JP3206044B2 - Composite superconducting bearing device - Google Patents

Composite superconducting bearing device

Info

Publication number
JP3206044B2
JP3206044B2 JP29205591A JP29205591A JP3206044B2 JP 3206044 B2 JP3206044 B2 JP 3206044B2 JP 29205591 A JP29205591 A JP 29205591A JP 29205591 A JP29205591 A JP 29205591A JP 3206044 B2 JP3206044 B2 JP 3206044B2
Authority
JP
Japan
Prior art keywords
bearing
shaft
superconducting
rotating shaft
auxiliary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP29205591A
Other languages
Japanese (ja)
Other versions
JPH05106634A (en
Inventor
寛正 福山
和利 関
了 相原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NSK Ltd
Original Assignee
NSK Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=17776959&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP3206044(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by NSK Ltd filed Critical NSK Ltd
Priority to JP29205591A priority Critical patent/JP3206044B2/en
Priority to DE19924234524 priority patent/DE4234524C2/en
Publication of JPH05106634A publication Critical patent/JPH05106634A/en
Application granted granted Critical
Publication of JP3206044B2 publication Critical patent/JP3206044B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C32/00Bearings not otherwise provided for
    • F16C32/04Bearings not otherwise provided for using magnetic or electric supporting means
    • F16C32/0406Magnetic bearings
    • F16C32/0408Passive magnetic bearings
    • F16C32/0436Passive magnetic bearings with a conductor on one part movable with respect to a magnetic field, e.g. a body of copper on one part and a permanent magnet on the other part
    • F16C32/0438Passive magnetic bearings with a conductor on one part movable with respect to a magnetic field, e.g. a body of copper on one part and a permanent magnet on the other part with a superconducting body, e.g. a body made of high temperature superconducting material such as YBaCuO
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C39/00Relieving load on bearings
    • F16C39/02Relieving load on bearings using mechanical means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2231/00Running-in; Initial operation

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Magnetic Bearings And Hydrostatic Bearings (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】この発明に係る複合型超電導軸受
装置は、例えば超高速で回転する回転軸を、非接触状態
で支承する為に利用する。
BACKGROUND OF THE INVENTION A composite superconducting bearing device according to the present invention is used, for example, to support a rotating shaft rotating at an extremely high speed in a non-contact state.

【0002】[0002]

【従来の技術】超高速で回転する回転軸は、滑り軸受や
転がり軸受等の通常の軸受装置では支持出来ず、上記回
転軸を非接触状態で支持する必要がある。この様に、回
転軸を非接触状態で支持する為の軸受装置として近年、
超電導体のピン止め効果を利用して、回転軸を浮上状態
のまま支持する超電導軸受装置が研究されている。
2. Description of the Related Art A rotating shaft rotating at an extremely high speed cannot be supported by ordinary bearing devices such as a sliding bearing and a rolling bearing, and it is necessary to support the rotating shaft in a non-contact state. Thus, in recent years, as a bearing device for supporting the rotating shaft in a non-contact state,
A superconducting bearing device that supports the rotating shaft in a floating state by utilizing the pinning effect of the superconductor has been studied.

【0003】図5〜6は、従来から提案されている超電
導軸受装置のうち、『1991年度春季低温工学・超電
導学会講演概要集』の第18頁に記載されたものを示し
ている。この従来から知られている超電導軸受装置は、
スラスト方向の軸受を目的としたもので、原理を表わし
た図5に示す様に、円環状の永久磁石1に複数の超電導
材製のペレット2、2を対向させる事で構成される。上
記永久磁石1及びペレット2、2は、それぞれ銅製の円
板3、4内に埋め込まれている。又、イットリウム系の
酸化物超電導材(例えばYBa2Cu3Ox )により造られたペ
レット2、2は同心円状に配置し、上記永久磁石1に対
向させている。
FIGS. 5 and 6 show superconducting bearing devices that have been proposed in the past, which are described on page 18 of "Summary of 1991 Spring Conference on Low Temperature Engineering and Superconductivity". This conventionally known superconducting bearing device is:
It is intended for a bearing in the thrust direction, and is constituted by a plurality of pellets 2 and 2 made of superconducting material facing a ring-shaped permanent magnet 1 as shown in FIG. The permanent magnet 1 and the pellets 2, 2 are embedded in copper disks 3, 4, respectively. Further, pellets 2 and 2 made of an yttrium-based oxide superconducting material (for example, YBa 2 Cu 3 Ox) are arranged concentrically and face the permanent magnet 1.

【0004】上記ペレット2、2を埋め込んだ円板4を
冷却する事で、各ペレット2、2を超電導状態とすれ
ば、各ペレット2、2と永久磁石1との間に働くピン止
め効果により、上記各ペレット2、2と永久磁石1との
距離が変化する事を阻止する方向の力が発生する。即
ち、各ペレット2、2が超電導状態になると、上記永久
磁石1から出た磁束を各ペレット2、2内に拘束する、
ピン止め力が発生する。
If the pellets 2 and 2 are brought into a superconducting state by cooling the disk 4 in which the pellets 2 and 2 are embedded, a pinning effect acting between each of the pellets 2 and 2 and the permanent magnet 1 results. Thus, a force is generated in a direction that prevents the distance between each of the pellets 2 and 2 and the permanent magnet 1 from changing. That is, when each of the pellets 2 and 2 is in a superconducting state, the magnetic flux emitted from the permanent magnet 1 is restrained in each of the pellets 2 and 2.
Pinning force occurs.

【0005】このピン止め力に基づき、永久磁石1とペ
レット2、2との距離が開く傾向となった場合には、両
部材1、2同士の間に吸引力が働き、反対に永久磁石1
とペレット2、2との距離が狭まる傾向となった場合に
は、両部材1、2同士の間に反発力が働く。この様な吸
引力或は反発力により、永久磁石1とペレット2、2と
の距離が一定に保持される。又、永久磁石1とペレット
2、2との位置関係が面方向にずれる事も、上記ピン止
め力に基づいて阻止される。従って、上記永久磁石1を
回転軸に固定すれば、この回転軸を浮上状態のまま回転
自在に支持出来る。
When the distance between the permanent magnet 1 and the pellets 2 and 2 tends to increase based on this pinning force, an attractive force acts between the two members 1 and 2 and conversely, the permanent magnet 1
When the distance between the pellets 2 and 2 tends to decrease, a repulsive force acts between the members 1 and 2. The distance between the permanent magnet 1 and the pellets 2 and 2 is kept constant by such attraction or repulsion. Further, the positional relationship between the permanent magnet 1 and the pellets 2 and 2 in the plane direction is also prevented based on the pinning force. Therefore, if the permanent magnet 1 is fixed to a rotating shaft, the rotating shaft can be rotatably supported in a floating state.

【0006】図6は、上述の様な原理の超電導軸受装置
により、回転軸5を回転自在に支承した状態を示してい
る。それぞれ複数のペレット2、2を埋め込んだ1対の
円輪板4a、4aは、互いに間隔をあけて平行に配置さ
れており、ハウジング6の冷却ジャケット7内に貯溜さ
れた液体窒素により冷却自在としている。上記1対の円
輪板4a、4aの内側を挿通された回転軸5の中間部
で、上記1対の円輪板4a、4aの間部分には、円輪板
3aを固定している。そしてこの円輪板3aの上下両面
にそれぞれ埋め込まれた永久磁石1、1を、上記ペレッ
ト2、2に対向させている。回転軸5の端部には電動モ
ータ8を設け、この回転軸5を回転駆動自在としてい
る。
FIG. 6 shows a state in which the rotating shaft 5 is rotatably supported by the superconducting bearing device having the above-described principle. A pair of circular plates 4a, 4a in which a plurality of pellets 2, 2 are respectively embedded are arranged in parallel with a space therebetween, and can be cooled by liquid nitrogen stored in a cooling jacket 7 of a housing 6. I have. A circular plate 3a is fixed to a portion between the pair of circular plates 4a, 4a at an intermediate portion of the rotary shaft 5 inserted inside the pair of circular plates 4a, 4a. The permanent magnets 1 and 1 embedded on the upper and lower surfaces of the circular plate 3a are opposed to the pellets 2 and 2, respectively. An electric motor 8 is provided at an end of the rotating shaft 5 so that the rotating shaft 5 can be driven to rotate.

【0007】冷却ジャケット7内に液体窒素を送り込
み、各円輪板4a、4aに埋め込まれたペレット2、2
を超電導状態にした場合には、回転軸5の中間部に固定
された円輪板3aが、上記各円輪板4a、4aに対して
遠近動する事がなくなり、上記回転軸5は浮上状態で保
持され、この回転軸5を回転させる事が可能となる。
Liquid nitrogen is fed into the cooling jacket 7 and the pellets 2, 2 embedded in the circular plates 4a, 4a are introduced.
Is in a superconducting state, the circular plate 3a fixed to the intermediate portion of the rotary shaft 5 does not move toward and away from the circular plates 4a and 4a, and the rotary shaft 5 is in a floating state. And the rotating shaft 5 can be rotated.

【0008】[0008]

【発明が解決しようとする課題】ところが、上記従来か
ら提案されている構造のものを含めて、超電導軸受装置
は、スラスト方向の剛性に比較してラジアル方向の剛性
が低くなり易い。前述の図6に示した従来構造の場合、
超電導材製のペレット2、2と永久磁石1、1とを、ス
ラスト方向に互いに対向させている為、特にラジアル方
向の剛性及び負荷容量が低いが、仮に超電導体と永久磁
石とをラジアル方向に対向させた場合でも、(図6に示
した構造よりはラジアル剛性及び負荷容量が向上はする
が)必ずしも十分なラジアル剛性及び負荷容量を得る事
は難しい。
However, superconducting bearing devices, including those of the structure proposed in the prior art, tend to have lower rigidity in the radial direction than rigidity in the thrust direction. In the case of the conventional structure shown in FIG.
Since the pellets 2 and 2 made of the superconducting material and the permanent magnets 1 and 1 are opposed to each other in the thrust direction, the rigidity and load capacity in the radial direction are particularly low, but the superconductor and the permanent magnet are temporarily displaced in the radial direction. Even when they face each other, it is difficult to obtain sufficient radial rigidity and load capacity (although the radial rigidity and load capacity are improved as compared with the structure shown in FIG. 6).

【0009】この為、軸受ハウジングの内側で回転軸を
回転させたり、或は枢軸の周囲でロータを回転させたり
する場合に、これら回転軸或はロータの回転速度を、危
険速度を越えて上昇させる事が出来ない。即ち、回転軸
やロータ等の回転部材は、軸受剛性等との兼合いで、必
ず独特の共振周波数を有する。そして、それ迄停止して
いた回転部材の回転速度を上昇させる場合に、この回転
速度と上記共振周波数とが一致すると、回転部材がラジ
アル方向に激しく変位する、所謂振れ回り現象が生じ
る。この様な振れ回り現象を生じる回転速度を、回転系
の危険速度と言うが、回転部材の回転速度がこの危険速
度未満の場合は勿論、危険速度を越えた場合にも、上記
回転部材が振れ回る事はなく、この回転部材は円滑に回
転する。
For this reason, when rotating the rotating shaft inside the bearing housing or rotating the rotor around the pivot, the rotating speed of the rotating shaft or the rotor is increased beyond the critical speed. I can not let it. That is, the rotating members such as the rotating shaft and the rotor always have a unique resonance frequency in consideration of the bearing rigidity and the like. When the rotation speed of the rotating member that has been stopped until then is increased, if the rotation speed matches the resonance frequency, a so-called whirling phenomenon occurs in which the rotating member is severely displaced in the radial direction. The rotation speed at which such a whirling phenomenon occurs is referred to as the critical speed of the rotating system. When the rotation speed of the rotating member is lower than the critical speed or when the rotation speed exceeds the critical speed, the rotating member swings. It does not rotate, and this rotating member rotates smoothly.

【0010】滑り軸受、流体軸受、転がり軸受等、従来
から一般的に使用されていた軸受装置は、ラジアル方向
の剛性、及び負荷容量が十分に大きかったので、危険速
度が高い回転領域にあり、使用回転速度を危険速度以下
に設定しても、十分実用に耐える軸受装置を得られた。
ところが、ラジアル方向の剛性並びに負荷容量の小さな
超電導軸受の場合、危険速度が低い回転領域に出現して
しまう。この為、超電導軸受によって超高速回転する部
材を支承する場合、回転部材の回転速度を、上記危険速
度を越えて上昇させる必要がある。
Conventionally commonly used bearing devices, such as sliding bearings, fluid bearings, and rolling bearings, have sufficiently high radial rigidity and load capacity, and are located in a rotation region where the critical speed is high. Even if the operating rotational speed was set to be lower than the critical speed, a bearing device that could sufficiently withstand practical use was obtained.
However, in the case of a superconducting bearing having a small rigidity in the radial direction and a small load capacity, the superconducting bearing appears in a rotation region where the critical speed is low. For this reason, when a member that rotates at an extremely high speed is supported by the superconducting bearing, it is necessary to increase the rotation speed of the rotating member beyond the above critical speed.

【0011】一方、超高速の回転領域になると、上記滑
り軸受や転がり軸受では、発熱等により十分な耐久性を
保持出来ない。磁性材と電磁石とを組み合わせて成り、
この電磁石への通電量を制御する事で、回転部材を浮上
状態に保持する、制御型の磁気軸受の場合、何れの不都
合もないが、精密な変位センサや応答性に優れた制御器
が必要になる等、構造が複雑で製作費が嵩むと言った問
題がある。本発明の複合型超電導軸受装置は、上述の様
な問題を何れも解決するものである。
On the other hand, in the super high speed rotation region, the sliding bearing and the rolling bearing cannot maintain sufficient durability due to heat generation and the like. Composed of a magnetic material and an electromagnet,
In the case of a control type magnetic bearing that maintains the rotating member in a floating state by controlling the amount of electricity to this electromagnet, there is no disadvantage, but a precise displacement sensor and a controller with excellent responsiveness are required There is a problem that the structure is complicated and the production cost increases. The composite superconducting bearing device of the present invention solves all of the above problems.

【0012】[0012]

【課題を解決するための手段】本発明の複合型超電導軸
受装置は、軸と、この軸の周囲にこの軸に対する相対的
回転を自在として設けられた相手部材と、永久磁石及び
超電導体を備え、この相手部材と上記軸との間に設けら
れた超電導軸受と、超電導軸受以外の軸受であって、上
記軸と相手部材との間に係脱自在に設けられた補助軸受
と、この補助軸受を係脱させる為の係脱手段と、この係
脱手段を制御する為の制御回路とを備える。そして、こ
の制御回路は、上記軸の回転速度と上記超電導軸受の危
険速度を上回る設定値とを比較し、この軸の回転速度が
この設定値を上回った場合に上記補助軸受の係合を自動
的に解除し、上記軸の回転速度がこの設定値以下の場合
にこの補助軸受を自動的に係合させる。
A composite superconducting bearing device according to the present invention comprises a shaft, a mating member provided around the shaft so as to be freely rotatable relative to the shaft, a permanent magnet and a superconductor. A superconducting bearing provided between the mating member and the shaft, and a bearing other than the superconducting bearing, wherein an auxiliary bearing is detachably provided between the shaft and the mating member; And a control circuit for controlling the engagement / disengagement means. The control circuit compares the rotational speed of the shaft with a set value exceeding the critical speed of the superconducting bearing, and automatically engages the auxiliary bearing when the rotational speed of the shaft exceeds the set value. The auxiliary bearing is automatically engaged when the rotational speed of the shaft is equal to or less than the set value.

【0013】[0013]

【作用】上述の様に構成される本発明の複合型超電導軸
受装置の場合、回転する側の部材の回転速度が超電導軸
受の危険速度N0 を越える迄の間は、制御器の指令に基
づいて、軸と相手部材との間に補助軸受を係合させてお
く。この結果、この軸と相手部材とは、補助軸受を介し
て、相対的回転を自在に支持される。超電導軸受以外の
軸受により構成される補助軸受は、ラジアル方向の剛性
並びに負荷容量が十分に大きい為、補助軸受の軸受剛性
に基づく危険速度N1 は、上記危険速度N0 よりも十分
に高くなる。この為、上記回転速度は超電導軸受の危険
速度N0 を越える事が可能となる。上記回転速度が危険
速度N0 を越えた場合には、上記制御器の指令に基づい
て上記補助軸受の係合を外し、超電導軸受によって上記
軸と相手部材とを支承する。この結果、回転部材は超電
導軸受のみによって支承される為、この回転部材は、補
助軸受の危険速度N1 に遭遇する事がなくなり、この危
険速度N1 を越えた、超高速回転の実現が可能となる。
[Action] For composite superconducting bearing device of the present invention constructed as described above, between the rotational speed of the rotating side member until exceeding critical speed N 0 of the superconducting bearing, based on the instruction of the control unit Then, the auxiliary bearing is engaged between the shaft and the mating member. As a result, the shaft and the mating member are supported to freely rotate relative to each other via the auxiliary bearing. Auxiliary bearing composed of a bearing other than the superconductor bearing, since the stiffness and load capacity in the radial direction is sufficiently large, the critical speed N 1 based on the bearing rigidity of the auxiliary bearing is made sufficiently higher than the critical speed N 0 . Therefore, the rotational speed it is possible to exceed the critical speed N 0 of the superconducting bearing. When the rotation speed exceeds the critical speed N 0 , the auxiliary bearing is disengaged based on a command from the controller, and the shaft and the mating member are supported by a superconducting bearing. As a result, since the rotating member is supported only by superconducting bearing, the rotating member, it is not possible to encounter critical speed N 1 of the auxiliary bearing, beyond the critical speed N 1, it can be realized ultra high-speed rotation Becomes

【0014】[0014]

【実施例】図1〜2は、本発明の第一実施例として、ハ
ウジング9の内側に回転軸10を、回転自在に支承した
例を示している。相手部材であるハウジング9を構成す
る、円筒壁11の上端部は天板12により、下端部は底
板13により、それぞれ塞いでいる。この様なハウジン
グ9の内側に、上記円筒壁11と同心に保持された回転
軸10の外周面2個所位置には、互いに間隔をあけて、
上下1対の永久磁石14a、14bを固定している。
1 and 2 show a first embodiment of the present invention, in which a rotating shaft 10 is rotatably supported inside a housing 9. The upper end of the cylindrical wall 11, which constitutes the housing 9 as the mating member, is closed by the top plate 12, and the lower end is closed by the bottom plate 13. Inside the housing 9, two positions on the outer peripheral surface of the rotating shaft 10 held concentrically with the cylindrical wall 11 are spaced apart from each other.
A pair of upper and lower permanent magnets 14a and 14b are fixed.

【0015】又、上記円筒壁11の内周面で、この永久
磁石14aの直上位置及び永久磁石14bの直下位置に
は、1対の超電導体15a、15bを固定している。そ
して、上側の超電導体15aの下面と上側の永久磁石1
4aの上面とを軸受隙間16aを介して、下側の超電導
体15bの上面と下側の永久磁石14bの下面とを軸受
隙間16bを介して、それぞれ対向させている。尚、図
示は省略したが、上記円筒壁11の内周面には、各超電
導体15a、15bの一部を囲む状態で冷却ジャケット
を設け、やはり図示しない給排口によりこの冷却ジャケ
ット内に、冷却剤である液体窒素を給排自在としてい
る。
A pair of superconductors 15a and 15b are fixed on the inner peripheral surface of the cylindrical wall 11 directly above the permanent magnet 14a and directly below the permanent magnet 14b. Then, the lower surface of the upper superconductor 15a and the upper permanent magnet 1
The upper surface of the lower superconductor 15b and the lower surface of the lower permanent magnet 14b are opposed to each other via the bearing gap 16b. Although not shown, a cooling jacket is provided on the inner peripheral surface of the cylindrical wall 11 so as to surround a part of each of the superconductors 15a and 15b. Liquid nitrogen as a coolant can be supplied and discharged freely.

【0016】又、上記回転軸10の上下両端面には、こ
の回転軸10と同心の円錐凸面17a、17bを、それ
ぞれ形成している。一方、前記天板12の下面中央部
で、上記回転軸10の上端面と対向する部分には上部軸
受18aを、前記底板13の上面中央部で、上記回転軸
10の下端面と対向する部分には下部軸受18bを、そ
れぞれ設けている。上部軸受18aの下面には、上記円
錐凸面17aと密接自在な円錐凹面19aを、下部軸受
18bの上面には、上記円錐凸面17bと密接自在な円
錐凹面19bを、それぞれ形成している。
On the upper and lower end surfaces of the rotating shaft 10, conical convex surfaces 17a and 17b concentric with the rotating shaft 10 are formed, respectively. On the other hand, an upper bearing 18a is provided at a central portion of the lower surface of the top plate 12 facing the upper end surface of the rotating shaft 10, and a central portion of the upper surface of the bottom plate 13 facing the lower end surface of the rotating shaft 10. Is provided with a lower bearing 18b. On the lower surface of the upper bearing 18a, a conical concave surface 19a that can be in close contact with the conical convex surface 17a is formed, and on the upper surface of the lower bearing 18b, a conical concave surface 19b that is in close contact with the conical convex surface 17b is formed.

【0017】そして、互いに密接自在とされた、円錐凸
面17aと円錐凹面19aとのうちの少なくとも一方、
並びに円錐凸面17bと円錐凹面19bとのうちの少な
くとも一方には、それぞれグラファイト、二硫化モリブ
デン等の固体潤滑剤、或はグリース等の油潤滑剤を被
覆、或は塗布する事で、各円錐凸面17a、17bと円
錐凹面19a、19bとが密接した場合に、補助軸受で
ある、滑り軸受を構成自在としている。
Then, at least one of the conical convex surface 17a and the conical concave surface 19a, which are made freely close to each other,
At least one of the conical convex surface 17b and the conical concave surface 19b is coated or coated with a solid lubricant such as graphite or molybdenum disulfide, or an oil lubricant such as grease, respectively. When the conical concave surfaces 19a, 19b are in close contact with the conical concave surfaces 17a, 17b, a sliding bearing, which is an auxiliary bearing, can be configured freely.

【0018】尚、互いに対向する円錐凸面17a、17
bと円錐凹面19a、19bとのうちの少なくとも一方
に動圧溝を形成する事で、回転軸10の回転時に両面1
7a、17b、19a、19b間に空気、或は油の膜が
形成される様にする、所謂動圧流体軸受を構成したり、
図示しない圧力流体供給手段により上記両面17a、1
7b、19a、19b間に圧力流体を送り込み、上記回
転軸10を支持する、所謂静圧流体軸受を構成する事も
出来る。
The conical convex surfaces 17a, 17 facing each other
b and at least one of the conical concave surfaces 19a and 19b, a dynamic pressure groove is formed, so that when the rotating shaft 10 rotates,
A so-called hydrodynamic bearing for forming a film of air or oil between 7a, 17b, 19a and 19b,
The above-mentioned both surfaces 17a, 1
A so-called hydrostatic bearing, in which a pressurized fluid is fed between 7b, 19a and 19b to support the rotary shaft 10, can also be constructed.

【0019】上記上部軸受18aと下部軸受18bとの
うち、上部軸受18aは天板12の下面に固定されてい
るが、下部軸受18bは底板13の上方に、昇降自在に
支持されている。即ち、上記底板13の上面中央部にベ
ローズ20の下端縁を結合支持し、このベローズ20の
上端縁に、上記下部軸受18bを結合支持している。上
記底板13の中央部で、ベローズ20に囲まれた部分に
は、給気口21と排気口22とを設け、このベローズ2
0内への圧縮空気の給排により、上記下部軸受18bの
昇降を自在とする事で、補助軸受を係脱させる為の係脱
手段を構成している。尚、図示は省略したが、上記下部
軸受18bはハウジング9の内側に設けたガイド部に、
昇降のみ自在に係合させて、この下部軸受18bがラジ
アル方向に変位するのを防止している。又、上記回転軸
10の下部外周面にはロータ23を固定すると共に、上
記円筒壁11の内周面でこのロータ23に対向する部分
にはステータ24を設ける事により、回転軸10を回転
駆動する為の電動モータ25を構成している。
Of the upper bearing 18a and the lower bearing 18b, the upper bearing 18a is fixed to the lower surface of the top plate 12, while the lower bearing 18b is supported above the bottom plate 13 so as to be able to move up and down. That is, the lower edge of the bellows 20 is connected and supported at the center of the upper surface of the bottom plate 13, and the lower bearing 18 b is connected and supported at the upper edge of the bellows 20. An air supply port 21 and an exhaust port 22 are provided in a central portion of the bottom plate 13 and surrounded by the bellows 20.
The lower bearing 18b can be freely moved up and down by the supply and discharge of compressed air to the inside of the cylinder 0, thereby constituting an engaging / disengaging means for engaging and disengaging the auxiliary bearing. Although not shown, the lower bearing 18b is provided on a guide portion provided inside the housing 9,
The lower bearing 18b is prevented from being displaced in the radial direction by freely engaging only with the vertical movement. Further, a rotor 23 is fixed to the lower outer peripheral surface of the rotary shaft 10 and a stator 24 is provided on a portion of the inner peripheral surface of the cylindrical wall 11 facing the rotor 23, thereby driving the rotary shaft 10 to rotate. Of the electric motor 25 for performing the operation.

【0020】更に、上記係脱手段を構成するベローズ2
0内への圧縮空気の給排は、図2に示す様な制御回路に
より制御している。この為に、上記回転軸10の回転速
度を検出する回転速度センサ30の検出信号Aを、制御
器31に入力している。そして、この制御器31が、上
記補助軸受を係脱させる為の係脱手段32、即ち、上記
ベローズ20内への圧縮空気の給排を行なわせる圧縮空
気の給排回路に設けられた電磁式の切換弁等に制御信号
Bを出力する。
Further, the bellows 2 constituting the above-mentioned engaging / disengaging means is provided.
The supply and discharge of the compressed air into 0 are controlled by a control circuit as shown in FIG. For this purpose, a detection signal A of a rotation speed sensor 30 for detecting the rotation speed of the rotation shaft 10 is input to a controller 31. The controller 31 is provided with an engaging / disengaging means 32 for engaging and disengaging the auxiliary bearing, that is, an electromagnetic type provided in a compressed air supply / discharge circuit for supplying / discharged compressed air to / from the bellows 20. The control signal B is output to the switching valve and the like.

【0021】上記制御器31は、前記危険速度を越えた
速度を設定し、記憶しておく設定器33と、この設定器
33から送られてくる設定信号Cと上記検出信号Aとを
比較して、検出信号Aが設定信号C以上となった場合
(A≧C)に指令信号Dを出す比較器34と、この指令
信号Dに基づいて、上記制御信号Bを出す駆動回路35
とから構成される。
The controller 31 sets a speed exceeding the critical speed and stores the speed, and compares the setting signal C sent from the setting device 33 with the detection signal A. When the detection signal A is equal to or greater than the setting signal C (A ≧ C), the comparator 34 outputs a command signal D, and the driving circuit 35 outputs the control signal B based on the command signal D.
It is composed of

【0022】本発明の複合型超電導軸受装置には、上述
の様な制御回路を組み込む事によって、上記回転軸10
が停止している状態から起動させる際に、何ら特別な操
作をしなくても、この回転軸10が危険速度N0 付近で
振れ回る事なく、回転速度を上昇させる事が出来る。即
ち、停止状態から起動直後で回転数が低い状態迄の間
は、係脱手段32を構成するベローズ20(図1)内に
圧縮空気を送り込んでおき、回転軸10の回転速度が危
険速度N0 を越えた場合には、ベローズ20内の圧縮空
気を自動的に排出し、補助軸受である滑り軸受(上部、
下部両軸受18a、18b)と回転軸10との係合を解
除する。
In the composite superconducting bearing device of the present invention, the above-described control circuit is incorporated so that the rotating shaft 10
But when to start from a state in which the stop, even without any special operation, without the rotary shaft 10 is whirling in the vicinity of the critical speed N 0, it is possible to increase the rotation speed. That is, during the period from the stop state to the state immediately after the start up and the rotation number is low, the compressed air is fed into the bellows 20 (FIG. 1) constituting the engagement / disengagement means 32, and the rotation speed of the rotary shaft 10 becomes the critical speed N. If it exceeds 0 , the compressed air in the bellows 20 is automatically discharged, and the sliding bearings (upper,
The engagement between the lower dual bearings 18a and 18b) and the rotating shaft 10 is released.

【0023】上述の様に構成される本発明の複合型超電
導軸受装置は、次の様に作用して、回転軸10を危険速
度N0 を越えた高速で回転させる事が出来る。先ず、電
動モータ25に通電するのに先立ち、上記制御回路の指
令に基づいて、前記給気口21を通じてベローズ20内
に圧縮空気を送り込み、下部軸受18bと共に回転軸1
0を上昇させる。この結果、回転軸10の上下両端部に
設けた円錐凸面17a、17bと、上部、下部両軸受1
8a、18bの円錐凹面19a、19bとが互いに密接
し、上記回転軸10がハウジング9の内側に、上下1対
の滑り軸受を介して、回転自在に支持された状態とな
る。又、この状態で、上下1対の永久磁石14a、14
bと超電導体15ab、15bとが互いに同心となると
共に、前記軸受隙間16a、16bの内、上側の軸受隙
間16aが極小に(可及的に零に近く)なり、反対に下
側の軸受隙間16bが大きくなる。
The composite superconducting bearing device of the present invention as described above constructed acts in the following manner, and thereby it is able rotate the rotary shaft 10 at a high speed exceeding the critical speed N 0. First, prior to energizing the electric motor 25, compressed air is fed into the bellows 20 through the air supply port 21 based on a command from the control circuit, and the rotary shaft 1 is moved together with the lower bearing 18b.
Increase 0. As a result, the conical convex surfaces 17a, 17b provided at the upper and lower ends of the rotary shaft 10 and the upper and lower bearings 1
The conical concave surfaces 19a, 19b of 8a, 18b are in close contact with each other, and the rotating shaft 10 is rotatably supported inside the housing 9 via a pair of upper and lower sliding bearings. In this state, a pair of upper and lower permanent magnets 14a, 14
b and the superconductors 15ab and 15b are concentric with each other, and the upper bearing gap 16a of the bearing gaps 16a and 16b is minimized (close to zero as much as possible), and conversely, the lower bearing gap 16b increases.

【0024】次いで、上記電動モータ25に通電を開始
し、上記回転軸10を回転させる。回転軸10の回転速
度が次第に速くなり、この回転軸10及びこの回転軸1
0に固定された部材の質量と超電導軸受の軸受剛性とに
よって定まる危険速度N0 に達しても、上記上部、下部
両軸受18a、18bにより構成される滑り軸受は、ラ
ジアル方向の剛性と負荷容量とが十分に大きく、この滑
り軸受の軸受剛性によって定まる危険速度N1 は、上記
危険速度N0 よりも十分に高い為、上記回転軸10が振
れ回る事はない。
Next, energization of the electric motor 25 is started, and the rotating shaft 10 is rotated. The rotation speed of the rotating shaft 10 gradually increases, and the rotating shaft 10 and the rotating shaft 1
Even if the critical speed N 0 determined by the mass of the member fixed to 0 and the bearing rigidity of the superconducting bearing is reached, the sliding bearing constituted by the upper and lower bearings 18a and 18b has the rigidity in the radial direction and the load capacity. Is sufficiently large, and the critical speed N 1 determined by the bearing rigidity of the sliding bearing is sufficiently higher than the critical speed N 0 , so that the rotating shaft 10 does not swing.

【0025】回転軸10の回転速度が更に上昇し、上記
危険速度N0 を越えた場合には、上記制御回路の指令に
基づいて、前記排気口22を通じてベローズ20内の圧
縮空気を排出し、下部軸受18bを下降させる。一方、
上記給気口21を通じてベローズ20内に圧縮空気を送
り込んだ後、排気口22からこの圧縮空気を排出する迄
の間に、ハウジング9内に設けた図示しない冷却ジャケ
ット内に液体窒素を送り込む事で、前記した上下1対の
超電導体15a、15bを超電導状態としておく。
When the rotation speed of the rotary shaft 10 further increases and exceeds the critical speed N 0 , the compressed air in the bellows 20 is discharged through the exhaust port 22 based on a command of the control circuit, The lower bearing 18b is lowered. on the other hand,
After the compressed air is fed into the bellows 20 through the air supply port 21 and before the compressed air is discharged from the exhaust port 22, liquid nitrogen is fed into a cooling jacket (not shown) provided in the housing 9. The pair of upper and lower superconductors 15a and 15b are kept in a superconducting state.

【0026】この様に、各超電導体15a、15bを超
電導状態としてから、下部軸受18bを下降させ、この
下部軸受18bによる回転軸10の支持力を取り除く
と、この回転軸10並びに回転軸10に固定された上下
1対の永久磁石14a、14bは、自重により下降する
傾向となり、前記軸受隙間16a、16bのうち、上側
の軸受隙間16aが広がり、下側の軸受隙間16bが縮
まる。但し、この状態に於いて、上記各超電導体15
a、15bの内側では、上記1対の永久磁石14a、1
4bから出た磁束がピン止めされている為、各永久磁石
14a、14bと超電導体15a、15bとの間に、両
部材14a、14b、15a、15b同士が互いに変位
するのを阻止する方向の力が加わる。
After the superconductors 15a and 15b are brought into the superconductive state, the lower bearing 18b is lowered to remove the supporting force of the lower shaft 18b from the lower bearing 18b. The fixed pair of upper and lower permanent magnets 14a and 14b tend to descend by their own weight, and the upper bearing gap 16a of the bearing gaps 16a and 16b expands, and the lower bearing gap 16b shrinks. However, in this state, each of the superconductors 15
a, 15b, the pair of permanent magnets 14a, 1a
4b is pinned, and between the permanent magnets 14a, 14b and the superconductors 15a, 15b, the two members 14a, 14b, 15a, 15b are prevented from being displaced from each other. Power is added.

【0027】即ち、回転軸10等が自重により下降する
傾向となった場合には、上側の永久磁石14aと超電導
体15aとの間に、ピン止め力に基づく吸引力が作用
し、下側の永久磁石14bと超電導体15bとの間に、
ピン止め力に基づく反発力が作用する。この結果、上記
回転軸10の下降は、上記自重と吸引力及び反発力とが
釣り合った状態で停止する。又、回転軸10がラジアル
方向に変位する事も、上記ピン止め力に基づく力によっ
て阻止される。
That is, when the rotating shaft 10 and the like tend to descend due to their own weight, an attractive force based on a pinning force acts between the upper permanent magnet 14a and the superconductor 15a, and Between the permanent magnet 14b and the superconductor 15b,
A repulsive force based on the pinning force acts. As a result, the lowering of the rotating shaft 10 stops in a state where the own weight is balanced with the suction force and the repulsion force. Also, the displacement of the rotating shaft 10 in the radial direction is prevented by the force based on the pinning force.

【0028】従って、上記回転軸10は、下部軸受18
bによる支持力を喪失した後に於いても、ハウジング1
0と同心に、浮上状態で支持される。この為、回転軸1
0を回転させる事に対して、摩擦力が作用する事がなく
なる。又、この状態では、既に回転軸10の回転速度は
危険速度N0 を越えている為、この回転軸10が振れ回
る事もなくなり、回転軸10を超高速で回転させる事が
可能となる。
Therefore, the rotating shaft 10 is mounted on the lower bearing 18.
b after the loss of bearing capacity
It is supported in a floating state concentrically with zero. Therefore, the rotating shaft 1
No frictional force acts on rotating 0. Further, in this state, since the rotation speed of the rotating shaft 10 has already exceeded the critical speed N 0 , the rotating shaft 10 does not swing around, and the rotating shaft 10 can be rotated at a very high speed.

【0029】尚、超電導軸受の軸受剛性により定まる回
転軸10の危険速度N0 は、この回転軸10の材質、外
径、長さ、回転軸10に固定された部材の重さや取付位
置等により異なるが、例えば遠心分離器等に組み込まれ
る軸受スピンドルとして利用する場合で、2000〜3
000r.p.m.程度である。又、回転軸10が停止してい
る状態から電動モータ25に通電を開始し、この回転軸
10の回転速度が危険速度N0 を越える迄に要する時間
は、数秒乃至数十秒程度の、極く短時間である。従っ
て、この危険速度N0 を越える迄の間だけ、回転軸10
を滑り軸受で支える事は、何ら無理なく行なえる。
The critical speed N 0 of the rotating shaft 10 determined by the bearing rigidity of the superconducting bearing depends on the material, outer diameter and length of the rotating shaft 10, the weight of the member fixed to the rotating shaft 10, the mounting position, and the like. Although different, for example, it is used as a bearing spindle incorporated in a centrifuge or the like.
It is about 000r.pm. Also, the electric motor 25 is energized while the rotating shaft 10 is stopped, and the time required for the rotating speed of the rotating shaft 10 to exceed the critical speed N 0 is several seconds to several tens of seconds. It is a short time. Therefore, only until the speed exceeds the critical speed N 0 ,
Can be easily supported by sliding bearings.

【0030】次に、図3は、本発明の第二実施例を示し
ている。上述の第一実施例が、回転軸10の上下両端面
に円錐凸面17a、17bを形成し、上部、下部両軸受
18a、18bに円錐凹面19a、19bを形成してい
たのに対して、本実施例の場合には、上部軸受18aと
回転軸10との下端面に球状凸面26a、26bを、回
転軸10と下部軸受18bとの上端面に球状凹面27
a、27bを、それぞれ形成している。
FIG. 3 shows a second embodiment of the present invention. In contrast to the above-described first embodiment in which the conical convex surfaces 17a and 17b are formed on both upper and lower end surfaces of the rotating shaft 10, and the conical concave surfaces 19a and 19b are formed in the upper and lower bearings 18a and 18b, the present embodiment is different from the first embodiment. In the case of this embodiment, spherical convex surfaces 26a and 26b are formed on the lower end surfaces of the upper bearing 18a and the rotating shaft 10, and spherical concave surfaces 27 are formed on the upper end surfaces of the rotating shaft 10 and the lower bearing 18b.
a and 27b are respectively formed.

【0031】そして、ベローズ20内への圧縮空気送り
込みに伴なう、上記下部軸受18bの上昇時に、各球状
凸面26a、26bと球状凹面27a、27bとを係合
させ、上下1対の永久磁石14a、14bと超電導体1
5a、15b(図1)とを互いに同心とすると共に、上
下1対の滑り軸受を構成する様にしている。必要に応じ
て所望の面に動圧溝を形成する等、他の構成及び作用
は、上記ベローズ20内への圧縮空気の給排を、図2に
示す様な制御器31を含む制御回路からの指令に基づい
て行なう事を含め、上述の第一実施例と同様である。
When the lower bearing 18b rises with the compressed air being sent into the bellows 20, the spherical convex surfaces 26a, 26b and the spherical concave surfaces 27a, 27b are engaged with each other to form a pair of upper and lower permanent magnets. 14a, 14b and superconductor 1
5a and 15b (FIG. 1) are concentric with each other, and constitute a pair of upper and lower sliding bearings. Other configurations and operations, such as forming a dynamic pressure groove on a desired surface as needed, are based on the supply and discharge of compressed air into the bellows 20 from a control circuit including a controller 31 as shown in FIG. This is the same as the above-described first embodiment, including the execution based on the above-mentioned command.

【0032】次に、図4は、本発明の第三実施例を示し
ている。前述の第一実施例及び上述の第二実施例が何れ
も、補助軸受として滑り軸受を利用していたのに対し、
本実施例の場合には、補助軸受として転がり軸受を利用
している。即ち、天板12の下面中央部には、ラジアル
荷重及びスラスト荷重を支承自在な転がり軸受である、
深溝型の玉軸受28aを介して、上部受片29aを回転
自在に支承し、底板13の上面中央部のベローズ20の
上端部には、やはり深溝型の玉軸受28bを介して、下
部受片29bを回転自在に支承している。
FIG. 4 shows a third embodiment of the present invention. While both the first embodiment described above and the second embodiment described above used a sliding bearing as an auxiliary bearing,
In the case of the present embodiment, a rolling bearing is used as an auxiliary bearing. That is, a rolling bearing capable of supporting a radial load and a thrust load is provided at the center of the lower surface of the top plate 12.
The upper receiving piece 29a is rotatably supported via a deep groove type ball bearing 28a, and the lower receiving piece is also provided via a deep groove type ball bearing 28b on the upper end of the bellows 20 at the center of the upper surface of the bottom plate 13. 29b is rotatably supported.

【0033】回転軸10の上下両端部には円錐凸面17
a、17bを、上部受片29aの下面と下部受片29b
の上面とには円錐凹面19a、19bを、それぞれ形成
して、ベローズ20内への圧縮空気送り込みに伴なう、
上記下部受片29bの上昇時に、上下1対の永久磁石1
4a、14bと超電導体15a、15b(図1)とを、
互いに同心とする様に構成している。その他の構成及び
作用は、上記ベローズ20内への圧縮空気の給排を、図
2に示す様な制御器31を含む制御回路からの指令に基
づいて行なう事を含め、前述の第一〜第二実施例と同様
である。
At the upper and lower ends of the rotating shaft 10, conical convex surfaces 17 are provided.
a, 17b, the lower surface of the upper receiving piece 29a and the lower receiving piece 29b.
Conical concave surfaces 19a, 19b are formed on the upper surface of the bellows 20, respectively, and the compressed air is fed into the bellows 20.
When the lower receiving piece 29b is raised, a pair of upper and lower permanent magnets 1
4a, 14b and superconductors 15a, 15b (FIG. 1)
They are configured to be concentric with each other. Other configurations and operations include the supply and discharge of compressed air into the bellows 20 based on commands from a control circuit including a controller 31 as shown in FIG. This is the same as the second embodiment.

【0034】尚、以上に述べた各実施例の場合、上記制
御器31から送り出される制御信号Bに基づいて駆動さ
れる部材が、ベローズ20内への圧縮空気の給排回路に
設けられた電磁式の切換弁等である。これに対して、ベ
ローズ20に代えてソレノイドを設け、このソレノイド
により係脱手段32を構成した場合には、上記制御信号
Bにより、直接このソレノイドを駆動する。更に、以上
の説明は、固定のハウジング9の内側で回転軸10を回
転させる場合に就いて説明したが、本発明はこの様な場
合に限らず、固定の枢軸の周囲でロータを回転させる場
合にも適用出来る。
In each of the above-described embodiments, the member driven based on the control signal B sent from the controller 31 is an electromagnetic member provided in a circuit for supplying and discharging compressed air to the bellows 20. Switching valve of the type. On the other hand, when a solenoid is provided in place of the bellows 20 and the engagement / disengagement means 32 is constituted by the solenoid, the solenoid is directly driven by the control signal B. Further, the above description has been made on the case where the rotating shaft 10 is rotated inside the fixed housing 9. However, the present invention is not limited to such a case, and the case where the rotor is rotated around the fixed pivot is described. It can also be applied to

【0035】[0035]

【発明の効果】本発明の複合型超電導軸受装置は、以上
に述べた通り構成され作用する為、回転軸等の回転部材
の回転速度を、危険速度を越えて上昇させる事が可能と
なり、ラジアル方向に亙る剛性並びに負荷容量の小さな
超電導軸受装置の実用化に寄与する効果が大きい。
Since the composite superconducting bearing device of the present invention is constructed and operates as described above, it is possible to increase the rotational speed of a rotating member such as a rotating shaft beyond a critical speed, and to increase the radial speed. This has a great effect of contributing to the practical use of a superconducting bearing device having a small rigidity and a small load capacity in all directions.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第一実施例を示す縦断面図。FIG. 1 is a longitudinal sectional view showing a first embodiment of the present invention.

【図2】制御回路の1例を示すブロック図。FIG. 2 is a block diagram illustrating an example of a control circuit.

【図3】本発明の第二実施例を示す部分縦断面図。FIG. 3 is a partial longitudinal sectional view showing a second embodiment of the present invention.

【図4】同じく第三実施例を示す部分縦断面図。FIG. 4 is a partial longitudinal sectional view showing the third embodiment.

【図5】従来例の基本原理を示す斜視図。FIG. 5 is a perspective view showing the basic principle of a conventional example.

【図6】従来例の具体的構成を示す斜視図。FIG. 6 is a perspective view showing a specific configuration of a conventional example.

【符号の説明】[Explanation of symbols]

1 永久磁石 2 ペレット 3 円板 3a 円輪板 4 円板 4a 円輪板 5 回転軸 6 ハウジング 7 冷却ジャケット 8 電動モータ 9 ハウジング 10 回転軸 11 円筒壁 12 天板 13 底板 14a、14b 永久磁石 15a、15b 超電導体 16a、16b 軸受隙間 17a、17b 円錐凸面 18a 上部軸受 18b 下部軸受 19a、19b 円錐凹面 20 ベローズ 21 給気口 22 排気口 23 ロータ 24 ステータ 25 電動モータ 26a、26b 球状凸面 27a、27b 球状凹面 28a、28b 玉軸受 29a 上部受片 29b 下部受片 30 回転速度センサ 31 制御器 32 係脱手段 33 設定器 34 比較器 35 駆動回路 Reference Signs List 1 permanent magnet 2 pellet 3 disk 3a circular plate 4 disk 4a circular plate 5 rotating shaft 6 housing 7 cooling jacket 8 electric motor 9 housing 10 rotating shaft 11 cylindrical wall 12 top plate 13 bottom plate 14a, 14b permanent magnet 15a, 15b Superconductor 16a, 16b Bearing gap 17a, 17b Conical convex surface 18a Upper bearing 18b Lower bearing 19a, 19b Conical concave surface 20 Bellows 21 Air supply port 22 Exhaust port 23 Rotor 24 Stator 25 Electric motor 26a, 26b Spherical convex surface 27a, 27b Spherical concave surface 28a, 28b Ball bearing 29a Upper receiving piece 29b Lower receiving piece 30 Rotation speed sensor 31 Controller 32 Disengagement means 33 Setting device 34 Comparator 35 Drive circuit

フロントページの続き (58)調査した分野(Int.Cl.7,DB名) F16C 32/00 - 32/06 Continuation of front page (58) Field surveyed (Int.Cl. 7 , DB name) F16C 32/00-32/06

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 軸と、この軸の周囲にこの軸に対する相
対的回転を自在として設けられた相手部材と、永久磁石
及び超電導体を備え、この相手部材と上記軸との間に設
けられた超電導軸受と、超電導軸受以外の軸受であっ
て、上記軸と相手部材との間に係脱自在に設けられた補
助軸受と、この補助軸受を係脱させる為の係脱手段と
この係脱手段を制御する為の制御回路とを備え、この制
御回路は、上記軸の回転速度と上記超電導軸受の危険速
度を上回る設定値とを比較し、この軸の回転速度がこの
設定値を上回った場合に上記補助軸受の係合を自動的に
解除し、上記軸の回転速度がこの設定値以下の場合にこ
の補助軸受を自動的に係合させる複合型超電導軸受装
置。
1. A shaft, a mating member provided around the shaft so as to freely rotate relative to the shaft, a permanent magnet and a superconductor, and provided between the mating member and the shaft. A superconducting bearing, a bearing other than the superconducting bearing, an auxiliary bearing provided detachably between the shaft and the mating member, and a disengaging means for disengaging the auxiliary bearing ;
And a control circuit for controlling the engagement / disengagement means.
The control circuit determines the rotational speed of the shaft and the critical speed of the superconducting bearing.
Compared to the set value which is higher than
When the set value is exceeded, the above-mentioned auxiliary bearing is automatically engaged.
Release, and when the rotation speed of the shaft is below this set value,
Composite superconducting bearing device that automatically engages auxiliary bearings .
【請求項2】 補助軸受は、互いに密接若しくは近接可
能で、それぞれの中心軸が軸の中心軸と一致する、円錐
状若しくは球面状の凹面と凸面とから成る滑り軸受若し
くは流体軸受であり、これら凹面と凸面とのうちの一方
を軸に固設し、他方を相手部材に、係脱手段によりこの
軸に対する遠近動自在に支持している、請求項1に記載
した複合型超電導軸受装置。
2. The auxiliary bearing is a plain bearing or a fluid bearing having a conical or spherical concave surface and a convex surface which can be close to or close to each other and whose respective central axes coincide with the central axis of the shaft. 2. The composite superconducting bearing device according to claim 1, wherein one of the concave surface and the convex surface is fixed to the shaft, and the other is supported by a mating member so as to be able to move in and out of the shaft by means of an engaging and disengaging means.
【請求項3】 補助軸受は、係脱手段を構成して軸に対
し遠近動する受片を、この受片に加わるラジアル荷重及
びスラスト荷重を支承しつつ回転自在に支持する転がり
軸受である、請求項1に記載した複合型超電導軸受装
置。
3. The auxiliary bearing is a rolling bearing that constitutes an engagement / disengagement means and rotatably supports a receiving piece that moves toward and away from the shaft while supporting a radial load and a thrust load applied to the receiving piece. The composite superconducting bearing device according to claim 1 .
JP29205591A 1991-10-14 1991-10-14 Composite superconducting bearing device Expired - Fee Related JP3206044B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP29205591A JP3206044B2 (en) 1991-10-14 1991-10-14 Composite superconducting bearing device
DE19924234524 DE4234524C2 (en) 1991-10-14 1992-10-13 Hybrid storage unit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29205591A JP3206044B2 (en) 1991-10-14 1991-10-14 Composite superconducting bearing device

Publications (2)

Publication Number Publication Date
JPH05106634A JPH05106634A (en) 1993-04-27
JP3206044B2 true JP3206044B2 (en) 2001-09-04

Family

ID=17776959

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29205591A Expired - Fee Related JP3206044B2 (en) 1991-10-14 1991-10-14 Composite superconducting bearing device

Country Status (2)

Country Link
JP (1) JP3206044B2 (en)
DE (1) DE4234524C2 (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19710501A1 (en) * 1996-03-14 1998-01-02 Gutt Hans Joachim Electrical machine using high-temperature superconductor
DE19715356A1 (en) * 1997-04-12 1998-10-22 Wtz Motoren & Maschforsch Gmbh Magnetic bearing for fast-rotating components e.g. centrifuge or flywheel
US6777841B2 (en) 2000-10-09 2004-08-17 Siemens Aktiengesellschaft Device comprising a rotor and a magnetic suspension bearing for the contactless bearing of the rotor
DE102004024206B4 (en) * 2004-05-10 2006-04-20 Siemens Ag Magnet bearing for shaft, has roles that are arranged together on vertically adjustable carrying body, where axes of roles are partly adjustable, so that shaft shifts into stand by position
DE102005028209B4 (en) 2005-06-17 2007-04-12 Siemens Ag Magnetic bearing device of a rotor shaft against a stator with interlocking rotor disk elements and stator disk elements
DE102006056795B3 (en) * 2006-12-01 2008-04-24 Efficient Energy Gmbh Support for e.g. rotatably supporting rotor in stator, has control device designed to deliver signal to actuator that accelerates rotor or stator such that working position is achieved by rotor or stator after loosening contact
CN102052402B (en) * 2009-10-30 2013-06-19 张平 Permanent magnet suspension bearing and permanent magnet suspension bearing component
JP2012086158A (en) * 2010-10-20 2012-05-10 Asahi Sunac Corp Multi-liquid mixing device
CN102588433B (en) * 2011-01-11 2016-08-17 北京京冶永磁悬浮轴承有限公司 A kind of permanent-magnet suspension bearing and mounting structure thereof
CN102588434B (en) * 2011-01-11 2016-06-01 北京京冶永磁悬浮轴承有限公司 A kind of permanent-magnet suspension bearing and mounting structure thereof
JP6512553B2 (en) * 2015-07-17 2019-05-15 パナソニックIpマネジメント株式会社 Turbo machine
JP7237537B2 (en) * 2018-11-14 2023-03-13 株式会社日立製作所 rotating machine

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1946176A1 (en) * 1969-09-12 1971-03-18 Bodenseewerk Geraetetech Magnetic gyro bearing
JPS6450745A (en) * 1987-08-19 1989-02-27 Hitachi Ltd Single pole rotary electric machine
JP2999607B2 (en) * 1991-09-30 2000-01-17 日本精工株式会社 Superconducting bearing device and its operation method

Also Published As

Publication number Publication date
JPH05106634A (en) 1993-04-27
DE4234524A1 (en) 1993-04-15
DE4234524C2 (en) 1999-07-29

Similar Documents

Publication Publication Date Title
AU656499B2 (en) Opposed-magnet bearing with interposed superconductor
EP0559839B1 (en) High temperature superconducting magnetic bearings
JP2999607B2 (en) Superconducting bearing device and its operation method
JP3206044B2 (en) Composite superconducting bearing device
US5223758A (en) Spindle motor
JPH05240249A (en) Superconductive bearing device
JP3665878B2 (en) Bearing device and starting method thereof
JP3551537B2 (en) Flywheel equipment
JPH08296645A (en) Magnetic bearing device
JP3577559B2 (en) Flywheel equipment
JP3663472B2 (en) Permanent magnet bearing device and permanent magnet rotating device
JPH04296218A (en) Superconductive bearing device
JP3113920B2 (en) Superconducting bearing device
JPH0681845A (en) Supercondctive bearing device
JP3324319B2 (en) Magnetic bearing device
JPH09233803A (en) Braking device for high-speed rotating equipment
JP3632101B2 (en) Power storage device
JP3385771B2 (en) Superconducting magnetic bearing device
JP2659747B2 (en) Superconducting bearing
Stoye et al. Static forces in a superconducting magnet bearing
JP3622041B2 (en) Superconducting bearing device
JP3677320B2 (en) Superconducting bearing for rotating equipment and flywheel for power storage using the same
JP2958598B2 (en) Power storage device
JPH04355104A (en) Surface processing method of oxide superconductive material
JPH0694030A (en) Superconductive bearing device

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070706

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080706

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080706

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090706

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees