JP3577559B2 - Flywheel equipment - Google Patents

Flywheel equipment Download PDF

Info

Publication number
JP3577559B2
JP3577559B2 JP01121295A JP1121295A JP3577559B2 JP 3577559 B2 JP3577559 B2 JP 3577559B2 JP 01121295 A JP01121295 A JP 01121295A JP 1121295 A JP1121295 A JP 1121295A JP 3577559 B2 JP3577559 B2 JP 3577559B2
Authority
JP
Japan
Prior art keywords
rotating
rotating shaft
permanent magnet
flywheel
magnetic flux
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP01121295A
Other languages
Japanese (ja)
Other versions
JPH08200470A (en
Inventor
良一 高畑
和夫 六角
正二 江口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Koyo Seiko Co Ltd
Original Assignee
Koyo Seiko Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Koyo Seiko Co Ltd filed Critical Koyo Seiko Co Ltd
Priority to JP01121295A priority Critical patent/JP3577559B2/en
Publication of JPH08200470A publication Critical patent/JPH08200470A/en
Application granted granted Critical
Publication of JP3577559B2 publication Critical patent/JP3577559B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C32/00Bearings not otherwise provided for
    • F16C32/04Bearings not otherwise provided for using magnetic or electric supporting means
    • F16C32/0406Magnetic bearings
    • F16C32/044Active magnetic bearings
    • F16C32/0474Active magnetic bearings for rotary movement
    • F16C32/0493Active magnetic bearings for rotary movement integrated in an electrodynamic machine, e.g. self-bearing motor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C32/00Bearings not otherwise provided for
    • F16C32/04Bearings not otherwise provided for using magnetic or electric supporting means
    • F16C32/0406Magnetic bearings
    • F16C32/0408Passive magnetic bearings
    • F16C32/0436Passive magnetic bearings with a conductor on one part movable with respect to a magnetic field, e.g. a body of copper on one part and a permanent magnet on the other part
    • F16C32/0438Passive magnetic bearings with a conductor on one part movable with respect to a magnetic field, e.g. a body of copper on one part and a permanent magnet on the other part with a superconducting body, e.g. a body made of high temperature superconducting material such as YBaCuO
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/08Structural association with bearings
    • H02K7/09Structural association with bearings with magnetic bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2361/00Apparatus or articles in engineering in general
    • F16C2361/55Flywheel systems
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K2205/00Specific aspects not provided for in the other groups of this subclass relating to casings, enclosures, supports
    • H02K2205/03Machines characterised by thrust bearings
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/02Additional mass for increasing inertia, e.g. flywheels
    • H02K7/025Additional mass for increasing inertia, e.g. flywheels for power storage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/16Mechanical energy storage, e.g. flywheels or pressurised fluids

Description

【0001】
【産業上の利用分野】
この発明は、余剰電力をフライホイールの回転運動エネルギに変換して貯蔵する電力貯蔵装置などに使用されるフライホイール装置に関する。
【0002】
【従来の技術】
この種のフライホイール装置として、従来、垂直軸を中心に回転する回転軸、回転軸に固定状に設けられたフライホイール、回転軸をラジアル方向に非接触支持する上下2組の4軸制御型ラジアル磁気軸受、回転軸をラジアル方向およびアキシアル方向に非接触支持する1組あるいは複数組の超伝導軸受、ならびに回転軸を回転駆動する発電電動機を備えたものが知られている。超伝導軸受は、たとえば、フライホイールの上向きあるいは下向きの端面に、複数の環状の永久磁石が、磁束分布が回転軸心に対して対称になり、かつ回転軸心のまわりの磁束分布が回転によって変化しないように、同心状に配置され、固定部分に、超伝導体が、永久磁石の磁束が所定量侵入する離隔位置であってかつ回転体の回転によって侵入磁束の分布が変化しない位置に、永久磁石と回転軸心方向に対向するように配置されているものである。そして、永久磁石から発生する磁束を超伝導体の内部に侵入させて拘束し、その結果、いわゆるピン止め力により、固定部分に対して回転体をラジアル方向およびアキシアル方向に非接触状態で支持するようになっている。
【0003】
【発明が解決しようとする課題】
上記のフライホイール装置では、回転軸のまわりに、2組のラジアル磁気軸受および超伝導軸受の他に、発電電動機を配置する必要があり、その分だけ回転軸が長くなるため、回転軸の固有振動数が低下し、回転軸を高速回転させることが困難であるという問題がある。
【0004】
この発明の目的は、上記の問題を解決し、回転軸の固有振動数を高くして、回転軸を高速回転させることができ、かつ回転部材および回転永久磁石の遠心破壊をより効果的に防止できるフライホイール装置を提供することにある。
【0005】
【課題を解決するための手段】
この発明によるフライホイール装置は、垂直軸を中心に回転する回転軸、上記回転軸に固定状に設けられたフライホイール、上記回転軸をラジアル方向に非接触支持する上下2組の4軸制御型ラジアル磁気軸受、および上記回転軸をアキシアル方向およびラジアル方向に非接触支持する超伝導軸受を備えており、上記ラジアル磁気軸受の少なくとも1組が、上記回転軸を回転駆動する電動駆動機能を有し、上記超伝導軸受は、上記回転軸に固定された上記フライホイールより小径の回転部材の下面に同心状に設けられた複数の環状の回転永久磁石およびこれらに対向するように固定部分に設けられた環状の超伝導体を備えており、上記回転部材の下端面に複数の環状凹みぞが同心状に形成され、各凹みぞ内に上記回転永久磁石が1つずつはめられて固定され、上記回転永久磁石の外周部分は、上記凹みぞの外周側の壁の内周部分に圧入され、上記回転永久磁石の内周部分は、上記凹みぞの内周側の壁の外周部分に対して、ほとんど隙間がないかあるいはわずかな隙間をあけてゆるくはめ合わされており、上記回転部材の外周に環状の補強部材が一体状に固定されていることを特徴とするものである。
【0006】
たとえば、上記超伝導軸受において、上記回転永久磁石が、磁束分布が上記回転軸の回転軸心に対して対称になり、かつ上記回転軸心のまわりの磁束分布が回転によって変化しないように上記回転軸またはこれと一体に回転する部分に配置され、上記超伝導体が、回転永久磁石の磁束が所定量侵入する離隔位置であってかつ回転体の回転によって侵入磁束の分布が変化しない位置に、回転永久磁石と対向するように配置されている。
【0007】
【作用】
ラジアル磁気軸受の少なくとも1組が回転軸を回転駆動する伝動駆動機能を有するものであるから、電動機を別に設ける必要がなく、その分だけ回転軸を短くすることができる。そして、回転軸を短くすることにより、回転軸の固有振動数が高くなり、高速回転が可能である。
【0008】
また、回転軸の定常回転時に、ラジアル磁気軸受による回転軸のラジアル方向の支持を行わずに、超伝導軸受だけで回転軸をラジアル方向およびアキシアル方向に支持することができる。
さらに、回転永久磁石の外周部分が回転部材の凹みぞの壁に圧入されて、回転永久磁石の内周部分が凹みぞの壁にゆるくはめられているので、回転永久磁石の寸法管理および組立が容易であり、しかも回転永久磁石の遠心膨張が小さく抑えられて、その遠心破壊が防止される。しかも、回転部材の外周に一体状に固定された補強部材により、回転部材の遠心膨張が小さく抑えられ、回転部材およびそれに固定された回転永久磁石の遠心破壊がより効果的に防止される
【0009】
【実施例】
以下、図面を参照して、この発明を電力貯蔵装置におけるフライホイール装置に適用した実施例について説明する。
【0010】
図1はフライホイール装置の全体構成を概略的に示し、図2はその一部を拡大して詳細に示している。
【0011】
フライホイール装置は、垂直な回転軸(1) 、回転軸(1) に固定されたフライホイール(2) 、回転軸(1) をラジアル方向に非接触支持する上下2組の4軸制御型ラジアル磁気軸受(3)(4)、回転軸(1) をアキシアル方向(上下方向)およびラジアル方向に非接触支持する超伝導軸受(非接触アキシアル軸受)(5) 、ならびに起動時に回転軸(1) の位置決めを行うための初期位置決め装置(6) を備えており、これらが複数の部材よりなるハウジング(固定部分)(7) で囲まれた真空チャンバ(8) 内に配置されている。
【0012】
フライホイール(2) はたとえばアルミニウム合金などの非磁性体により円板状に形成されており、その外周にCFRP(複合繊維強化プラスチック)製の環状の補強部材(9) が一体状に固定されている。フライホイール(2) は回転軸(1) の上端寄りの部分に同心状に固定されており、回転軸(1) はハウジング(7) 内の中心に若干の上下動(アキシアル方向の移動)およびラジアル方向の移動ができるように配置されている。
【0013】
超伝導軸受(5) の詳細が図2に示されている。
【0014】
超伝導軸受(5) は、回転軸(1) 側に同心状に設けられた複数の環状の回転永久磁石(10)、およびこれに対向するようにハウジング(7) 側に設けられた環状の超伝導体(11)を備えている。
【0015】
円板状の非磁性体製回転部材(12)が、フライホイール(2)の下面に密着するように回転軸(1)に固定されている。回転部材(12)はたとえばアルミニウム合金、非磁性ステンレス鋼などの非磁性体で円板状に形成され、その外周に環状のCFRP製補強部材(13)が一体状に固定されている。回転部材(12)の下端面に円形の仕切り壁(14)で仕切られた複数の環状凹みぞ(15)が同心状に形成され、各凹みぞ(15)内に回転永久磁石(10)が1つずつはめられて固定されている。永久磁石(10)の外周部分は、凹みぞ(15)の外周側の壁あるいは仕切り壁(14)の内周部分に圧入されている。永久磁石(10)の内周部分は仕切り壁(14)あるいは凹みぞ(15)の内周側の壁の外周部分にゆるくはめ合わされ、これらの間にはほとんど隙間がないかあるいはわずかな隙間があけられている。永久磁石(10)は軸方向の両端に磁極を有し、各永久磁石(10)の同一端の磁極が互いに同じ極性を有するように配置されている。すなわち、この実施例では、各永久磁石(10)の下端側がN極で上端側がS極となっている。永久磁石(10)は環状をなし、回転軸(1)の回転軸心に対して同心状に配置されているので、永久磁石(10)の磁束分布が回転軸心に対して対称になり、かつ回転軸心の周囲の磁束分布が回転によって変化しないようになっている。
【0016】
環状の冷却ケース(16)が、回転部材(12)の下面に所定の間隔をおいて対向するようにハウジング(7) に固定されている。冷却ケース(16)はたとえば銅合金、非磁性ステンレス鋼などの非磁性体からなり、その中の空間に環状の超伝導体(11)が固定状に配置されている。図示は省略したが、冷却ケース(16)内の空間は冷却流体供給管および同排出管を介して冷却装置に接続されており、この冷却装置により、たとえば液体窒素などの冷却流体が供給管、冷却ケース(16)内の空間および排出管を介して循環させられ、これによって超伝導体(11)が冷却されるようになっている。超伝導体(11)は第2種超伝導体であり、イットリウム系高温超伝導体、たとえばYBaCu7−x からなるバルクの内部に常伝導体(YBaCu)を均一に混在させたものからなり、第2種超伝導状態が出現する温度環境下において、永久磁石(10)から発せられる磁束を内部に拘束する性質を持つものである。そして、超伝導体(11)は、永久磁石(10)の磁束が所定量侵入する離隔位置であってかつ回転軸(1) の回転によって侵入磁束の分布が変化しない位置に、永久磁石(10)と対向するように配置されている。
【0017】
各ラジアル磁気軸受(3)(4)は、詳細な図示は省略したが、回転軸(1) を互いに直交する2つのラジアル方向(X軸およびY軸方向)の両側から吸引して同方向の回転軸(1) の位置を制御するための電磁石、ならびに回転軸(1) のX軸およびY軸方向の変位を検出するための変位センサを備えており、これらが図示しない磁気軸受制御装置に接続されている。そして、磁気軸受制御装置により、変位センサの出力に基づいて電磁石の電流値すなわち吸引力が制御され、その結果、回転軸(1) のラジアル方向の位置が制御されるようになっている。なお、ラジアル磁気軸受装置およびその制御装置自体は公知のものであるから、詳細な説明は省略する。ラジアル磁気軸受(3)(4)の少なくとも1組は、上記の回転軸(1) の位置制御機能の他に、回転軸(1) を回転駆動する電動駆動機能を有するものである。この実施例では、下部ラジアル磁気軸受(4) が電動駆動機能を有するものとなっている。電動駆動機能を有する4軸制御型ラジアル磁気軸受は、浮上回転モータあるいはベアリングレス・モータなどとして公知のものであるから、詳細な説明は省略する。
【0018】
初期位置決め装置(6) は、詳細な図示は省略したが、回転軸(1) の下方のハウジング(7) の部分を昇降する昇降体を備え、回転軸(1) を所定の位置まで持上げるようになっている。
【0019】
ハウジング(7) の上部および下部に、非常時に回転軸(1) の上下両端寄りの部分を支持する転がり軸受からなるタッチダウン軸受(17)(18)が設けられている。
【0020】
回転軸(1) の回転を開始する際には、まず、真空チャンバ(8) 内を真空状態にし、初期位置決め装置(6) により、停止状態の回転軸(1) を所定の位置まで持上げて、回転軸(1) のアキシアル方向の初期位置決めを行う。また、下部磁気軸受(4) の電動駆動機能は停止させた状態で、上下の磁気軸受(3)(4)の位置制御機能だけを作動させて、回転軸(1) のラジアル方向の初期位置決めを行う。そして、冷却装置により超伝導軸受(5) の冷却ケース(16)内に冷却流体を循環させ、超伝導体(11)を冷却して第2種超伝導状態に保持する。すると、永久磁石(10)から発せられる磁束の多くが超伝導体(11)の内部に侵入して拘束されることになる(ピンニング現象)。ここで、超伝導体(11)はその内部に常伝導体粒子が均一に混在されているため、超伝導体(11)内部への侵入磁束の分布が一定となり、そのため、超伝導体(11)に対して永久磁石(10)とともに回転軸(1) が拘束される。したがって、回転軸(1) は、きわめて安定した状態で、アキシアル方向およびラジアル方向に支持されることになる。このとき、超伝導体(11)に侵入した磁束は、磁束分布が回転軸心に対して均一で不変である限り、回転を妨げる抵抗とはならない。このように超伝導軸受(5) および磁気軸受(3)(4)によって回転軸(1) が支持されたならば、初期位置決め装置(6) による回転軸(1) の支持をなくす。初期位置決め装置(6) による支持がなくなると、回転軸(1) は自重により若干下降するが、自重による下向きの力と超伝導軸受(5) のアキシアル方向の支持力とが釣合う位置に停止する。これにより、回転軸(1) は、超伝導軸受(5) と磁気軸受(3)(4)とで非接触支持されたことになる。回転軸(1) が非接触支持されたならば、下部ラジアル磁気軸受(4) の電動駆動機能を作動させて、回転軸(1) を回転させ、運転回転領域まで加速する。回転軸(1) が運転回転領域に達するまでの間に共振が発生しても、磁気軸受(3)(4)によりふれの発生が防止される。回転軸(1) が運転回転領域に達したならば、所定の回転数に保持され、磁気軸受(3)(4)の位置制御機能が停止させられて、磁気軸受(3)(4)によるラジアル方向の支持がなくなる。磁気軸受(3)(4)によるラジアル方向の支持がなくなっても、回転軸(1) は、超伝導軸受(5) の超伝導体(11)に侵入した磁束のピン止め力によってアキシアル方向およびラジアル方向に支持され、安定した回転を継続する。そして、回転軸(1) が運転回転領域で回転している間に、電気エネルギが回転運動エネルギに変換されてフライホイール(2) に貯蔵される。
【0021】
回転軸(1) が運転回転領域で回転しているときに停電が発生した場合、下部磁気軸受(4) の電動駆動機能は停止するが、フライホイール(2) により、回転軸(1) はわずかに減速するものの継続して回転させられる。その結果、下部磁気軸受(4) が発電機として作動し、フライホイール(2) に貯蔵されていた回転運動エネルギが電気エネルギとして取出され、図示しない蓄電池に蓄えられる。蓄電池に蓄えられた電力は、図示しない外部の電力消費財および超伝導軸受(5) の冷却装置に送られ、電力消費財および超伝導軸受(5) が作動を継続する。蓄電池に蓄えられた電力の一部は磁気軸受制御装置に送られ、これにより磁気軸受装置(3)(4)の位置制御機能が作動させられる。そして、フライホイール(2) に蓄えられていた回転運動エネルギが減少して回転軸(1) が停止するまでの間、回転軸(1) は超伝導軸受(5) および磁気軸受(3)(4)によって非接触状態で支持され、共振点で生じる回転軸(1) のふれは、上記の起動時と同様に、磁気軸受(3)(4)によって減少させられる。
【0022】
停電時以外でも、下部磁気軸受(4) の電動駆動機能を停止させると、停電の場合と同様に、フライホイール(2) に貯蔵されていた回転運動エネルギを電気エネルギとして取出すことができる。
【0023】
上記のフライホイール装置において、フライホイール(2) の外周に固定されている補強部材(9) を構成するCFRPは、軽量でヤング率が大きい。そして、軽量であることより、高速回転時に補強部材(9) に作用する遠心力が小さく、しかもヤング率が大きいことより、遠心力による補強部材(9) の変形(遠心膨張)も小さい。このため、補強部材(9) の内側にはめられているフライホイール(2) の遠心膨張も小さく抑えられ、フライホイール(2) の遠心破壊が防止される。超伝導軸受(5) の回転部材(12)についても同様である。そして、回転部材(12)の環状凹みぞ(15)に永久磁石(10)が1つずつ組込まれて、各永久磁石(10)が遠心膨張の小さい回転部材(12)の壁あるいは仕切り壁(14)の内周部分にそれぞれ圧入されているので、しめ代を小さくすることができて、永久磁石(10)の寸法管理および組立が容易であり、しかも永久磁石(10)の遠心膨張が小さく抑えられて、永久磁石(10)の遠心破壊が防止される。
【0025】
【発明の効果】
この発明のフライホイール装置によれば、上述のように、回転軸を短くして、回転軸の固有振動数を高くすることができ、したがって、高速回転が可能になる。
【0026】
また、回転軸の定常回転時に、ラジアル磁気軸受による回転軸のラジアル方向の支持を行わずに、超伝導軸受だけで回転軸をラジアル方向およびアキシアル方向に支持することができる。
さらに、回転部材および回転永久磁石の遠心破壊をより効果的に防止することができる。
【図面の簡単な説明】
【図1】この発明の実施例を示すフライホイール装置の概略縦断面図である。
【図2】図1の超伝導軸受の部分の拡大縦断面図である。
【符号の説明】
(1) 回転軸
(2) フライホイール
(3)(4) 4軸制御型ラジアル磁気軸受
(5) 超伝導軸受(非接触アキシアル軸受)
(7) ハウジング(固定部分)
(10) 回転永久磁石
(11) 超伝導体
[0001]
[Industrial applications]
The present invention relates to a flywheel device used for an electric power storage device or the like that converts surplus electric power into rotational kinetic energy of a flywheel and stores it.
[0002]
[Prior art]
Conventionally, as a flywheel device of this kind, a rotating shaft that rotates around a vertical axis, a flywheel fixedly provided on the rotating shaft, and a two-axis four-axis control type that supports the rotating shaft in a non-contact manner in the radial direction There is known a radial magnetic bearing, one or more sets of superconducting bearings that support a rotating shaft in a non-contact manner in a radial direction and an axial direction, and a generator motor that rotationally drives the rotating shaft. In a superconducting bearing, for example, a plurality of annular permanent magnets are provided on the upward or downward end face of a flywheel, so that the magnetic flux distribution is symmetric with respect to the rotation axis, and the magnetic flux distribution around the rotation axis is rotated. In order not to change, it is arranged concentrically, in the fixed portion, the superconductor is at a separated position where the magnetic flux of the permanent magnet enters by a predetermined amount, and at a position where the distribution of the intruding magnetic flux does not change due to the rotation of the rotating body, It is arranged so as to face the permanent magnet in the direction of the rotation axis. Then, the magnetic flux generated from the permanent magnet penetrates into the inside of the superconductor and is constrained. As a result, the rotating body is supported in a non-contact state in the radial direction and the axial direction with respect to the fixed portion by a so-called pinning force. It has become.
[0003]
[Problems to be solved by the invention]
In the above flywheel device, in addition to the two sets of radial magnetic bearings and superconducting bearings, it is necessary to arrange a generator motor around the rotating shaft, and the rotating shaft becomes longer by that amount. There is a problem that the frequency decreases and it is difficult to rotate the rotating shaft at high speed.
[0004]
SUMMARY OF THE INVENTION An object of the present invention is to solve the above-mentioned problems, increase the natural frequency of the rotating shaft, rotate the rotating shaft at high speed , and more effectively prevent centrifugal destruction of the rotating member and the rotating permanent magnet. and to provide a can Ru flywheel device.
[0005]
[Means for Solving the Problems]
A flywheel device according to the present invention includes a rotary shaft rotating about a vertical axis, a flywheel fixedly provided on the rotary shaft, and two upper and lower four-axis control types that support the rotary shaft in a radially non-contact manner. A radial magnetic bearing, and a superconducting bearing that supports the rotary shaft in a non-contact manner in the axial direction and the radial direction, and at least one set of the radial magnetic bearings has an electric drive function of rotating the rotary shaft. The superconducting bearing is provided on a plurality of annular rotating permanent magnets concentrically provided on the lower surface of a rotating member smaller in diameter than the flywheel fixed to the rotating shaft , and provided on a fixed portion so as to face these. annular equipped with a superconductor, each plurality of annular recessed on the lower end surface of the rotary member is concentrically formed, fit the rotating permanent magnets, one for the each respective recess The outer peripheral portion of the rotating permanent magnet is press-fitted into the inner peripheral portion of the outer peripheral wall of the groove, and the inner peripheral portion of the rotating permanent magnet is pressed into the inner peripheral wall of the concave groove. The outer peripheral portion is loosely fitted with little or no gap, and an annular reinforcing member is integrally fixed to the outer periphery of the rotating member. .
[0006]
For example, in the above SL superconducting bearing, the rotating permanent magnets, becomes symmetrical with respect to a rotation axis of the magnetic flux distribution is the rotating shaft, and as the magnetic flux distribution around the rotation axis is not changed by rotation above The superconductor is disposed at a position where the magnetic flux of the rotating permanent magnet penetrates by a predetermined amount and the distribution of the penetrating magnetic flux does not change due to the rotation of the rotating body. , And are arranged to face the rotating permanent magnet.
[0007]
[Action]
Since at least one set of the radial magnetic bearings has a transmission drive function of rotatingly driving the rotary shaft, it is not necessary to separately provide an electric motor, and the rotary shaft can be shortened accordingly. Then, by shortening the rotating shaft, the natural frequency of the rotating shaft increases, and high-speed rotation is possible.
[0008]
Further, at the time of steady rotation of the rotating shaft, the rotating shaft can be supported in the radial direction and the axial direction only by the superconducting bearing, without supporting the rotating shaft in the radial direction by the radial magnetic bearing.
Furthermore, since the outer peripheral portion of the rotating permanent magnet is press-fitted into the recessed wall of the rotating member and the inner peripheral portion of the rotating permanent magnet is loosely fitted into the recessed wall, dimensional control and assembly of the rotating permanent magnet can be performed. It is easy, and the centrifugal expansion of the rotating permanent magnet is suppressed to a small value, thereby preventing centrifugal destruction. Moreover, the reinforcing member integrally fixed to the outer periphery of the rotating member suppresses the centrifugal expansion of the rotating member to be small, and the rotating member and the rotating permanent magnet fixed thereto are more effectively prevented from being centrifugally broken .
[0009]
【Example】
Hereinafter, an embodiment in which the present invention is applied to a flywheel device in a power storage device will be described with reference to the drawings.
[0010]
FIG. 1 schematically shows the entire configuration of the flywheel device, and FIG. 2 shows a part of the flywheel device in an enlarged manner.
[0011]
The flywheel device includes a vertical rotating shaft (1), a flywheel (2) fixed to the rotating shaft (1), and two sets of upper and lower four-axis control radials that support the rotating shaft (1) in a radially non-contact manner. A magnetic bearing (3) (4), a superconducting bearing (non-contact axial bearing) for supporting the rotating shaft (1) in the axial direction (vertical direction) and radial direction in a non-contact manner (5), and the rotating shaft (1) at startup An initial positioning device (6) for performing positioning is provided, and these are arranged in a vacuum chamber (8) surrounded by a housing (fixed portion) (7) composed of a plurality of members.
[0012]
The flywheel (2) is formed in a disk shape from a non-magnetic material such as an aluminum alloy, and an annular reinforcing member (9) made of CFRP (composite fiber reinforced plastic) is integrally fixed to the outer periphery thereof. I have. The flywheel (2) is fixed concentrically to a portion near the upper end of the rotating shaft (1), and the rotating shaft (1) is slightly vertically moved (moved in the axial direction) at the center in the housing (7) and It is arranged to be able to move in the radial direction.
[0013]
Details of the superconducting bearing (5) are shown in FIG.
[0014]
The superconducting bearing (5) includes a plurality of annular rotating permanent magnets (10) provided concentrically on the rotating shaft (1) side and an annular rotating permanent magnet (10) provided on the housing (7) side facing the rotating permanent magnets. A superconductor (11) is provided.
[0015]
A disk-shaped non-magnetic rotating member (12) is fixed to the rotating shaft (1) so as to be in close contact with the lower surface of the flywheel (2). The rotating member (12) is formed in a disk shape from a nonmagnetic material such as an aluminum alloy or a nonmagnetic stainless steel, and an annular reinforcing member (13) made of CFRP is integrally fixed to the outer periphery thereof . Times plurality of annular indentations each partitioned by the lower end surface in a circular partition wall of the rolling member (12) (14) (15) is concentrically formed, rotating the permanent magnet in each recess, respectively (15) (10) Are fixed one by one. The outer peripheral portion of the permanent magnet (10) is press-fitted into the outer peripheral wall of the groove (15) or the inner peripheral portion of the partition wall (14). The inner peripheral portion of the permanent magnet (10) is loosely fitted to the outer peripheral portion of the inner peripheral wall of the partition wall (14) or the recessed groove (15), and there is almost no or slight gap between them. It is open. The permanent magnets (10) have magnetic poles at both ends in the axial direction, and are arranged such that the magnetic poles at the same end of each permanent magnet (10) have the same polarity. That is, in this embodiment, the lower end of each permanent magnet (10) is an N pole and the upper end is an S pole. Since the permanent magnet (10) has an annular shape and is arranged concentrically with respect to the rotation axis of the rotation shaft (1), the magnetic flux distribution of the permanent magnet (10) becomes symmetric with respect to the rotation axis, In addition, the magnetic flux distribution around the rotation axis is not changed by the rotation.
[0016]
An annular cooling case (16) is fixed to the housing (7) so as to face the lower surface of the rotating member (12) at a predetermined interval. The cooling case (16) is made of a non-magnetic material such as a copper alloy or a non-magnetic stainless steel, and has an annular superconductor (11) fixedly disposed in a space therein. Although not shown, the space inside the cooling case (16) is connected to a cooling device via the cooling fluid supply pipe and the discharge pipe, and the cooling device allows a cooling fluid such as liquid nitrogen to be supplied to the supply pipe, It is circulated through the space in the cooling case (16) and the discharge pipe, whereby the superconductor (11) is cooled. Superconductor (11) is a second type superconductors, yttrium-based high temperature superconductor, for example YBa 2 Cu 3 O 7-x consisting bulk inside normal conductor of the (Y 2 Ba 1 Cu 1) It has a property of uniformly confining the magnetic flux emitted from the permanent magnet (10) in a temperature environment in which the type 2 superconducting state appears. The superconductor (11) is located at a position where the magnetic flux of the permanent magnet (10) intrudes by a predetermined amount and where the distribution of the invading magnetic flux does not change due to the rotation of the rotating shaft (1). ).
[0017]
Although not shown in detail, the radial magnetic bearings (3) and (4) attract the rotating shaft (1) from both sides in two radial directions (X-axis and Y-axis directions) orthogonal to each other, and rotate the rotating shaft (1) in the same direction. An electromagnet for controlling the position of the rotating shaft (1) and a displacement sensor for detecting displacements of the rotating shaft (1) in the X-axis and Y-axis directions are provided to a magnetic bearing control device (not shown). It is connected. The current value of the electromagnet, that is, the attractive force is controlled by the magnetic bearing control device based on the output of the displacement sensor. As a result, the position of the rotating shaft (1) in the radial direction is controlled. Since the radial magnetic bearing device and its control device are known, their detailed description is omitted. At least one set of the radial magnetic bearings (3) and (4) has an electric drive function for rotationally driving the rotary shaft (1) in addition to the position control function for the rotary shaft (1). In this embodiment, the lower radial magnetic bearing (4) has an electric drive function. The four-axis control type radial magnetic bearing having the electric drive function is known as a levitation rotary motor or a bearingless motor, and therefore a detailed description is omitted.
[0018]
Although not shown in detail, the initial positioning device (6) includes an elevating body that moves up and down the housing (7) below the rotating shaft (1), and lifts the rotating shaft (1) to a predetermined position. It has become.
[0019]
Touch-down bearings (17) and (18) are provided at the upper and lower portions of the housing (7).
[0020]
When the rotation of the rotating shaft (1) is started, first, the inside of the vacuum chamber (8) is evacuated, and the stopped rotating shaft (1) is lifted to a predetermined position by the initial positioning device (6). The initial positioning of the rotating shaft (1) in the axial direction is performed. In addition, while the electric drive function of the lower magnetic bearing (4) is stopped, only the position control function of the upper and lower magnetic bearings (3) and (4) is operated to perform the initial positioning of the rotary shaft (1) in the radial direction. I do. Then, a cooling fluid is circulated in the cooling case (16) of the superconducting bearing (5) by the cooling device, and the superconductor (11) is cooled and maintained in the second superconducting state. Then, much of the magnetic flux emitted from the permanent magnet (10) enters the superconductor (11) and is constrained (pinning phenomenon). Here, since the superconductor (11) contains the normal conductor particles uniformly therein, the distribution of the magnetic flux penetrating into the superconductor (11) becomes constant. ), The rotating shaft (1) is restricted together with the permanent magnet (10). Therefore, the rotating shaft (1) is supported in the axial direction and the radial direction in a very stable state. At this time, the magnetic flux that has entered the superconductor (11) does not become a resistance that hinders rotation as long as the magnetic flux distribution is uniform and invariant with respect to the rotation axis. When the rotating shaft (1) is supported by the superconducting bearing (5) and the magnetic bearings (3) and (4), the support of the rotating shaft (1) by the initial positioning device (6) is eliminated. When the support by the initial positioning device (6) is lost, the rotating shaft (1) slightly descends by its own weight, but stops at a position where the downward force due to its own weight and the axial supporting force of the superconducting bearing (5) are balanced. I do. Thus, the rotating shaft (1) is supported by the superconducting bearing (5) and the magnetic bearings (3), (4) in a non-contact manner. When the rotating shaft (1) is supported in a non-contact manner, the electric drive function of the lower radial magnetic bearing (4) is operated to rotate the rotating shaft (1) and accelerate to the operating rotation region. Even if resonance occurs before the rotation shaft (1) reaches the operation rotation region, the occurrence of run-out is prevented by the magnetic bearings (3) and (4). When the rotating shaft (1) reaches the operating rotation range, the rotation speed is maintained at a predetermined speed, the position control function of the magnetic bearings (3) and (4) is stopped, and the rotation of the magnetic bearings (3) and (4) is stopped. There is no radial support. Even if the support in the radial direction by the magnetic bearings (3) and (4) is lost, the rotating shaft (1) is moved in the axial direction and by the pinning force of the magnetic flux that has entered the superconductor (11) of the superconducting bearing (5). It is supported in the radial direction and keeps stable rotation. Then, while the rotating shaft (1) is rotating in the operating rotation region, the electric energy is converted into rotational kinetic energy and stored in the flywheel (2).
[0021]
If a power failure occurs while the rotating shaft (1) is rotating in the operating rotation region, the electric drive function of the lower magnetic bearing (4) stops, but the rotating shaft (1) is moved by the flywheel (2). Although it is slightly decelerated, it can be continuously rotated. As a result, the lower magnetic bearing (4) operates as a generator, and the rotational kinetic energy stored in the flywheel (2) is extracted as electric energy and stored in a storage battery (not shown). The electric power stored in the storage battery is sent to a cooling device for the external power consuming goods and the superconducting bearing (5) (not shown), and the power consuming goods and the superconducting bearing (5) continue to operate. Part of the electric power stored in the storage battery is sent to the magnetic bearing control device, whereby the position control functions of the magnetic bearing devices (3) and (4) are operated. Until the rotational kinetic energy stored in the flywheel (2) decreases and the rotary shaft (1) stops, the rotary shaft (1) is a superconducting bearing (5) and a magnetic bearing (3) ( 4), the run-out of the rotating shaft (1) at the resonance point is reduced by the magnetic bearings (3) and (4) in the same manner as at the start.
[0022]
If the electric drive function of the lower magnetic bearing (4) is stopped even during a power failure, the rotational kinetic energy stored in the flywheel (2) can be extracted as electric energy, as in the case of the power failure.
[0023]
In the above flywheel device, CFRP constituting the reinforcing member (9) fixed to the outer periphery of the flywheel (2) is lightweight and has a large Young's modulus. And, because of its light weight, the centrifugal force acting on the reinforcing member (9) during high-speed rotation is small, and since the Young's modulus is large, the deformation (centrifugal expansion) of the reinforcing member (9) due to centrifugal force is also small. For this reason, the centrifugal expansion of the flywheel (2) fitted inside the reinforcing member (9) is also reduced, and centrifugal breakage of the flywheel (2) is prevented. The same applies to the rotating member (12) of the superconducting bearing (5). Then, one permanent magnet (10) is incorporated into the annular recess (15) of the rotating member (12), and each permanent magnet (10) is a wall or a partition wall of the rotating member (12) having a small centrifugal expansion. Since the inner peripheral portion of the permanent magnet (14) is press-fitted, the interference can be reduced, the dimension management and assembly of the permanent magnet (10) are easy, and the centrifugal expansion of the permanent magnet (10) is small. As a result, centrifugal destruction of the permanent magnet (10) is prevented.
[0025]
【The invention's effect】
According to the flywheel device of the present invention, as described above, the rotating shaft can be shortened and the natural frequency of the rotating shaft can be increased, and therefore, high-speed rotation can be performed.
[0026]
Further, at the time of steady rotation of the rotating shaft, the rotating shaft can be supported in the radial direction and the axial direction only by the superconducting bearing without supporting the rotating shaft in the radial direction by the radial magnetic bearing.
Further, centrifugal destruction of the rotating member and the rotating permanent magnet can be more effectively prevented.
[Brief description of the drawings]
FIG. 1 is a schematic longitudinal sectional view of a flywheel device showing an embodiment of the present invention.
FIG. 2 is an enlarged longitudinal sectional view of a portion of the superconducting bearing of FIG.
[Explanation of symbols]
(1) Rotary shaft (2) Flywheel (3) (4) Four-axis control type radial magnetic bearing (5) Superconducting bearing (non-contact axial bearing)
(7) Housing (fixed part)
(10) Rotating permanent magnet (11) Superconductor

Claims (2)

垂直軸を中心に回転する回転軸、上記回転軸に固定状に設けられたフライホイール、上記回転軸をラジアル方向に非接触支持する上下2組の4軸制御型ラジアル磁気軸受、および上記回転軸をアキシアル方向およびラジアル方向に非接触支持する超伝導軸受を備えており、上記ラジアル磁気軸受の少なくとも1組が、上記回転軸を回転駆動する電動駆動機能を有し、
上記超伝導軸受は、上記回転軸に固定された上記フライホイールより小径の回転部材の下面に同心状に設けられた複数の環状の回転永久磁石およびこれらに対向するように固定部分に設けられた環状の超伝導体を備えており、
上記回転部材の下端面に複数の環状凹みぞが同心状に形成され、各凹みぞ内に上記回転永久磁石が1つずつはめられて固定され、上記回転永久磁石の外周部分は、上記凹みぞの外周側の壁の内周部分に圧入され、上記回転永久磁石の内周部分は、上記凹みぞの内周側の壁の外周部分に対して、ほとんど隙間がないかあるいはわずかな隙間をあけてゆるくはめ合わされており、
上記回転部材の外周に環状の補強部材が一体状に固定されていることを特徴とするフライホイール装置。
A rotating shaft that rotates about a vertical axis, a flywheel fixedly mounted on the rotating shaft, two upper and lower four-axis control type radial magnetic bearings that support the rotating shaft in a non-contact manner in the radial direction, and the rotating shaft A superconducting bearing that supports the axial direction and the radial direction in a non-contact manner, and at least one set of the radial magnetic bearings has an electric drive function of rotatingly driving the rotating shaft;
The superconducting bearing is provided on a plurality of annular rotating permanent magnets provided concentrically on the lower surface of a rotating member smaller in diameter than the flywheel fixed to the rotating shaft , and provided on a fixed portion so as to face these. With an annular superconductor,
A plurality of annular grooves are formed concentrically on the lower end surface of the rotating member , and the rotating permanent magnets are fitted and fixed one by one in each of the grooves, and an outer peripheral portion of the rotating permanent magnet is The inner peripheral portion of the rotating permanent magnet has little or no clearance with the outer peripheral portion of the inner peripheral wall of the recess. Are loosely fitted ,
A flywheel device , wherein an annular reinforcing member is integrally fixed to an outer periphery of the rotating member .
上記超伝導軸受において、上記回転永久磁石が、磁束分布が上記回転軸の回転軸心に対して対称になり、かつ上記回転軸心のまわりの磁束分布が回転によって変化しないように上記回転軸またはこれと一体に回転する部分に配置され、上記超伝導体が、回転永久磁石の磁束が所定量侵入する離隔位置であってかつ回転体の回転によって侵入磁束の分布が変化しない位置に、回転永久磁石と対向するように配置されていることを特徴とする請求項1のフライホイール装置。In the superconducting bearing, the rotating permanent magnet may be configured such that the magnetic flux distribution is symmetrical with respect to the rotating axis of the rotating shaft, and the rotating shaft or the magnetic flux distribution around the rotating axis is not changed by rotation. The superconductor is disposed at a position where the magnetic flux of the rotating permanent magnet enters by a predetermined amount and the distribution of the entering magnetic flux does not change due to the rotation of the rotating body. The flywheel device according to claim 1, wherein the flywheel device is arranged so as to face the magnet.
JP01121295A 1995-01-27 1995-01-27 Flywheel equipment Expired - Fee Related JP3577559B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP01121295A JP3577559B2 (en) 1995-01-27 1995-01-27 Flywheel equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP01121295A JP3577559B2 (en) 1995-01-27 1995-01-27 Flywheel equipment

Publications (2)

Publication Number Publication Date
JPH08200470A JPH08200470A (en) 1996-08-06
JP3577559B2 true JP3577559B2 (en) 2004-10-13

Family

ID=11771691

Family Applications (1)

Application Number Title Priority Date Filing Date
JP01121295A Expired - Fee Related JP3577559B2 (en) 1995-01-27 1995-01-27 Flywheel equipment

Country Status (1)

Country Link
JP (1) JP3577559B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20070104328A (en) * 2004-09-06 2007-10-25 가부시키가이샤 식스원 카이하츠키코우 Rotary body used for energy storage apparatus, method of manufacturing rotary body, and energy storage apparatus
CN106838003B (en) * 2017-01-18 2018-12-28 东南大学 A kind of Permanent-magnet bearing with pendulum-type film damper

Also Published As

Publication number Publication date
JPH08200470A (en) 1996-08-06

Similar Documents

Publication Publication Date Title
EP0526903B1 (en) Bearing device
JP2999607B2 (en) Superconducting bearing device and its operation method
JP3577558B2 (en) Flywheel equipment
JPH05240249A (en) Superconductive bearing device
US5588754A (en) Backup bearings for extreme speed touch down applications
JP3206044B2 (en) Composite superconducting bearing device
JP3665878B2 (en) Bearing device and starting method thereof
JP3551537B2 (en) Flywheel equipment
JP3577559B2 (en) Flywheel equipment
JP3663472B2 (en) Permanent magnet bearing device and permanent magnet rotating device
JPH08296645A (en) Magnetic bearing device
JP3632101B2 (en) Power storage device
JP3663470B2 (en) Superconducting bearing device
JPH0681845A (en) Supercondctive bearing device
JP3236925B2 (en) Superconducting bearing device
JP3735742B2 (en) Superconducting bearing rotation loss measurement device
JP3928094B2 (en) Starting method of superconducting bearing device
JP3113920B2 (en) Superconducting bearing device
JPH09233803A (en) Braking device for high-speed rotating equipment
JP2958598B2 (en) Power storage device
JP3385771B2 (en) Superconducting magnetic bearing device
JP3477524B2 (en) Rotation loss measurement method for superconducting bearings
JP2003329038A (en) Superconducting bearing device and power storage device
JP3622041B2 (en) Superconducting bearing device
JP3677320B2 (en) Superconducting bearing for rotating equipment and flywheel for power storage using the same

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20031202

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040202

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040302

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040427

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040601

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040628

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070723

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080723

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees