、回転永久磁石が外側になるようにはめられて固定され、回転永久磁石の外周部分が、凹みぞの外周側の壁の内周部分に圧入され、ヨーク部材が、凹みぞの内周側の壁の外周部分または外側にある回転永久磁石の内側に圧入されており、非磁性体製回転部材の外周に環状の複合繊維強化プラスチック製補強部材が一体状に固定されていることを特徴とするものである
【0018】
【作用】
この発明の永久磁石使用軸受装置または永久磁石回転装置において、非磁性体製回転部材およびそれに形成された凹みぞの壁の部分の遠心膨張は小さい。しかも、回転部材の外周に環状の複合繊維強化プラスチック製補強部材が一体状に固定されているので、回転部材の遠心膨張がさらに小さく抑えられ、凹みぞの壁の部分の遠心膨張が非常に小さくなる
【0020】
非磁性体製回転部材に形成された凹みぞ内に回転永久磁石が1つずつはめられて固定され、回転永久磁石の外周部分が、凹みぞの外周側の壁の内周部分に圧入され、回転永久磁石の内周部分が、凹みぞの内周側の壁の外周部分に対して、ほとんど隙間がないかあるいはわずかな隙間をあけてゆるくはめあわされている永久磁石使用軸受装置または永久磁石回転装置では、上記のように、回転部材の凹みぞの壁の部分の遠心膨張は非常に小さいので、凹みぞの外周側の壁の内周部分とそれに圧入される回転永久磁石とのしめ代を小さくすることができ、回転永久磁石の寸法管理および組立が容易で、永久磁石の遠心膨張も小さく、永久磁石が遠心破壊を起こすこともない。そして、永久磁石の遠心膨張が小さいため、内周側と外周側に磁極が形成された円周方向に複数のセグメントに分割された回転永久磁石の場合でも、永久磁石のラジアル方向の変位が小さく、また、セグメント間に円周方向の隙間が生じることもない。したがって、永久磁石による磁束分布が初期位置決め時と高速回転時とで変化したり、回転軸心の周囲の磁束分布が一様でなくなったりすることがなく、超伝導軸受装置に適用した場合も動作が安定している。
【0021】
非磁性体製回転部材に形成された凹みぞ内に、1つの回転永久磁石と1つの環状の強磁性体製ヨーク部材とが、回転永久磁石が外側になるようにはめられて固定され、回転永久磁石の外周部分が、凹みぞの外周側の壁の内周部分に圧入され、ヨーク部材が、凹みぞの内周側の壁の外周部分または外側にある回転永久磁石の内側に圧入されている永久磁石使用軸受装置または永久磁石回転装置では、上記同様、凹みぞの外周側の壁の内周部分とそれに圧入される回転永久磁石とのしめ代を小さくすることができ、回転永久磁石の寸法管理および組立が容易で、永久磁石の遠心膨張も小さく、永久磁石が遠心破壊を起こすこともない。そして、永久磁石の遠心膨張が小さいため、内周側と外周側に磁極が形成された円周方向に複数のセグメントに分割された回転永久磁石の場合でも、永久磁石のラジアル方向の変位が小さく、また、セグメント間に円周方向の隙間が生じることもない。したがって、永久磁石による磁束分布が初期位置決め時と高速回転時とで変化したり、回転軸心の周囲の磁束分布が一様でなくなったりすることがなく、超伝導軸受装置に適用した場合も動作が安定している。そして、ヨーク部材が凹みぞの内周側の壁の外周部分に圧入されている場合は、上記のように、回転部材の凹みぞの壁の部分の遠心膨張は非常に小さいので、凹みぞの内周側の壁の外周部分とそれに圧入されるヨーク部材とのしめ代を小さくすることができ、ヨーク部材の寸法管理および組立も容易である。また、ヨーク部材が外側にある回転永久磁石の内側に圧入されている場合は、ヨーク部材の寸法管理については、その外側にある1つの回転永久磁石の小さい遠心膨張だけを考慮すればよいので、やはりヨーク部材と回転永久磁石とのしめ代を小さくすることができ、寸法管理および組立が容易である。
【0022】
アキシアル方向の両端部に磁極が形成された回転永久磁石を使用する場合、非磁性体製回転部材の各凹みぞ内に1つの永久磁石だけを圧入すればよい。このようにすると、ラジアル方向に隣接する2つの回転永久磁石の間に永久磁石回転装置の凹みぞの非磁性体よりなる仕切り壁の部分が存在するので、別に非磁性体リングを組込む必要がない。
【0024】
【実施例】
以下、図面を参照して、この発明の実施例について説明する。
【0025】
図1〜図3は、この発明を電力貯蔵装置におけるフライホイール装置の超伝導軸受装置に適用した第1実施例を示している。
【0026】
図1はフライホイール装置の全体構成を概略的に示し、図2および図3はその超伝導軸受装置の部分を詳細に示している。
【0027】
フライホイール装置は、垂直な回転体(1) 、回転体(1) をアキシアル方向(上下方向)およびラジアル方向に支持するための超伝導軸受装置(2) 、起動時および運転停止時に回転体(1) をラジアル方向に非接触支持するための上下2組の制御型ラジアル磁気軸受装置(3)(4)、起動時に回転体(1) の位置決めを行うための初期位置決め装置(5) 、ならびに発電電動機(6) を備えており、これらが、複数の部材よりなる固定ハウジング(固定部分)(7) で囲まれた真空チャンバ(8) 内に配置されている。
【0028】
回転体(1) は、垂直な回転軸(9) の高さの中間部に円板状のフライホイール(10)と永久磁石回転装置(11)が固定されたものであり、ハウジング(7) 内の中心に若干の上下動ができるように配置されている。フライホイール(10)はたとえばアルミニウム合金により円板状に形成されており、その外側にCFRP(複合繊維強化プラスチック)製の環状の補強部材(12)が一体状に固定されている。
【0029】
超伝導軸受装置(2) は、回転体(1) の永久磁石回転装置(11)と、その下面に対向するようにハウジング(7) に固定状に設けられた磁気支持装置(13)とから構成されている。
【0030】
永久磁石回転装置(11)は、フライホイール(10)の下端面に密着するように回転軸(9)に固定された円板状の非磁性体製回転部材(14)と、回転部材(14)の下端面に同心状に設けられた複数の環状の回転永久磁石(15)とを備えている。回転部材(14)はたとえばアルミニウム合金、非磁性ステンレス鋼などの非磁性体で円板状に形成され、その外周に環状のCFRP製補強部材(16)が一体状に固定されている。回転部材(14)の下端面に、円形の仕切り壁(17)で仕切られた複数の環状凹みぞ(18)が同心状に形成されている。各凹みぞ(18)内に、環状の回転永久磁石(15)と強磁性体よりなる環状のヨーク部材(19)とが、永久磁石(15)が外側になるようにはめられて固定されている。永久磁石(15)の外周部分は、凹みぞ(18)の外周側の壁あるいは仕切り壁(17)の内周部分に圧入されている。ヨーク部材(19)の内周部分は、凹みぞ(18)の内周側の仕切り壁(17)あるいは壁の外周部分に圧入されている。そして、同一の凹みぞ(18)内の永久磁石(15)の内周部分とヨーク部材(19)の外周部分とはゆるくはめ合わされ、これらの間にはほとんど隙間がないかあるいはわずかな隙間があけられている。各永久磁石(15)は円周方向に複数のセグメント(15a) に等分されており、内周側と外周側に磁極が形成されている。そして、ラジアル方向に隣接する2つの永久磁石(15)の磁極が互いに同じ極性になるように、永久磁石(15)が配置されている。すなわち、内側から1、3、5番目の永久磁石(15)は内周側がS極で外周側がN極となり、2、4番目の永久磁石(15)は内周側がN極で外周側がS極となっている。なお、永久磁石(15)が円周方向に複数のセグメント(15a)に分割されているのは、永久磁石が環状の一体物であればその内周部と外周部に磁極を形成することができないからである。さらに、隣り合う環状の永久磁石(15)の分割面は重ならないように位相がずらされている。これは、分割面での磁束の分布状態のむらを極力抑えるためである。永久磁石(15)は環状をなし、回転体(1)の回転軸心(A)に対して同心状に配置されているので、永久磁石(15)の磁束分布が回転軸心(A)に対して対称になり、かつ回転軸心(A)の周囲の磁束分布が回転によって変化しないようになっている。
【0031】
磁気支持装置(13)は、永久磁石回転装置(11)の下面に所定の間隔をおいて対向するようにハウジング(7) に固定された環状の冷却ケース(20)、および超伝導体(21)を備えている。冷却ケース(20)は、たとえば銅合金、非磁性ステンレス鋼などの非磁性体からなる。冷却ケース(20)内の空間に、環状の超伝導体(21)が固定状に配置されている。図示は省略したが、冷却ケース(20)内の空間は冷却流体供給管および同排出管を介して冷却装置に接続されており、この冷却装置により、たとえば液体窒素などの冷却流体が供給管、冷却ケース(20)内の空間および排出管を介して循環させられ、これによって超伝導体(21)が冷却されるようになっている。超伝導体(21)は第2種超伝導体であり、イットリウム系高温超伝導体、たとえばYBaCu7-x からなるバルクの内部に常伝導体(YBaCu)を均一に混在させたものからなり、第2種超伝導状態が出現する温度環境下において、永久磁石(15)から発せられる磁束を内部に拘束する性質を持つものである。そして、超伝導体(21)は、永久磁石(15)の磁束が所定量侵入する離隔位置であってかつ回転体(1) の回転によって侵入磁束の分布が変化しない位置に、永久磁石(15)と対向するように配置されている。
【0032】
各ラジアル磁気軸受装置(3)(4)は、詳細な図示は省略したが、回転体(1) を互いに直交する2つのラジアル方向(X軸およびY軸方向)の両側から吸引して同方向の回転体(1) の位置を制御するための電磁石、ならびに回転体(1) のX軸およびY軸方向の変位を検出するための変位センサを備えており、これらが図示しない磁気軸受制御装置に接続されている。そして、磁気軸受制御装置により、変位センサの出力に基づいて電磁石の電流値すなわち吸引力が制御され、その結果、回転体(1) のラジアル方向の位置が制御されるようになっている。なお、ラジアル磁気軸受装置およびその制御装置自体は公知のものであるから、詳細な説明は省略する。
【0033】
発電電動機(6) は、詳細な図示は省略したが、回転体(1) に取付けられたロータと、その周囲のハウジング(7) に固定状に設けられたステータとからなる。この電動機(6) は、電力貯蔵時には電動機として作動して回転体(1) を高速回転させ、電力取出し時には発電機として作動するようになっている。
【0034】
初期位置決め装置(5) は、詳細な図示は省略したが、回転体(1) の下方のハウジング(7) の部分を昇降する昇降体を備え、回転体(1) を所定の位置まで持上げるようになっている。
【0035】
ハウジング(7) の上部および下部に、非常時に回転体(1) の上下両端寄りの部分を支持する転がり軸受からなるタッチダウン軸受(22)(23)が設けられている。
【0036】
回転体(1) の運転を開始する際には、まず、真空チャンバ(8) 内を真空状態にし、初期位置決め装置(5) により、停止状態の回転体(1) を所定の位置まで持上げて、回転体(1) のアキシアル方向の初期位置決めを行う。また、上下の磁気軸受装置(3)(4)を駆動して、回転体(1) のラジアル方向の初期位置決めを行う。そして、冷却装置により超伝導軸受装置(2) の冷却ケース(20)内に冷却流体を循環させ、超伝導体(21)を冷却して第2種超伝導状態に保持する。すると、回転永久磁石(15)から発せられる磁束の多くが超伝導体(21)の内部に侵入して拘束されることになる(ピンニング現象)。ここで、超伝導体(21)はその内部に常伝導体粒子が均一に混在されているため、超伝導体(21)内部への侵入磁束の分布が一定となり、そのため、超伝導体(21)に対して回転永久磁石(15)とともに回転体(1) が拘束される。したがって、回転体(1) は、きわめて安定した状態で、アキシアル方向およびラジアル方向に支持されることになる。このとき、超伝導体(14)に侵入した磁束は、磁束分布が回転軸心(A) に対して均一で不変である限り、回転を妨げる抵抗とはならない。このように超伝導軸受装置(2) および磁気軸受装置(3)(4)によって回転体(1) が支持されたならば、初期位置決め装置(5) による回転体(1) の支持をなくす。初期位置決め装置(5) による支持がなくなると、回転体(1) は自重により若干下降するが、自重による下向きの力と超伝導軸受装置(2) のアキシアル方向の支持力とが釣合う位置に停止する。これにより、回転体(1) は、超伝導軸受装置(2) と磁気軸受装置(3)(4)とで非接触支持されたことになる。回転体(1) が非接触支持されたならば、電動機(6) を起動して、回転体(1) を回転させ、運転回転領域まで加速する。回転体(1) が運転回転領域に達するまでの間に共振が発生しても、磁気軸受装置(3)(4)によりふれの発生が防止される。回転体(1) が運転回転領域に達したならば、所定の回転数に保持され、磁気軸受装置(3)(4)の駆動が停止させられて、磁気軸受装置(3)(4)によるラジアル方向の支持がなくなる。磁気軸受装置(3)(4)によるラジアル方向の支持がなくなっても、回転体(1) は、超伝導軸受装置(2) の超伝導体(21)に侵入した磁束のピン止め力によってアキシアル方向およびラジアル方向に支持され、安定した回転を継続する。そして、回転体(1) が運転回転領域で回転している間に、電気エネルギが回転運動エネルギに変換されてフライホイール(10)に貯蔵される。
【0037】
回転体(1) が運転回転領域で回転しているときに停電が発生した場合、発電電動機(6) は停止するが、フライホイール(10)により、回転体(1) はわずかに減速するものの継続して回転させられる。その結果、発電電動機(6) が発電機として作動し、フライホイール(10)に貯蔵されていた回転運動エネルギが電気エネルギとして取出され、図示しない蓄電池に蓄えられる。蓄電池に蓄えられた電力は、図示しない外部の電力消費財および超伝導軸受装置(2) の冷却装置に送られ、電力消費財および超伝導軸受装置(2) が作動を継続する。蓄電池に蓄えられた電力の一部は磁気軸受制御装置に送られ、これにより磁気軸受装置(3)(4)が駆動される。そして、フライホイール(10)に蓄えられていた回転運動エネルギが減少して回転体(1) が停止するまでの間、回転体(1) は超伝導軸受装置(2) および磁気軸受装置(3)(4)によって非接触状態で支持され、共振点で生じる回転体(1) のふれは、上記の起動時と同様に、磁気軸受装置(3)(4)によって減少させられる。
【0038】
停電時以外でも、発電電動機(6) を停止させると、停電の場合と同様に、フライホイール(10)に貯蔵されていた回転運動エネルギを電気エネルギとして取出すことができる。
【0039】
上記の超伝導軸受装置(2) では、永久磁石回転装置(11)がラジアル方向に同心状に配置された複数の環状の永久磁石(15)を備え、各永久磁石(15)の内周側と外周側に磁極が形成され、ラジアル方向に隣接する2つの永久磁石(15)の磁極が互いに同じ磁極であり、しかもラジアル方向に隣接する2つの永久磁石(15)の間に強磁性体よりなるヨーク部材(19)が挟まれているので、ヨーク部材(19)の超伝導体(21)を向いた部分に磁束が局所的に集中し、その結果、超伝導体(21)に侵入する磁束が多くなって、超伝導軸受装置(2) の負荷容量および剛性が向上する。
【0040】
しかしながら、回転永久磁石(15)は、アキシアル方向の両端部に磁極が形成されたものであってもよい。その場合は、永久磁石(15)を環状の一体物にすることができる。
【0041】
また、上記の超伝導軸受装置(2) では、永久磁石回転装置(11)において、非磁性体製回転部材(14)の端面の複数の同心状の環状凹みぞ(18)のそれぞれに、環状の永久磁石(15)とヨーク部材(19)が1組ずつ組込まれているので、永久磁石(15)およびヨーク部材(19)の寸法管理および組立が容易で、高速回転時の遠心力による永久磁石(15)の変形が小さく、したがって、超伝導軸受装置の動作が安定しており、しかも永久磁石(15)が遠心破壊を起こすこともない。すなわち、各永久磁石(15)が遠心膨張の小さい回転部材(14)の壁あるいは仕切り壁(17)の内周部分にそれぞれ圧入されているので、しめ代を小さくすることができ、永久磁石(15)の寸法管理および組立が容易で、永久磁石(15)の遠心膨張も小さく、永久磁石(15)が遠心破壊を起こすこともない。そして、永久磁石(15)の遠心膨張が小さいため、永久磁石(15)が円周方向に複数のセグメント(15a) に分割されていても、永久磁石(15)のラジアル方向の変位が小さく、また、セグメント(15a) 間に円周方向の隙間が生じることもない。したがって、永久磁石(15)による磁束分布が初期位置決め時と高速回転時とで変化したり、回転軸心の周囲の磁束分布が一様でなくなったりすることがなく、超伝導軸受装置(2) の動作が安定している。さらに、各ヨーク部材(19)が遠心膨張の小さい回転部材(14)の壁あるいは仕切り壁(17)の外周部分にそれぞれ圧入されているので、しめ代を小さくすることができ、ヨーク部材(19)の寸法管理および組立も容易である。なお、ヨーク部材(19)は、同じ凹みぞ(18)内の永久磁石(15)の内側に圧入されてもよい。このようにしても、ヨーク部材(19)の寸法管理については、その外側にある1つの永久磁石(15)の小さい遠心膨張だけを考慮すればよいので、やはりしめ代を小さくすることができ、寸法管理が容易である。
【0042】
永久磁石回転装置(11)の非磁性体回転部材(14)の外側に固定されている補強部材(16)を構成するCFRPは、軽量でヤング率が大きい。そして、軽量であることより、高速回転時に補強部材(16)に作用する遠心力が小さく、しかもヤング率が大きいことより、遠心力による補強部材(16)の変形(遠心膨張)も小さい。このため、補強部材(16)の内側にはめられている回転部材(14)の遠心膨張も小さく抑えられ、その結果、回転永久磁石(15)の遠心膨張がさらに小さく抑えられる。同様に、フライホイール(10)の外側に固定されたCFRP製の補強部材(12)により、フライホイール(10)の遠心膨張がおよび遠心破壊が防止される。
【0043】
上記実施例では、永久磁石回転装置(11)が上方に、磁気支持装置(13)が下方に配置されているが、これらの上下関係を逆様にして、磁気支持装置が上方に、永久磁石回転装置が下方に配置されることもある。
【0044】
図4は、この発明を電力貯蔵装置におけるフライホイール装置の非制御型磁気軸受装置に適用した第2実施例を示している。
【0045】
図4には、フライホイール装置のうちの非制御型磁気軸受装置の部分だけが示されている。第2実施例のフライホイール装置の全体構成は、磁気支持装置として超伝導軸受装置のかわりに非制御型磁気軸受装置が用いられている点、初期位置決め装置が設けられていない点を除いて、第1実施例のフライホイール装置とほぼ同様であり、同じ部分には同一の符号を付している。また、第2実施例の説明において、図4に示されていない部分であって第1実施例と同じ部分については、図1の図面参照符号を使用して説明する。
【0046】
非制御型磁気軸受装置(25)は、回転体(1) の永久磁石回転装置(26)と、その下面に対向するようにハウジング(7) に固定状に設けられた磁気支持装置(27)とから構成されている。
【0047】
永久磁石回転装置(26)の非磁性体製回転部材(14)および補強部材(16)の構成は、第1実施例と同じである。この場合、永久磁石回転装置(26)はアキシアル方向の両端部に磁極が形成された複数の環状の回転永久磁石(28)を備えており、回転部材(14)の各凹みぞ(18)内に1つの永久磁石(28)だけが組込まれている。永久磁石(28)は、アキシアル方向の両端部に磁極が形成されたものであるから、環状の一体物にすることができる。永久磁石(28)の外周部分は、凹みぞ(18)の外周側の壁あるいは仕切り壁(17)の内周部分に圧入されている。永久磁石(28)の内周部分は、凹みぞ(18)の内周側の仕切り壁(17)あるいは壁の外周部分にゆるくはめ合わされ、これらの間にはほとんど隙間がないかあるいはわずかな隙間があけられている。ラジアル方向に隣接する2つの永久磁石(28)の間に非磁性体製の仕切り壁(17)の部分が存在するので、非磁性体リングを別に組込む必要がない。そして、凹みぞ(18)内に永久磁石(28)を1つだけ圧入すればよいので、第1実施例の場合と同様、永久磁石(28)の寸法管理および組立が容易で、高速回転時の遠心力による永久磁石(28)の変形が小さく、永久磁石(28)が遠心破壊を起こすこともない。
【0048】
磁気支持装置(27)は、永久磁石回転装置(26)の下面に所定の間隔をおいて対向するようにハウジング(7) に固定された穴あき円板状の非磁性体製固定部材(29)、および固定部材(29)の上面に同心状に設けられた複数の環状の固定永久磁石(30)を備えている。固定部材(29)の上面に、ラジアル方向の幅が比較的広い1つの環状凹所(31)が形成され、この凹所(31)内に、複数の環状の固定永久磁石(30)と、これらの間に挟まれた複数の非磁性体リング(32)とがはめられて固定されている。固定永久磁石(30)は、アキシアル方向の両端部に磁極が形成されたものである。固定永久磁石(30)の数は回転永久磁石(28)の数と同数であり、固定永久磁石(30)は回転永久磁石(28)にほぼ対向するように配置されている。各固定永久磁石(30)の磁極の配置は対応する回転永久磁石(28)のそれと逆で、各固定永久磁石(30)が対応する回転永久磁石(28)を磁気反発力によって上向きに付勢するようになっている。
【0049】
第2実施例のフライホイール装置では、磁気支持装置(27)の固定永久磁石(30)と永久磁石回転装置(26)の回転永久磁石(28)の磁気反発力により、回転体(1) がアキシアル方向に非接触支持される。また、上下の制御型ラジアル磁気軸受装置(3)(4)により、回転体(1) がラジアル方向に非接触支持される。そして、発電電動機(6) により、回転体(1) が高速回転させられる。
【0050】
他は、第1実施例の場合と同様である。
【0051】
図5は、この発明を電力貯蔵装置におけるフライホイール装置の非制御型磁気軸受装置に適用した第3実施例を示している。
【0052】
図5には、フライホイール装置のうちの非制御型磁気軸受装置の部分だけが示されている。第3実施例のフライホイール装置の全体構成は、第2実施例のフライホイール装置とほぼ同様であり、同じ部分には同一の符号を付している。
【0053】
非制御型磁気軸受装置(34)は、回転体(1) の永久磁石回転装置(35)と、その上面に対向するようにハウジング(7) に固定状に設けられた磁気支持装置(36)とから構成されている。
【0054】
フライホイール(10)、永久磁石回転装置(35)および磁気支持装置(36)は、第2実施例のフライホイール(10)、永久磁石回転装置(26)および磁気支持装置(27)の上下関係を逆にしたものであるから、対応する部分に同一の符号を付し、詳細な説明は省略した。
【0055】
第3実施例の場合、磁気支持装置(36)の各固定永久磁石(30)の磁極の配置は対応する永久磁石回転装置(35)の回転永久磁石(28)のそれと同じで、各固定永久磁石(30)が対応する回転永久磁石(28)を磁気吸引力によって上向きに付勢するようになっている。
【0056】
他は、第2実施例の場合と同様である。
【0057】
第2および第3実施例においても、回転永久磁石(28)および固定永久磁石(30)として、内周側と外周側に磁極が形成された第1実施例の回転永久磁石(15)と同様のものを用いることができる。
【0058】
【発明の効果】
この発明の永久磁石使用軸受装置および永久磁石回転装置によれば、上述のように、回転永久磁石の寸法管理および組立が容易で、高速回転時の遠心力による永久磁石の変形が小さく、永久磁石が遠心破壊を起こすこともない。そして、遠心力による変形が小さいため、超伝導軸受装置に適用した場合も、動作が安定している。
【図面の簡単な説明】
【図1】この発明の第1実施例を示すフライホイール装置の概略縦断面図である。
【図2】図1のフライホイール装置の超伝導軸受装置の部分の拡大縦断面図である。
【図3】図1のIII −III 線の断面図である。
【図4】この発明の第2実施例を示すフライホイール装置の非制御型磁気軸受装置の部分の縦断面図である。
【図5】この発明の第3実施例を示すフライホイール装置の非制御型磁気軸受装置の部分の縦断面図である。
【符号の説明】
(1) 回転体
(2) 超伝導軸受装置
(7) 固定ハウジング(固定部分)
(11)(26)(35) 永久磁石回転装置
(13)(27)(36) 磁気支持装置
(14) 非磁性体製回転部材
(15)(28) 回転永久磁石
(16) 補強部材
(18) 環状凹みぞ
(21) 超伝導体
(25)(34) 非制御型磁気軸受装置
(30) 固定永久磁石
(A) 回転軸心
[0001]
[Industrial application fields]
The present invention relates to a fluid machine or machine tool that requires high-speed rotation, a power storage device that stores excess electric power by converting it into rotational kinetic energy of a flywheel, or a permanent magnet bearing device used in a gyroscope and the like, and The present invention relates to a permanent magnet rotating device, and more particularly, to a permanent magnet using bearing device and a permanent magnet rotating device that support a rotating body that rotates about a vertical axis.
[0002]
In this specification, the term “permanent magnet bearing device” means a superconducting bearing in which a rotating body is supported in a non-contact manner by a permanent magnet and a superconductor, and the rotating body is contacted by a magnetic repulsion force or a magnetic attraction force between the permanent magnets. It is used as a general term for a bearing device that uses a permanent magnet to support a rotating body in a non-contact manner, such as a non-control type magnetic bearing to be supported. The term permanent magnet rotating device is used as the name of a device that rotates a permanent magnet together with a rotating body in a bearing device using permanent magnets.
[0003]
[Prior art]
2. Description of the Related Art Recently, permanent magnet bearing devices that can support a rotating body in a non-contact state have been developed as bearing apparatuses that enable high-speed rotation and high rigidity of the rotating body.
[0004]
As a bearing device using a permanent magnet that supports a rotating body that rotates about a vertical axis in a non-contact manner, a plurality of annular rotations are provided on the upward or downward end face of the permanent magnet rotating device provided on the rotating body. It is considered that the permanent magnets are arranged concentrically and the magnetic support device is arranged at the fixed portion so as to face the rotating permanent magnet in the axial direction of the rotating body.
[0005]
In the case of a superconducting bearing device, the magnetic support device includes a superconductor, and the plurality of annular rotating permanent magnets of the permanent magnet rotating device have a magnetic flux distribution that is symmetric with respect to the rotating axis, and the rotating axis Are arranged concentrically so that the magnetic flux distribution around the magnet does not change due to rotation, and the superconductor of the magnetic support device is at a separated position where a predetermined amount of magnetic flux of the rotating permanent magnet enters, and penetrates by rotation of the rotating body It is arranged at a position where the distribution of magnetic flux does not change so as to face the rotating permanent magnet in the direction of the rotation axis. In this superconducting bearing device, the magnetic flux generated from the rotating permanent magnet penetrates into the superconductor and is restrained. As a result, the so-called pinning force causes the rotating body to move in the axial and radial directions relative to the fixed part. Supports in a non-contact state. This superconducting bearing device can support the rotating body in both the axial and radial directions. However, in order to increase the stability of the rotating body in the radial direction especially when starting and stopping the rotation, the controlled radial magnetic device is used. A non-contact type bearing device such as a bearing device may be used in combination.
[0006]
In the case of a non-control type magnetic bearing device, the magnetic support device is disposed below the rotating permanent magnet and is disposed above the rotating permanent magnet, or a fixed permanent magnet that biases the rotating permanent magnet upward by a magnetic repulsive force. It has a fixed permanent magnet that urges the rotating permanent magnet upward by a magnetic attractive force, and supports the rotating body in a non-contact state in the axial direction with respect to the fixed portion by this magnetic repulsive force or magnetic attractive force. ing. Since this magnetic bearing device supports the rotating body only in the axial direction, a non-contact type bearing device such as a control type radial magnetic bearing device is used together to support the rotating body in the radial direction.
[0007]
In the annular rotating permanent magnet provided in the permanent magnet rotating device of the permanent magnet bearing device as described above, magnetic poles are formed at both ends in the axial direction, even though magnetic poles are formed on the inner peripheral side and the outer peripheral side. There is something. When using permanent magnets with magnetic poles formed on the inner and outer peripheral sides, a yoke member made of a ferromagnetic material is arranged between two permanent magnets adjacent in the radial direction and formed on the end face of the permanent magnet rotating device. In the one recess, a member in which a yoke member is sandwiched between a plurality of permanent magnets is incorporated. That is, the outermost permanent magnet is press-fitted into the inner peripheral portion of the outer peripheral wall in the recess, and the yoke member and the permanent magnet are alternately press-fitted into the inner side. Even when using permanent magnets with magnetic poles formed at both ends in the axial direction, a non-magnetic ring is arranged between two permanent magnets adjacent to each other in the radial direction, and is formed on the end face of the permanent magnet rotating device as described above. In the one recess, a structure in which a non-magnetic ring is sandwiched between a plurality of permanent magnets is incorporated.
[0008]
[Problems to be solved by the invention]
As in the above-described conventional permanent magnet bearing device, in a single recess formed on the end face of the permanent magnet rotating device, a plurality of annular permanent magnets having magnetic poles formed on the inner peripheral side and the outer peripheral side are provided. When a member with a yoke member sandwiched therein is incorporated, there are the following problems.
[0009]
Since the outer permanent magnet or yoke member is close to the wall of the permanent magnet rotating device that is difficult to centrifugally expand, the centrifugal expansion is small, but when a certain permanent magnet or yoke member is centrifugally expanded, the inner yoke member or permanent magnet is also Since centrifugal expansion easily occurs, centrifugal expansion increases for the inner permanent magnet or yoke member. For this reason, for the inner permanent magnet or yoke member, it is necessary to set a large interference allowance considering the centrifugal expansion of the outer yoke member or permanent magnet, which makes it difficult to manage the dimensions and to assemble. . Further, since the inner permanent magnet has a large centrifugal expansion, that is, a radial displacement, a change occurs in the radial direction of the permanent magnet between the initial positioning when the rotating body is stopped and the high-speed rotation. If the permanent magnet is a ring-shaped integral, magnetic poles cannot be formed on the inner and outer peripheral sides of the permanent magnet. Therefore, when forming the magnetic poles on the inner and outer peripheral sides of the permanent magnet, the permanent magnet must be circular. Divided into a plurality of segments in the circumferential direction. In this case, the circumferential expansion may occur between the segments of the permanent magnet due to centrifugal expansion. For this reason, the magnetic flux distribution by the permanent magnet changes between the initial positioning and the high-speed rotation, or the magnetic flux distribution around the rotation axis is not uniform. In particular, for the inner permanent magnet, a large centrifugal expansion occurs, which may cause a centrifugal breakdown. In the case of a superconducting bearing, it is important that the magnetic flux distribution around the rotation axis is uniform and the magnetic flux distribution does not change due to rotation. If not, the operation of the superconducting bearing device becomes unstable.
[0010]
In the case where magnetic poles are formed at both ends in the axial direction, the permanent magnet can be made into a ring-shaped integral. However, a non-magnetic ring sandwiched between a plurality of annular permanent magnets having magnetic poles formed at both ends in the axial direction is incorporated into one recess formed on the end face of the permanent magnet rotating device. There are similar problems as described above.
[0011]
SUMMARY OF THE INVENTION An object of the present invention is to solve the above-mentioned problems, facilitate the size control and assembly of a rotating permanent magnet, have a small centrifugal expansion of the permanent magnet, and a permanent magnet-use bearing device and a permanent magnet that do not cause a centrifugal breakage of the permanent magnet. The object is to provide a magnet rotation device.
[0012]
[Means for Solving the Problems]
A permanent magnet bearing device according to the present invention includes a rotating permanent magnet provided in a permanent magnet rotating device of a rotating body that rotates about a vertical axis, and a magnetic support device provided in a fixed portion, and the rotating body by a magnetic force. Non-contact support device for permanent magnet rotating device Disc-shaped nonmagnetic rotating member A plurality of annular rotating permanent magnets are concentrically arranged on the axial end face of the bearing, and a permanent magnet using bearing device in which a magnetic support device is arranged to face the rotating permanent magnet in the axial direction of the rotating body, Non-magnetic rotating member A plurality of annular grooves are formed concentrically on the axial end surface of each, and one rotating permanent magnet is provided in each groove. The outer peripheral part of the rotating permanent magnet is press-fitted into the inner peripheral part of the outer peripheral wall of the groove, and the inner peripheral part of the rotating permanent magnet is inserted into the outer peripheral part of the inner peripheral wall of the concave groove. On the other hand, it is loosely fitted with little or no gap, and an annular composite fiber reinforced plastic reinforcing member is integrally fixed to the outer periphery of the nonmagnetic rotating member. It is characterized by this.
[0013]
The bearing apparatus using permanent magnets according to the present invention also includes a rotating permanent magnet provided in a permanent magnet rotating device of a rotating body that rotates about a vertical axis, and a magnetic support device provided in a fixed portion, by magnetic force. An apparatus for supporting a rotating body in a non-contact manner, wherein a plurality of annular rotating permanent magnets are concentrically disposed on an axial end surface of a disk-shaped nonmagnetic rotating member of a permanent magnet rotating apparatus, and a shaft of the rotating body In the bearing device using a permanent magnet in which the magnetic support device is disposed so as to face the rotating permanent magnet in the center direction, a plurality of annular grooves are formed concentrically on the axial end surface of the nonmagnetic rotating member, One rotating permanent magnet and one annular ferromagnetic yoke member are fixed in the recess so that the rotating permanent magnet is placed outside, and the outer peripheral portion of the rotating permanent magnet is in the recess. Press-fitted into the inner periphery of the outer wall, Is inserted into the outer peripheral portion of the inner peripheral wall of the recess or the inside of the rotating permanent magnet on the outer side, and an annular composite fiber reinforced plastic reinforcing member is provided on the outer periphery of the nonmagnetic rotating member. It is characterized by being fixed integrally. .
[0014]
For example, the magnetic support device includes a superconductor, and the plurality of annular rotating permanent magnets of the permanent magnet rotating device are configured such that the magnetic flux distribution is symmetric with respect to the rotation axis and around the rotation axis. The magnetic flux distribution is arranged concentrically so that the magnetic flux distribution does not change due to rotation, and the superconductor of the magnetic support device is a remote position where a predetermined amount of magnetic flux of the rotating permanent magnet enters, and the distribution of the intrusion magnetic flux by the rotation of the rotating body Is arranged so as to oppose the rotating permanent magnet in the direction of the rotation axis at a position where does not change.
[0015]
For example, the magnetic support device includes a fixed permanent magnet that biases the rotating permanent magnet of the permanent magnet rotating device upward by a magnetic repulsive force or a magnetic attractive force.
[0016]
A permanent magnet rotating apparatus according to the present invention includes a disk-shaped rotating member made of a non-magnetic material, and a plurality of annular rotating permanent magnets provided concentrically on the axial end surface of the rotating member. A plurality of annular recesses are formed concentrically on the axial end face of the non-magnetic rotating member, one rotating permanent magnet is fitted and fixed in each recess, and the outer peripheral portion of the rotating permanent magnet is The inner peripheral portion of the outer peripheral wall of the groove is press-fitted, and the inner peripheral portion of the rotating permanent magnet has little or little gap with respect to the outer peripheral portion of the inner peripheral wall of the concave groove. Openly and loosely fitted, an annular composite fiber reinforced plastic reinforcing member is integrally fixed to the outer periphery of the nonmagnetic rotating member. .
[0017]
The permanent magnet rotating device according to the present invention also includes a disk-shaped non-magnetic rotating member and a plurality of annular rotating permanent magnets concentrically provided on the axial end surface of the rotating member. In the rotating device, a plurality of annular recesses are formed concentrically on the axial end face of the nonmagnetic rotating member, and one rotating permanent magnet and one annular ferromagnetic yoke member are formed in each recess. However, the outer periphery of the rotating permanent magnet is press-fitted into the inner periphery of the outer wall of the recess, and the yoke member is connected to the inner periphery of the recess. It is press-fitted inside a rotating permanent magnet on the outer peripheral portion or outside of the wall, and an annular composite fiber reinforced plastic reinforcing member is integrally fixed to the outer periphery of the nonmagnetic rotating member. To do .
[0018]
[Action]
In the bearing device using permanent magnets or the permanent magnet rotating device according to the present invention, the centrifugal expansion of the nonmagnetic rotating member and the wall portion of the groove formed thereon is small. Moreover, since the annular composite fiber reinforced plastic reinforcing member is integrally fixed to the outer periphery of the rotating member, the centrifugal expansion of the rotating member can be further reduced, and the centrifugal expansion of the wall portion of the recess is very small. Become .
[0020]
A rotating permanent magnet is fitted and fixed one by one in a groove formed in the nonmagnetic rotating member, and the outer peripheral part of the rotating permanent magnet is press-fitted into the inner peripheral part of the wall on the outer peripheral side of the groove, Permanent magnet bearing device or permanent magnet in which the inner peripheral portion of the rotating permanent magnet is loosely fitted to the outer peripheral portion of the inner peripheral wall of the recess with little or no gap. In the rotating device, as described above, the rotating member The centrifugal expansion of the wall part of the groove very So small The inner peripheral part of the wall on the outer peripheral side of the groove and the rotating permanent magnet press-fitted into it The interference allowance can be reduced, the size of the rotating permanent magnet can be easily controlled and assembled, the centrifugal expansion of the permanent magnet is small, and the permanent magnet does not cause centrifugal breakage. Further, since the centrifugal expansion of the permanent magnet is small, the radial displacement of the permanent magnet is small even in the case of a rotating permanent magnet divided into a plurality of segments in the circumferential direction in which magnetic poles are formed on the inner and outer peripheral sides. In addition, there is no circumferential gap between the segments. Therefore, the magnetic flux distribution by the permanent magnet does not change between initial positioning and high-speed rotation, and the magnetic flux distribution around the rotation axis does not become uniform, and it works even when applied to a superconducting bearing device. Is stable.
[0021]
One rotating permanent magnet and one annular ferromagnetic yoke member are fixed in a groove formed in the nonmagnetic rotating member so that the rotating permanent magnet is on the outside, and then rotated. The outer peripheral portion of the permanent magnet is press-fitted into the inner peripheral portion of the outer peripheral wall of the groove, and the yoke member is press-fitted into the outer peripheral portion of the inner peripheral wall of the concave groove or inside the rotating permanent magnet on the outer side. In the permanent magnet bearing device or the permanent magnet rotating device, the interference margin between the inner peripheral portion of the wall on the outer peripheral side of the groove and the rotating permanent magnet press-fitted thereto can be reduced as described above. Dimension management and assembly are easy, the centrifugal expansion of the permanent magnet is small, and the permanent magnet does not cause centrifugal breakage. Further, since the centrifugal expansion of the permanent magnet is small, the radial displacement of the permanent magnet is small even in the case of a rotating permanent magnet divided into a plurality of segments in the circumferential direction in which magnetic poles are formed on the inner and outer peripheral sides. In addition, there is no circumferential gap between the segments. Therefore, the magnetic flux distribution by the permanent magnet does not change between initial positioning and high-speed rotation, and the magnetic flux distribution around the rotation axis does not become uniform, and it works even when applied to a superconducting bearing device. Is stable. When the yoke member is press-fitted into the outer peripheral portion of the inner peripheral wall of the recess, as described above, the rotating member The centrifugal expansion of the wall part of the groove very So small The outer peripheral portion of the inner peripheral wall of the recess and the yoke member press-fitted into it The interference allowance can be reduced, and the dimension management and assembly of the yoke member are easy. If the yoke member is press-fitted inside the rotating permanent magnet on the outside, As for the dimension control of the yoke member, only the small centrifugal expansion of one rotating permanent magnet on the outer side needs to be considered. Between the yoke member and the rotating permanent magnet. The interference margin can be reduced, and dimensional management and assembly are easy.
[0022]
When using a rotating permanent magnet with magnetic poles formed at both ends in the axial direction, Non-magnetic rotating member Only one permanent magnet needs to be press-fitted into each recess. In this case, there is a partition wall portion made of a nonmagnetic material in the recess of the permanent magnet rotating device between two rotating permanent magnets adjacent in the radial direction, so there is no need to separately install a nonmagnetic material ring. .
[0024]
【Example】
Embodiments of the present invention will be described below with reference to the drawings.
[0025]
1 to 3 show a first embodiment in which the present invention is applied to a superconducting bearing device of a flywheel device in a power storage device.
[0026]
FIG. 1 schematically shows the overall configuration of the flywheel device, and FIGS. 2 and 3 show the superconducting bearing device in detail.
[0027]
The flywheel device consists of a vertical rotating body (1), a superconducting bearing device (2) for supporting the rotating body (1) in the axial direction (vertical direction) and radial direction, and the rotating body ( 1) Two sets of upper and lower control type radial magnetic bearing devices (3) (4) for non-contact support in the radial direction, initial positioning device (5) for positioning the rotating body (1) at startup, and A generator motor (6) is provided, and these are arranged in a vacuum chamber (8) surrounded by a fixed housing (fixed portion) (7) made of a plurality of members.
[0028]
The rotating body (1) is obtained by fixing a disk-like flywheel (10) and a permanent magnet rotating device (11) to the middle part of the vertical rotating shaft (9). It is arranged in the center so that it can move up and down slightly. The flywheel (10) is formed in a disk shape from, for example, an aluminum alloy, and an annular reinforcing member (12) made of CFRP (composite fiber reinforced plastic) is integrally fixed to the outside thereof.
[0029]
The superconducting bearing device (2) includes a permanent magnet rotating device (11) of the rotating body (1) and a magnetic support device (13) fixed to the housing (7) so as to face the lower surface thereof. It is configured.
[0030]
The permanent magnet rotating device (11) includes a disc-shaped non-magnetic rotating member (14) fixed to the rotating shaft (9) so as to be in close contact with the lower end surface of the flywheel (10), and a rotating member (14 ) And a plurality of annular rotating permanent magnets (15) provided concentrically on the lower end surface. The rotating member (14) is made of a non-magnetic material such as an aluminum alloy or non-magnetic stainless steel and is formed into a disk shape. Perimeter An annular CFRP reinforcing member (16) is fixed integrally. A plurality of annular grooves (18) partitioned by a circular partition wall (17) are formed concentrically on the lower end surface of the rotating member (14). In each recess (18), an annular rotating permanent magnet (15) and an annular yoke member (19) made of a ferromagnetic material are fixed and fixed so that the permanent magnet (15) is on the outside. Yes. The outer peripheral portion of the permanent magnet (15) is press-fitted into the outer peripheral wall of the recess (18) or the inner peripheral portion of the partition wall (17). The inner peripheral portion of the yoke member (19) is press-fitted into the partition wall (17) on the inner peripheral side of the groove (18) or the outer peripheral portion of the wall. The inner peripheral portion of the permanent magnet (15) in the same groove (18) and the outer peripheral portion of the yoke member (19) are loosely fitted, and there is almost no gap or a slight gap between them. It has been opened. Each permanent magnet (15) is equally divided into a plurality of segments (15a) in the circumferential direction, and magnetic poles are formed on the inner peripheral side and the outer peripheral side. And the permanent magnet (15) is arrange | positioned so that the magnetic pole of the two permanent magnets (15) adjacent to a radial direction may become the same polarity mutually. That is, the first, third, and fifth permanent magnets (15) from the inside have S poles on the inner circumference and the N poles on the outer circumference, and the second and fourth permanent magnets (15) have N poles on the inner circumference and S poles on the outer circumference. It has become. The permanent magnet (15) is divided into a plurality of segments (15a) in the circumferential direction.If the permanent magnet is a ring-shaped integral member, magnetic poles may be formed on the inner and outer peripheral portions thereof. It is not possible. Further, the phases of the split surfaces of the adjacent annular permanent magnets (15) are shifted so as not to overlap. This is to suppress the uneven distribution of the magnetic flux on the split surface as much as possible. The permanent magnet (15) has an annular shape and is arranged concentrically with the rotational axis (A) of the rotating body (1), so that the magnetic flux distribution of the permanent magnet (15) is in the rotational axis (A). The magnetic flux distribution around the rotation axis (A) is not changed by rotation.
[0031]
The magnetic support device (13) includes an annular cooling case (20) fixed to the housing (7) so as to face the lower surface of the permanent magnet rotating device (11) at a predetermined interval, and a superconductor (21 ). The cooling case (20) is made of a nonmagnetic material such as a copper alloy or nonmagnetic stainless steel. An annular superconductor (21) is fixedly arranged in the space inside the cooling case (20). Although not shown, the space in the cooling case (20) is connected to the cooling device via the cooling fluid supply pipe and the discharge pipe, and this cooling device allows a cooling fluid such as liquid nitrogen to be supplied to the supply pipe, It is circulated through the space in the cooling case (20) and the discharge pipe, whereby the superconductor (21) is cooled. The superconductor (21) is a type 2 superconductor, such as an yttrium high temperature superconductor such as YBa. 2 Cu 3 O 7-x The normal conductor (Y 2 Ba 1 Cu 1 ) Uniformly mixed, and has the property of constraining the magnetic flux generated from the permanent magnet (15) in a temperature environment where the type 2 superconducting state appears. The superconductor (21) is located at a remote position where the magnetic flux of the permanent magnet (15) enters a predetermined amount and at a position where the distribution of the intrusion magnetic flux does not change due to the rotation of the rotating body (1). ).
[0032]
The radial magnetic bearing devices (3) and (4) are not shown in detail, but the rotating body (1) is attracted from both sides of two radial directions (X-axis and Y-axis directions) orthogonal to each other in the same direction. Electromagnetic unit for controlling the position of the rotating body (1) and a displacement sensor for detecting displacement in the X-axis and Y-axis directions of the rotating body (1). It is connected to the. The magnetic bearing control device controls the current value of the electromagnet, that is, the attractive force based on the output of the displacement sensor, and as a result, the position of the rotating body (1) in the radial direction is controlled. Since the radial magnetic bearing device and its control device itself are known, detailed description thereof is omitted.
[0033]
Although not shown in detail, the generator motor (6) includes a rotor attached to the rotating body (1) and a stator fixed to the housing (7) around the rotor. The electric motor (6) operates as an electric motor during power storage to rotate the rotating body (1) at a high speed, and operates as a generator during electric power extraction.
[0034]
Although the detailed illustration is omitted, the initial positioning device (5) includes a lifting body that lifts and lowers the portion of the housing (7) below the rotating body (1), and lifts the rotating body (1) to a predetermined position. It is like that.
[0035]
Touch-down bearings (22) and (23) comprising rolling bearings for supporting portions near the upper and lower ends of the rotating body (1) are provided in the upper and lower portions of the housing (7).
[0036]
When starting the operation of the rotating body (1), first, the vacuum chamber (8) is evacuated, and the initial positioning device (5) lifts the stopped rotating body (1) to a predetermined position. The initial positioning of the rotating body (1) in the axial direction is performed. Further, the upper and lower magnetic bearing devices (3) and (4) are driven to perform the initial positioning in the radial direction of the rotating body (1). Then, the cooling fluid is circulated in the cooling case (20) of the superconducting bearing device (2) by the cooling device to cool the superconductor (21) and to maintain the second superconducting state. Then, much of the magnetic flux generated from the rotating permanent magnet (15) enters the superconductor (21) and is restrained (pinning phenomenon). Here, since the normal conductor particles are uniformly mixed inside the superconductor (21), the distribution of the magnetic flux penetrating into the superconductor (21) becomes constant, so that the superconductor (21 The rotating body (1) is restrained together with the rotating permanent magnet (15). Therefore, the rotating body (1) is supported in the axial direction and the radial direction in a very stable state. At this time, the magnetic flux that has entered the superconductor (14) does not become a resistance that prevents rotation as long as the magnetic flux distribution is uniform and unchanged with respect to the rotation axis (A). Thus, if the rotating body (1) is supported by the superconducting bearing device (2) and the magnetic bearing devices (3) and (4), the initial positioning device (5) does not support the rotating body (1). When support by the initial positioning device (5) is lost, the rotating body (1) descends slightly due to its own weight, but the downward force due to its own weight and the axial support force of the superconducting bearing device (2) are balanced. Stop. As a result, the rotating body (1) is supported in a non-contact manner by the superconducting bearing device (2) and the magnetic bearing devices (3) (4). If the rotating body (1) is supported in a non-contact manner, the electric motor (6) is started to rotate the rotating body (1) and accelerate to the operating rotation range. Even if resonance occurs before the rotating body (1) reaches the operating rotation region, the magnetic bearing devices (3) and (4) prevent the occurrence of shake. When the rotating body (1) reaches the operating rotation range, the rotating body (1) is maintained at a predetermined rotational speed, and the drive of the magnetic bearing device (3) (4) is stopped, and the magnetic bearing device (3) (4) Radial support is lost. Even if the radial support by the magnetic bearing device (3) (4) is lost, the rotating body (1) is axially driven by the pinning force of the magnetic flux that has entered the superconductor (21) of the superconducting bearing device (2). Supported in the direction and radial direction, continue to rotate stably. Then, while the rotating body (1) is rotating in the operating rotation region, the electric energy is converted into rotational kinetic energy and stored in the flywheel (10).
[0037]
If a power failure occurs while the rotating body (1) is rotating in the operating rotation range, the generator motor (6) stops, but the rotating body (1) is slightly decelerated by the flywheel (10). It is continuously rotated. As a result, the generator motor (6) operates as a generator, and the rotational kinetic energy stored in the flywheel (10) is taken out as electric energy and stored in a storage battery (not shown). The electric power stored in the storage battery is sent to the external power consumer goods and the cooling device of the superconductive bearing device (2) (not shown), and the power consumer goods and the superconductive bearing device (2) continue to operate. Part of the electric power stored in the storage battery is sent to the magnetic bearing control device, thereby driving the magnetic bearing devices (3) and (4). Then, until the rotating body (1) stops after the rotational kinetic energy stored in the flywheel (10) is reduced, the rotating body (1) is connected to the superconducting bearing device (2) and the magnetic bearing device (3). ) (4) is supported in a non-contact state, and the vibration of the rotating body (1) generated at the resonance point is reduced by the magnetic bearing devices (3) and (4) in the same manner as at the time of starting.
[0038]
When the generator motor (6) is stopped even during a power failure, the rotational kinetic energy stored in the flywheel (10) can be taken out as electrical energy, as in the case of a power failure.
[0039]
In the superconducting bearing device (2), the permanent magnet rotating device (11) includes a plurality of annular permanent magnets (15) arranged concentrically in the radial direction, and the inner peripheral side of each permanent magnet (15). Magnetic poles are formed on the outer peripheral side, and the magnetic poles of the two permanent magnets (15) adjacent in the radial direction are the same magnetic pole, and between the two permanent magnets (15) adjacent in the radial direction, the ferromagnetic material Since the yoke member (19) is sandwiched, the magnetic flux locally concentrates on the portion of the yoke member (19) facing the superconductor (21), and as a result, enters the superconductor (21). As the magnetic flux increases, the load capacity and rigidity of the superconducting bearing device (2) are improved.
[0040]
However, the rotating permanent magnet (15) may be one in which magnetic poles are formed at both ends in the axial direction. In that case, the permanent magnet (15) can be formed into an annular integral body.
[0041]
In the superconducting bearing device (2), in the permanent magnet rotating device (11), each of the plurality of concentric annular grooves (18) on the end surface of the nonmagnetic rotating member (14) has an annular shape. The permanent magnet (15) and the yoke member (19) are assembled one by one, so the dimensional control and assembly of the permanent magnet (15) and the yoke member (19) are easy, and the permanent magnet (15) and the permanent member by centrifugal force during high-speed rotation The deformation of the magnet (15) is small, so that the operation of the superconducting bearing device is stable, and the permanent magnet (15) does not cause centrifugal breakage. That is, each permanent magnet (15) is press-fitted into the inner peripheral portion of the wall or partition wall (17) of the rotating member (14) having a small centrifugal expansion, so that the interference margin can be reduced. The dimension management and assembly of 15) are easy, the centrifugal expansion of the permanent magnet (15) is small, and the permanent magnet (15) does not cause centrifugal breakage. And since the centrifugal expansion of the permanent magnet (15) is small, even if the permanent magnet (15) is divided into a plurality of segments (15a) in the circumferential direction, the radial displacement of the permanent magnet (15) is small, Further, there is no circumferential gap between the segments (15a). Therefore, the magnetic flux distribution by the permanent magnet (15) does not change between initial positioning and high-speed rotation, and the magnetic flux distribution around the rotation axis does not become uniform. The operation is stable. Furthermore, since each yoke member (19) is press-fitted into the outer peripheral portion of the wall or partition wall (17) of the rotating member (14) having a small centrifugal expansion, the interference margin can be reduced, and the yoke member (19 ) Dimension management and assembly are also easy. The yoke member (19) may be press-fitted inside the permanent magnet (15) in the same groove (18). Even in this case, regarding the dimension control of the yoke member (19), only the small centrifugal expansion of the one permanent magnet (15) on the outer side needs to be taken into consideration, so that the interference allowance can also be reduced, Dimension management is easy.
[0042]
The CFRP constituting the reinforcing member (16) fixed to the outside of the non-magnetic rotating member (14) of the permanent magnet rotating device (11) is lightweight and has a high Young's modulus. And since it is lightweight, the centrifugal force which acts on a reinforcement member (16) at the time of high speed rotation is small, and also the deformation | transformation (centrifugal expansion) of the reinforcement member (16) by centrifugal force is also small. For this reason, the centrifugal expansion of the rotating member (14) fitted inside the reinforcing member (16) is also suppressed to be small, and as a result, the centrifugal expansion of the rotating permanent magnet (15) is further suppressed to be small. Similarly, the CFRP reinforcing member (12) fixed to the outside of the flywheel (10) prevents centrifugal expansion and centrifugal breakage of the flywheel (10).
[0043]
In the above embodiment, the permanent magnet rotating device (11) is arranged on the upper side, and the magnetic support device (13) is arranged on the lower side. The rotating device may be disposed below.
[0044]
FIG. 4 shows a second embodiment in which the present invention is applied to a non-control type magnetic bearing device of a flywheel device in a power storage device.
[0045]
FIG. 4 shows only the part of the non-control type magnetic bearing device in the flywheel device. The overall configuration of the flywheel device of the second embodiment is that a non-control type magnetic bearing device is used instead of a superconducting bearing device as a magnetic support device, and an initial positioning device is not provided. It is almost the same as the flywheel device of the first embodiment, and the same parts are denoted by the same reference numerals. Further, in the description of the second embodiment, portions that are not shown in FIG. 4 and are the same as those in the first embodiment will be described using the reference numerals in FIG.
[0046]
The non-control type magnetic bearing device (25) includes a permanent magnet rotating device (26) of the rotating body (1) and a magnetic support device (27) fixed to the housing (7) so as to face the lower surface thereof. It consists of and.
[0047]
The configuration of the non-magnetic rotating member (14) and the reinforcing member (16) of the permanent magnet rotating device (26) is the same as that of the first embodiment. In this case, the permanent magnet rotating device (26) includes a plurality of annular rotating permanent magnets (28) having magnetic poles formed at both ends in the axial direction, and is provided in each recess (18) of the rotating member (14). Only one permanent magnet (28) is built in. Since the permanent magnet (28) has magnetic poles formed at both ends in the axial direction, the permanent magnet (28) can be formed into an annular integral body. The outer peripheral portion of the permanent magnet (28) is press-fitted into the outer peripheral wall of the recess (18) or the inner peripheral portion of the partition wall (17). The inner peripheral part of the permanent magnet (28) is loosely fitted to the inner peripheral partition wall (17) of the recess (18) or the outer peripheral part of the wall, and there is little or no gap between them. Has been opened. Since there is a nonmagnetic partition wall (17) between two permanent magnets (28) adjacent in the radial direction, there is no need to separately install a nonmagnetic ring. Since only one permanent magnet (28) needs to be press-fitted into the recess (18), the dimension management and assembly of the permanent magnet (28) is easy and the high-speed rotation is the same as in the first embodiment. The deformation of the permanent magnet (28) due to the centrifugal force is small, and the permanent magnet (28) does not cause centrifugal breakage.
[0048]
The magnetic support device (27) is a perforated disk-shaped fixing member made of a nonmagnetic material (29) fixed to the housing (7) so as to face the lower surface of the permanent magnet rotating device (26) with a predetermined interval. And a plurality of annular fixed permanent magnets (30) provided concentrically on the upper surface of the fixing member (29). One annular recess (31) having a relatively large radial width is formed on the upper surface of the fixing member (29), and a plurality of annular fixed permanent magnets (30) are formed in the recess (31). A plurality of non-magnetic rings (32) sandwiched between them are fitted and fixed. The fixed permanent magnet (30) has magnetic poles formed at both ends in the axial direction. The number of fixed permanent magnets (30) is the same as the number of rotating permanent magnets (28), and the fixed permanent magnets (30) are arranged so as to substantially face the rotating permanent magnets (28). The arrangement of the magnetic poles of each fixed permanent magnet (30) is opposite to that of the corresponding rotating permanent magnet (28). It is supposed to be.
[0049]
In the flywheel device of the second embodiment, the rotating body (1) is caused by the magnetic repulsive force of the fixed permanent magnet (30) of the magnetic support device (27) and the rotating permanent magnet (28) of the permanent magnet rotating device (26). Non-contact support in the axial direction. Further, the rotating body (1) is supported in a non-contact manner in the radial direction by the upper and lower control type radial magnetic bearing devices (3) and (4). The rotating body (1) is rotated at a high speed by the generator motor (6).
[0050]
Others are the same as in the case of the first embodiment.
[0051]
FIG. 5 shows a third embodiment in which the present invention is applied to a non-control type magnetic bearing device of a flywheel device in a power storage device.
[0052]
FIG. 5 shows only the part of the non-control type magnetic bearing device in the flywheel device. The overall configuration of the flywheel device of the third embodiment is substantially the same as that of the flywheel device of the second embodiment, and the same parts are denoted by the same reference numerals.
[0053]
The non-control type magnetic bearing device (34) includes a permanent magnet rotating device (35) of the rotating body (1) and a magnetic support device (36) fixed to the housing (7) so as to face the upper surface thereof. It consists of and.
[0054]
The flywheel (10), the permanent magnet rotating device (35), and the magnetic support device (36) are vertically related to the flywheel (10), the permanent magnet rotating device (26), and the magnetic support device (27) of the second embodiment. Therefore, the same reference numerals are assigned to the corresponding parts, and detailed descriptions are omitted.
[0055]
In the case of the third embodiment, the arrangement of the magnetic poles of each fixed permanent magnet (30) of the magnetic support device (36) is the same as that of the rotating permanent magnet (28) of the corresponding permanent magnet rotating device (35), and each fixed permanent magnet (30). The magnet (30) biases the corresponding rotating permanent magnet (28) upward by a magnetic attractive force.
[0056]
Others are the same as in the second embodiment.
[0057]
Also in the second and third embodiments, the rotating permanent magnet (28) and the fixed permanent magnet (30) are the same as the rotating permanent magnet (15) of the first embodiment in which magnetic poles are formed on the inner peripheral side and the outer peripheral side. Can be used.
[0058]
【The invention's effect】
According to the permanent magnet bearing device and the permanent magnet rotating device of the present invention, as described above, the size control and assembly of the rotating permanent magnet are easy, the deformation of the permanent magnet due to the centrifugal force during high speed rotation is small, and the permanent magnet Does not cause centrifugal breakage. And since the deformation | transformation by centrifugal force is small, also when applied to a superconducting bearing apparatus, operation | movement is stable.
[Brief description of the drawings]
FIG. 1 is a schematic longitudinal sectional view of a flywheel device showing a first embodiment of the present invention.
2 is an enlarged longitudinal sectional view of a portion of a superconducting bearing device of the flywheel device of FIG. 1. FIG.
3 is a cross-sectional view taken along line III-III in FIG.
FIG. 4 is a longitudinal sectional view of a portion of a non-control type magnetic bearing device of a flywheel device showing a second embodiment of the invention.
FIG. 5 is a longitudinal sectional view of a portion of a non-control type magnetic bearing device of a flywheel device showing a third embodiment of the invention.
[Explanation of symbols]
(1) Rotating body
(2) Superconducting bearing device
(7) Fixed housing (fixed part)
(11) (26) (35) Permanent magnet rotating device
(13) (27) (36) Magnetic support device
(14) Non-magnetic rotating member
(15) (28) Rotating permanent magnet
(16) Reinforcing member
(18) Annular groove
(21) Superconductor
(25) (34) Non-control type magnetic bearing device
(30) Fixed permanent magnet
(A) Rotation axis

Claims (6)

垂直軸を中心に回転する回転体の永久磁石回転装置に設けられた回転永久磁石と、固定部分に設けられた磁気支持装置とで、磁気力により回転体を非接触支持する装置であって、永久磁石回転装置の円板状の非磁性体製回転部材の軸方向端面に複数の環状の回転永久磁石が同心状に配置され、回転体の軸心方向に回転永久磁石と対向するように磁気支持装置が配置されている永久磁石使用軸受装置において、
非磁性体製回転部材の軸方向端面に複数の環状凹みぞが同心状に形成され、各凹みぞ内に回転永久磁石が1つずつはめられて固定され、回転永久磁石の外周部分が、凹みぞの外周側の壁の内周部分に圧入され、回転永久磁石の内周部分が、凹みぞの内周側の壁の外周部分に対して、ほとんど隙間がないかあるいはわずかな隙間をあけてゆるくはめあわされており、非磁性体製回転部材の外周に環状の複合繊維強化プラスチック製補強部材が一体状に固定されていることを特徴とする永久磁石使用軸受装置。
A rotating permanent magnet provided in a rotating device permanent magnet rotating device that rotates about a vertical axis, and a magnetic support device provided in a fixed part, a device that supports the rotating body in a non-contact manner by magnetic force, A plurality of annular rotating permanent magnets are arranged concentrically on the axial end surface of the disk-shaped nonmagnetic rotating member of the permanent magnet rotating device, and are magnetized so as to face the rotating permanent magnet in the axial direction of the rotating body. In the permanent magnet bearing device in which the support device is arranged,
A plurality of annular recesses are formed concentrically on the axial end face of the nonmagnetic rotating member , one rotating permanent magnet is fitted and fixed in each recess, and the outer peripheral portion of the rotating permanent magnet is recessed. The inner peripheral part of the rotating permanent magnet is pressed into the inner peripheral part of the wall on the outer peripheral side of the groove, and the outer peripheral part of the inner peripheral side wall of the recess has little or no gap. A bearing device using a permanent magnet , which is loosely fitted, and an annular composite fiber reinforced plastic reinforcing member is integrally fixed to the outer periphery of a nonmagnetic rotating member .
垂直軸を中心に回転する回転体の永久磁石回転装置に設けられた回転永久磁石と、固定部分に設けられた磁気支持装置とで、磁気力により回転体を非接触支持する装置であって、永久磁石回転装置の円板状の非磁性体製回転部材の軸方向端面に複数の環状の回転永久磁石が同心状に配置され、回転体の軸心方向に回転永久磁石と対向するように磁気支持装置が配置されている永久磁石使用軸受装置において、
非磁性体製回転部材の軸方向端面に複数の環状凹みぞが同心状に形成され、各凹みぞ内に、1つの回転永久磁石と1つの環状の強磁性体製ヨーク部材とが、回転永久磁石が外側になるようにはめられて固定され、回転永久磁石の外周部分が、凹みぞの外周側の壁の内周部分に圧入され、ヨーク部材が、凹みぞの内周側の壁の外周部分または外側にある回転永久磁石の内側に圧入されており、非磁性体製回転部材の外周に環状の複合繊維強化プラスチック製補強部材が一体状に固定されていることを特徴とする永久磁石使用軸受装置
A rotating permanent magnet provided in a rotating device permanent magnet rotating device that rotates about a vertical axis, and a magnetic support device provided in a fixed part, a device that supports the rotating body in a non-contact manner by magnetic force, A plurality of annular rotating permanent magnets are arranged concentrically on the axial end surface of the disk-shaped nonmagnetic rotating member of the permanent magnet rotating device, and are magnetized so as to face the rotating permanent magnet in the axial direction of the rotating body. In the permanent magnet bearing device in which the support device is arranged,
A plurality of annular grooves are formed concentrically on the axial end surface of the nonmagnetic rotating member, and one rotating permanent magnet and one annular ferromagnetic yoke member are formed in each of the recesses. The outer periphery of the rotating permanent magnet is press-fitted into the inner periphery of the outer wall of the recess, and the yoke member is the outer periphery of the inner wall of the recess. Use of a permanent magnet characterized in that an annular composite fiber reinforced plastic reinforcing member is integrally fixed to the outer periphery of a rotating member made of a non-magnetic material, which is press-fitted inside a rotating permanent magnet on a part or outside Bearing device .
磁気支持装置が超伝導体を備えており、永久磁石回転装置の複数の環状の回転永久磁石が、磁束分布が上記回転軸心に対して対称になり、かつ上記回転軸心のまわりの磁束分布が回転によって変化しないように、同心状に配置され、磁気支持装置の超伝導体が、回転永久磁石の磁束が所定量侵入する離隔位置であってかつ回転体の回転によって侵入磁束の分布が変化しない位置に、回転永久磁石と上記回転軸心方向に対向するように配置されていることを特徴とする請求項1または2の永久磁石使用軸受装置。The magnetic support device includes a superconductor, and the plurality of annular rotating permanent magnets of the permanent magnet rotating device are configured such that the magnetic flux distribution is symmetric with respect to the rotation axis, and the magnetic flux distribution around the rotation axis. Are arranged concentrically so that the magnetic flux does not change due to rotation, and the superconductor of the magnetic support device is a separated position where the magnetic flux of the rotating permanent magnet enters a predetermined amount, and the distribution of the intrusion magnetic flux changes due to the rotation of the rotating body. 3. The permanent magnet bearing device according to claim 1, wherein the bearing device is disposed so as to face the rotating permanent magnet in the direction of the axis of rotation. 磁気支持装置が、永久磁石回転装置の回転永久磁石を磁気反発力または磁気吸引力により上向きに付勢する固定永久磁石を備えていることを特徴とする請求項1または2の永久磁石使用軸受装置。 3. A bearing apparatus using a permanent magnet according to claim 1, wherein the magnetic support device includes a fixed permanent magnet that urges the rotating permanent magnet of the permanent magnet rotating device upward by a magnetic repulsive force or a magnetic attractive force. . 円板状の非磁性体製回転部材と、回転部材の軸方向端面に同心状に設けられた複数の環状の回転永久磁石とを備えている永久磁石回転装置において、
非磁性体製回転部材の軸方向端面に複数の環状凹みぞが同心状に形成され、各凹みぞ内に回転永久磁石が1つずつはめられて固定され、回転永久磁石の外周部分が、凹みぞの外周側の壁の内周部分に圧入され、回転永久磁石の内周部分が、凹みぞの内周側の壁の外周部分に対して、ほとんど隙間がないかあるいはわずかな隙間をあけてゆるくはめあわされており、非磁性体製回転部材の外周に環状の複合繊維強化プラスチック製補強部材が一体状に固定されていることを特徴とする永久磁石回転装置。
In a permanent magnet rotating device comprising a disk-shaped nonmagnetic rotating member and a plurality of annular rotating permanent magnets concentrically provided on the axial end surface of the rotating member ,
A plurality of annular recesses are formed concentrically on the axial end face of the nonmagnetic rotating member, one rotating permanent magnet is fitted and fixed in each recess, and the outer peripheral portion of the rotating permanent magnet is recessed. The inner peripheral part of the rotating permanent magnet is pressed into the inner peripheral part of the wall on the outer peripheral side of the groove, and the outer peripheral part of the inner peripheral side wall of the recess has little or no gap. A permanent magnet rotating device characterized by being loosely fitted and having an annular composite fiber reinforced plastic reinforcing member integrally fixed to the outer periphery of a non-magnetic rotating member .
円板状の非磁性体製回転部材と、回転部材の軸方向端面に同心状に設けられた複数の環状の回転永久磁石とを備えている永久磁石回転装置において、
非磁性体製回転部材の軸方向端面に複数の環状凹みぞが同心状に形成され、各凹みぞ内に、1つの回転永久磁石と1つの環状の強磁性体製ヨーク部材とが、回転永久磁石が外側 になるようにはめられて固定され、回転永久磁石の外周部分が、凹みぞの外周側の壁の内周部分に圧入され、ヨーク部材が、凹みぞの内周側の壁の外周部分または外側にある回転永久磁石の内側に圧入されており、非磁性体製回転部材の外周に環状の複合繊維強化プラスチック製補強部材が一体状に固定されていることを特徴とする永久磁石回転装置
In a permanent magnet rotating device comprising a disk-shaped nonmagnetic rotating member and a plurality of annular rotating permanent magnets concentrically provided on the axial end surface of the rotating member,
A plurality of annular grooves are formed concentrically on the axial end surface of the nonmagnetic rotating member, and one rotating permanent magnet and one annular ferromagnetic yoke member are formed in each of the recesses. magnet is fixed fitted to be outside, the outer peripheral portion of the rotating permanent magnets, is press-fitted to the inner circumferential portion of the outer peripheral side of the wall of each recess, the yoke member, the outer periphery of the inner peripheral side of the wall of each recess Permanent magnet rotation characterized in that an annular composite fiber reinforced plastic reinforcing member is integrally fixed to the outer periphery of a rotating member made of a non-magnetic material and is press-fitted inside a rotating permanent magnet that is partially or outside Equipment .
JP31625394A 1994-12-20 1994-12-20 Permanent magnet bearing device and permanent magnet rotating device Expired - Fee Related JP3663472B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31625394A JP3663472B2 (en) 1994-12-20 1994-12-20 Permanent magnet bearing device and permanent magnet rotating device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31625394A JP3663472B2 (en) 1994-12-20 1994-12-20 Permanent magnet bearing device and permanent magnet rotating device

Publications (2)

Publication Number Publication Date
JPH08170644A JPH08170644A (en) 1996-07-02
JP3663472B2 true JP3663472B2 (en) 2005-06-22

Family

ID=18075044

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31625394A Expired - Fee Related JP3663472B2 (en) 1994-12-20 1994-12-20 Permanent magnet bearing device and permanent magnet rotating device

Country Status (1)

Country Link
JP (1) JP3663472B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1084656A (en) * 1996-09-09 1998-03-31 Ebara Corp Rotating machine for magnetic levitation
JP5849343B2 (en) * 2011-06-29 2016-01-27 株式会社プロスパイン Magnetic coupling and stirring device
US20230400058A1 (en) * 2022-06-09 2023-12-14 Shin-Etsu Chemical Co., Ltd. Magnetic circuit device for magnetic bearing

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5226580B2 (en) * 1974-06-19 1977-07-14
JPS5343173A (en) * 1976-10-01 1978-04-19 Toray Ind Inc High speed rotary body
JPS58186766U (en) * 1982-06-08 1983-12-12 三菱電機株式会社 flywheel device
JPS5953056A (en) * 1982-09-20 1984-03-27 Mitsubishi Electric Corp Flywheel device
JPH0239169B2 (en) * 1985-01-16 1990-09-04 Kogyo Gijutsuin CHOKOSOKUKAITENFURAIHOIIRUNOENERUGINYUSHUTSURYOKUSOCHI
JP2971557B2 (en) * 1990-07-26 1999-11-08 株式会社四国総合研究所 Power storage device
US5177387A (en) * 1990-12-04 1993-01-05 University Of Houston-University Park High temperature superconducting magnetic bearings
JPH04282050A (en) * 1991-02-26 1992-10-07 Shikoku Sogo Kenkyusho:Kk Electric power storage device
JPH0737812B2 (en) * 1991-03-15 1995-04-26 光洋精工株式会社 Superconducting bearing device
JPH0549191A (en) * 1991-08-13 1993-02-26 Kumagai Gumi Co Ltd Power storage system
JP2799802B2 (en) * 1992-06-19 1998-09-21 住友特殊金属株式会社 Superconducting levitation type rotating device
JPH0681845A (en) * 1992-09-03 1994-03-22 Koyo Seiko Co Ltd Supercondctive bearing device
JPH06233479A (en) * 1993-02-02 1994-08-19 Nippon Seiko Kk Electric power storage apparatus
FR2715201B1 (en) * 1994-01-19 1996-02-09 Inst Nat Polytech Grenoble Magnetic bearing and assembly comprising a stator part and a rotor part suspended by such a bearing.
JPH08111946A (en) * 1994-10-07 1996-04-30 Nippon Seiko Kk Superconducting flywheel device

Also Published As

Publication number Publication date
JPH08170644A (en) 1996-07-02

Similar Documents

Publication Publication Date Title
JP3577558B2 (en) Flywheel equipment
KR20060121355A (en) Bearingless step motor
JP5504532B2 (en) High speed rotating device
JP3665878B2 (en) Bearing device and starting method thereof
JP3206044B2 (en) Composite superconducting bearing device
JP3663472B2 (en) Permanent magnet bearing device and permanent magnet rotating device
JP3551537B2 (en) Flywheel equipment
US6703737B2 (en) Super conductive bearing
JPH08296645A (en) Magnetic bearing device
JP3236925B2 (en) Superconducting bearing device
JPH0681845A (en) Supercondctive bearing device
JP3577559B2 (en) Flywheel equipment
JP3632101B2 (en) Power storage device
JP2003004041A (en) Fly wheel type super conductivity magnetic bearing and its system
JPH09233803A (en) Braking device for high-speed rotating equipment
JPH06165478A (en) Superconducting rotating machine
JP2002173838A (en) Spindle device in covering machine
JPH08219158A (en) Magnetic bearing device
JP3385771B2 (en) Superconducting magnetic bearing device
JP3324319B2 (en) Magnetic bearing device
JP2001343020A (en) Superconductive magnetic bearing and superconductive flywheel
JP3616856B2 (en) Bearing device
JP2971557B2 (en) Power storage device
JPH02163513A (en) Magnetic thrust bearing
JP3677320B2 (en) Superconducting bearing for rotating equipment and flywheel for power storage using the same

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040928

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041129

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050215

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050314

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees