JPH0694030A - Superconductive bearing device - Google Patents

Superconductive bearing device

Info

Publication number
JPH0694030A
JPH0694030A JP24210692A JP24210692A JPH0694030A JP H0694030 A JPH0694030 A JP H0694030A JP 24210692 A JP24210692 A JP 24210692A JP 24210692 A JP24210692 A JP 24210692A JP H0694030 A JPH0694030 A JP H0694030A
Authority
JP
Japan
Prior art keywords
rotating body
superconductor
permanent magnet
annular
bearing device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24210692A
Other languages
Japanese (ja)
Inventor
Ryoichi Takahata
良一 高畑
Shunsuke Nakaura
俊介 中浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Koyo Seiko Co Ltd
Original Assignee
Koyo Seiko Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Koyo Seiko Co Ltd filed Critical Koyo Seiko Co Ltd
Priority to JP24210692A priority Critical patent/JPH0694030A/en
Publication of JPH0694030A publication Critical patent/JPH0694030A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C32/00Bearings not otherwise provided for
    • F16C32/04Bearings not otherwise provided for using magnetic or electric supporting means
    • F16C32/0406Magnetic bearings
    • F16C32/0408Passive magnetic bearings
    • F16C32/0436Passive magnetic bearings with a conductor on one part movable with respect to a magnetic field, e.g. a body of copper on one part and a permanent magnet on the other part
    • F16C32/0438Passive magnetic bearings with a conductor on one part movable with respect to a magnetic field, e.g. a body of copper on one part and a permanent magnet on the other part with a superconducting body, e.g. a body made of high temperature superconducting material such as YBaCuO

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Magnetic Bearings And Hydrostatic Bearings (AREA)

Abstract

PURPOSE:To prevent the ordinary conduction of a superconductor with the high speed rotation of a rotation body made available, by stably supporting the rotation body in a contactless condition with the deviation of the rotation body lessened. CONSTITUTION:This superconductive bearing device is provided with an annular permanent magnet part 2, concentrically provided on a rotating body 1, and an annular superconductor part 3, arranged on a fixed part 4 so as to be faced to the end surface of the permanent magnet part 2 at an interval in a rotation axis direction. Position sensors X1 and X2, for detecting the position in the radial direction of the rotation body 1, are provided on the fixed part 4. A piezoelectric element 13X, capable of adjusting the position of the superconductor part 3 by moving the superconductor part 3 in the radial direction of the rotation body 1, is provided between the fixed part 4 and the superconductor part 3. A control apparatus is provided, which is driving the piezoelectric element 13X based on the output of the position sensors X1 and X2.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、たとえば高速回転を
必要とする流体機械や工作機械、ジャイロスコープ、ま
たは余剰電力をフライホイールの運動エネルギに変換し
て貯蔵する電力貯蔵装置などに適用される超電導軸受装
置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention is applied to, for example, a fluid machine or a machine tool requiring high speed rotation, a gyroscope, or an electric power storage device for converting surplus electric power into kinetic energy of a flywheel for storage. The present invention relates to a superconducting bearing device.

【0002】[0002]

【従来の技術と発明が解決しようとする課題】近年、固
定部に対して回転体を非接触状態で支持しうる超電導軸
受装置が開発されている。
2. Description of the Related Art In recent years, a superconducting bearing device has been developed which can support a rotating body in a non-contact state with a fixed portion.

【0003】この種超電導軸受装置として、回転体に同
心状に設けられた環状永久磁石部と、この永久磁石部の
回転軸心方向の端面に対して回転体の回転軸心方向に間
隔をおいて対向するように配置された環状超電導体部と
を備えており、永久磁石部が、回転体に固定状にかつ同
心状に設けられるとともに超電導体部に対向する面に環
状の凹溝が形成された円板と、凹溝に嵌められかつ中心
が回転体の回転中心と同心状となされた環状永久磁石と
よりなるものが考えられている。
As a superconducting bearing device of this type, an annular permanent magnet portion concentrically provided on a rotating body and an end face in the rotating shaft center direction of the permanent magnet portion are spaced from each other in the rotating shaft direction of the rotating body. And the annular superconductor portion arranged to face each other, the permanent magnet portion is fixedly and concentrically provided on the rotating body, and an annular groove is formed on the surface facing the superconductor portion. It is considered that the disk includes a circular disk and a ring-shaped permanent magnet that is fitted in the groove and is concentric with the center of rotation of the rotating body.

【0004】この超電導軸受装置では、作動時には、ま
ず回転体と固定部に配置された環状超電導体部の中心を
合わせておき、さらに回転体と固定部とを軸方向に離隔
させた状態で超電導体を冷却して超電導状態に保持する
ことにより、永久磁石部から発生する磁束を超電導体の
内部に侵入させて拘束し、その結果いわゆるピン止め力
によって、回転体を固定部に対してアキシアル方向およ
びラジアル方向に非接触状態で支持するようになってい
る。そして、たとえば回転体の周囲に配置された高周波
電動機により回転体を回転させるようになっている。
In this superconducting bearing device, during operation, first, the center of the annular superconductor portion arranged in the rotating body and the fixed portion are aligned with each other, and further, the rotating body and the fixed portion are axially separated from each other. By cooling the body and holding it in the superconducting state, the magnetic flux generated from the permanent magnet part is allowed to enter the inside of the superconductor to be restrained, and as a result, the so-called pinning force causes the rotating body to move axially with respect to the fixed part. And it is designed to be supported in a non-contact state in the radial direction. Then, the rotating body is rotated by, for example, a high frequency electric motor arranged around the rotating body.

【0005】しかしながら、上記環状永久磁石の超電導
体部と対向する面の表面磁束密度に周方向のばらつきが
生じることは避けられず、このばらつきを考慮した磁場
の中心が環状永久磁石の中心からずれる。したがって、
従来の超電導軸受装置において、回転体の中心および環
状超電導体部の中心が、永久磁石の上記磁場の中心から
ずれることになり、その結果回転体にラジアル方向のふ
れが発生し、回転体を非接触状態で安定的に支持できな
いという問題がある。しかも、回転体を非接触状態で安
定的に支持できないために回転体の高速回転が不可能に
なるという問題がある。
However, it is unavoidable that the surface magnetic flux density of the surface of the annular permanent magnet facing the superconductor portion varies in the circumferential direction, and the center of the magnetic field in consideration of this variation deviates from the center of the annular permanent magnet. . Therefore,
In the conventional superconducting bearing device, the center of the rotating body and the center of the annular superconductor part are displaced from the center of the magnetic field of the permanent magnet, and as a result, radial runout occurs in the rotating body and the rotating body is not rotated. There is a problem that it cannot be stably supported in the contact state. Moreover, there is a problem that the rotating body cannot be rotated at a high speed because the rotating body cannot be stably supported in a non-contact state.

【0006】そこで、このような問題を解決した軸受装
置として、本出願人は、先に、回転体に同心状にかつ固
定状に設けられた環状の永久磁石部、および永久磁石部
と対向するように固定部に配置された環状超電導体部よ
りなる超電導軸受部と、超電導軸受部と軸方向に離隔し
た位置に設けられ、かつ回転体の互いに直交する2つの
ラジアル方向の位置を制御する電磁石を用いた磁気軸受
部とを備えている装置を提案した(特願平3−1965
48号参照)。この装置では、回転体にふれが発生した
場合、磁気軸受部により回転体のラジアル方向の位置を
制御することにより上記ふれを補正するようになってい
る。
Therefore, as a bearing device that solves such a problem, the present applicant has previously opposed the annular permanent magnet portion provided concentrically and fixedly to the rotating body, and the permanent magnet portion. Superconducting bearing part composed of an annular superconducting part arranged in the fixed part, and an electromagnet provided at a position axially separated from the superconducting bearing part and controlling two radial positions of the rotating body orthogonal to each other. And a device provided with a magnetic bearing part using the above (Japanese Patent Application No. 3-1965).
48). In this device, when a runout occurs in the rotating body, the runout is corrected by controlling the radial position of the rotating body by the magnetic bearing portion.

【0007】ところが、この装置では、超電導体部に無
理な力が加わり、これにより超電導体部の超電導体が常
電導化して回転体およびその周りの部品が破損するおそ
れがある。
However, in this device, an unreasonable force is applied to the superconductor portion, which may cause the superconductor in the superconductor portion to become a normal conductor and damage the rotating body and parts around it.

【0008】この発明の目的は、上記の問題を解決した
超電導軸受装置を提供することにある。
An object of the present invention is to provide a superconducting bearing device which solves the above problems.

【0009】[0009]

【課題を解決するための手段】この発明による超電導軸
受装置は、回転体に同心状に設けられた環状の永久磁石
部と、この永久磁石部の端面に対して回転軸心方向に間
隔をおいて対向するように固定部に配置された環状の超
電導体部とを備えており、かつ固定部に対して回転体を
非接触状態で支持しうる超電導軸受装置であって、固定
部に設けられ、かつ回転体のラジアル方向の位置を検出
する位置センサと、固定部と超電導体部との間に設けら
れ、かつ超電導体部を回転体のラジアル方向に移動させ
て超電導体部の位置を調整しうる手段と、位置センサの
出力に基いて位置調整手段を駆動する制御装置とを備え
ているものである。
A superconducting bearing device according to the present invention has an annular permanent magnet portion concentrically provided on a rotating body and a space in the direction of the rotation axis from the end face of the permanent magnet portion. A superconducting bearing device that includes a ring-shaped superconductor portion that is disposed in the fixed portion so as to face each other, and that can support the rotating body in a non-contact state with respect to the fixed portion. A position sensor that detects the radial position of the rotating body, and is provided between the fixed part and the superconductor part, and moves the superconductor part in the radial direction of the rotating body to adjust the position of the superconductor part. Means and a control device for driving the position adjusting means based on the output of the position sensor.

【0010】[0010]

【作用】この発明によれば、作動を開始した後、回転体
にラジアル方向のふれが発生すると、位置センサにより
回転体のラジアル方向の変位が検出され、位置センサの
出力信号に基いて、制御装置により位置調整手段が駆動
されて超電導体部が回転体のラジアル方向に振動させら
れてその位置が調整され、超電導体部に侵入した磁束の
磁場中心が、回転体の形状の中心に一致させられる。し
たがって、回転体のふれが小さくなる。
According to the present invention, after the operation is started, when the radial deflection of the rotating body occurs, the position sensor detects the radial displacement of the rotating body, and the control is performed based on the output signal of the position sensor. The position adjusting means is driven by the device to vibrate the superconductor portion in the radial direction of the rotating body to adjust its position, and the magnetic field center of the magnetic flux penetrating the superconductor portion is made to coincide with the center of the shape of the rotating body. To be Therefore, the runout of the rotating body is reduced.

【0011】[0011]

【実施例】以下、この発明の実施例を、図面を参照して
説明する。
Embodiments of the present invention will be described below with reference to the drawings.

【0012】図1はこの発明を適用した超電導軸受装置
の全体構成を概略的に示し、図2は超電導体部を回転体
のラジアル方向に移動させて位置を調整する手段の制御
に関する部分の構成を示す。
FIG. 1 schematically shows the overall structure of a superconducting bearing device to which the present invention is applied, and FIG. 2 shows the structure of a part relating to control of means for moving the superconducting portion in the radial direction of the rotating body to adjust the position. Indicates.

【0013】図1において、超電導軸受装置は、垂直軸
状の回転体(1) を備えている。図示は省略したが、回転
体(1) は、回転体(1) にとりつけられたロータと、固定
部に取付けられてロータの周囲に配置されたステータと
よりなる駆動用高周波電動機で高速回転させられるよう
になっている。回転体(1) には水平円板状の永久磁石部
(2) が同心状に設けられ、永久磁石部(2) の上端面に対
して回転体(1) の回転軸心方向に間隔をおいて対向する
ように、環状超電導体部(3) が固定部(4) に配置されて
いる。
In FIG. 1, the superconducting bearing device comprises a vertical shaft-shaped rotating body (1). Although illustration is omitted, the rotating body (1) is rotated at a high speed by a high-frequency driving electric motor including a rotor mounted on the rotating body (1) and a stator mounted on a fixed part and arranged around the rotor. It is designed to be used. The rotor (1) has a horizontal disk-shaped permanent magnet part.
(2) are provided concentrically, and the annular superconductor part (3) is arranged so as to face the upper end surface of the permanent magnet part (2) with a gap in the direction of the rotation axis of the rotating body (1). It is located on the fixed part (4).

【0014】永久磁石部(2) は、回転体(1) に固定状に
設けられた、たとえば銅あるいは非磁性ステンレス鋼か
らなる水平円板(5) を備えている。円板(5) の上面に回
転体(1) と同心状に環状凹みぞ(5a)が形成されており、
この凹みぞ(5a)内に環状永久磁石(6) が嵌め止められて
いる。永久磁石(6) は、回転体(1) の回転軸心の周囲の
磁束分布が回転によって変化しないように設けられてい
る。
The permanent magnet part (2) is provided with a horizontal disk (5) fixedly provided on the rotating body (1) and made of, for example, copper or non-magnetic stainless steel. An annular groove (5a) is formed on the upper surface of the disc (5) concentrically with the rotating body (1).
An annular permanent magnet (6) is fitted and retained in the groove (5a). The permanent magnet (6) is provided so that the magnetic flux distribution around the rotation axis of the rotating body (1) does not change due to rotation.

【0015】超電導体部(3) は、たとえば銅あるいは非
磁性ステンレス鋼からなりかつ固定部(4) の内方突出環
状壁部(4a)上に摺動自在に配置された水平環状体(7) を
備えている。環状体(7) の周縁と固定部(4) の周壁(4b)
との間には隙間が存在している。また、環状体(7) の中
心にはこれを上下に貫通する穴(7a)が形成され、この貫
通穴(7a)に回転体(1) が隙間をおいて通されている。環
状体(7) 内に環状中空部(8) が形成され、この中に、周
方向に等間隔をおきかつ互いに近接するように、複数の
円板状超電導体(9) が配置されている。環状体(7) に、
その内部の環状中空部(8) と連通するように、冷却流体
供給管(11)および同排出管(12)が配置されている。冷却
流体供給管(11)および同排出管(12)は、固定部(4) の周
壁(4b)をその長さ方向に移動しうるとともに、水平面内
においてその長さ方向と直交する方向に移動しうるよう
に貫通しており、図示しない温度制御ユニットを介して
冷却装置などに接続されている。そして、冷却装置によ
り冷却流体供給管(11)、環状中空部(8) および冷却流体
排出管(12)を介して冷却流体が循環させられ、中空部
(8) 内に満たされる冷却流体により超電導体(9) が冷却
される。
The superconductor part (3) is made of, for example, copper or non-magnetic stainless steel, and is horizontally slidably arranged on the inwardly projecting annular wall part (4a) of the fixing part (4). ) Is provided. Peripheral wall (4b) of fixed part (4) and peripheral edge of annular body (7)
There is a gap between and. In addition, a hole (7a) is formed at the center of the annular body (7) so as to vertically pass therethrough, and the rotating body (1) is passed through the through hole (7a) with a gap. An annular hollow part (8) is formed in the annular body (7), and a plurality of disc-shaped superconductors (9) are arranged in the annular hollow part (8) at equal intervals in the circumferential direction and close to each other. . In the annular body (7),
The cooling fluid supply pipe (11) and the discharge pipe (12) are arranged so as to communicate with the annular hollow portion (8) inside thereof. The cooling fluid supply pipe (11) and the cooling fluid supply pipe (12) can move the peripheral wall (4b) of the fixed part (4) in the lengthwise direction and in the horizontal plane in a direction orthogonal to the lengthwise direction. It penetrates so that it can be connected to a cooling device or the like via a temperature control unit (not shown). Then, the cooling fluid is circulated through the cooling fluid supply pipe (11), the annular hollow portion (8) and the cooling fluid discharge pipe (12) by the cooling device, and the hollow portion
The superconductor (9) is cooled by the cooling fluid filled in (8).

【0016】円板状超電導体(9) は第2種超電導体であ
り、イットリウム系高温超電導体、たとえばYBa
からなるバルクの内部に常電導粒子(YBa
Cu)を均一に混在させたものからなり、第2種超
電導状態が出現する環境下において、永久磁石(6) から
発せられる磁束を内部に拘束する性質を持つものであ
る。そして、超電導体(9) は、永久磁石(6) の磁束が所
定量侵入する離隔位置であってかつ上記回転体(1) の回
転によって侵入磁束の分布が変化しない位置に、永久磁
石(6) と対向するように配置されている。
The disk-shaped superconductor (9) is a type II superconductor, and is a yttrium-based high-temperature superconductor such as YBa 2 C.
u 3 O x consisting bulk inside normal conductor particles (Y 2 Ba
1 Cu 1 ) is uniformly mixed and has the property of internally confining the magnetic flux generated from the permanent magnet (6) in the environment where the type 2 superconducting state appears. Then, the superconductor (9) is located at a separated position where the magnetic flux of the permanent magnet (6) penetrates by a predetermined amount, and the distribution of the magnetic flux entering the permanent magnet (6) does not change due to the rotation of the rotating body (1). ) Is arranged so as to face.

【0017】回転体(1) の互いに直交する2つのラジア
ル方向にのびる軸をX軸およびY軸とすると、超電導軸
受装置は、超電導体部(3) から上方に離隔した位置に置
いて、回転体(1) のX軸方向の変位を検出する変位検出
装置(X) を備えている。変位検出装置(X) は、固定部
(4) に、回転体(1) をX軸方向の両側から挟むように設
けられ、かつこの部分の回転体(1) のX軸方向の位置を
検出する2個の位置センサ(X1)(X2)を備えている。ま
た、X軸上において、環状体(7) の外周面と固定部(4)
の周壁との間に、超電導体部(3) をX軸方向に移動させ
てその位置を調整する圧電素子(13X) が配置されてい
る。なお、図1においては図示を省略したが、超電導軸
受装置は、X軸方向の変位検出装置(X) と同一高さ位置
に、回転体(1)のY軸方向の変位を検出する変位検出装
置(Y) を備えている。変位検出装置(Y)は、固定部(4)
に、回転体(1) をY軸方向の両側から挟むように設けら
れ、かつこの部分の回転体(1) のY軸方向の位置を検出
する2個の位置センサを備えている。また、Y軸上にお
いて、環状体(7) の外周面と固定部(4) の周壁との間
に、超電導体部(3) をY軸方向に移動させてその位置を
調整する圧電素子(13Y) が配置されている。
Assuming two axes extending in the radial direction of the rotating body (1) which are orthogonal to each other to be the X axis and the Y axis, the superconducting bearing device is placed at a position above the superconducting portion (3) and rotated. A displacement detector (X) for detecting displacement of the body (1) in the X-axis direction is provided. Displacement detector (X) is fixed
Two position sensors (X1) (X1) are provided in (4) so as to sandwich the rotating body (1) from both sides in the X-axis direction and detect the position of the rotating body (1) in this direction in the X-axis direction. X2). Also, on the X-axis, the outer peripheral surface of the annular body (7) and the fixed portion (4)
A piezoelectric element (13X) for moving the superconductor portion (3) in the X-axis direction to adjust its position is arranged between the piezoelectric element (13X) and the peripheral wall. Although not shown in FIG. 1, the superconducting bearing device is a displacement detection device that detects displacement of the rotating body (1) in the Y-axis direction at the same height as the displacement detection device (X) in the X-axis direction. Equipped with device (Y). The displacement detector (Y) has a fixed part (4).
In addition, two position sensors are provided so as to sandwich the rotating body (1) from both sides in the Y-axis direction and detect the position of the rotating body (1) in this portion in the Y-axis direction. Further, on the Y axis, between the outer peripheral surface of the annular body (7) and the peripheral wall of the fixed portion (4), the piezoelectric element (3) which moves the superconductor portion (3) in the Y axis direction to adjust its position is provided. 13Y) is located.

【0018】図2は、圧電素子(13X)(13Y)の制御に関す
る部分のみの構成が示されている。図2において、圧電
素子(13X)(13Y)の制御装置(14)は、X軸方向の変位検出
装置(X) およびY軸方向の変位検出装置(Y) の出力信号
に基いて、X軸用PID制御回路(15X) およびY軸用P
ID制御回路(15Y) により電圧増幅器(16X)(16Y)を介し
て圧電素子(13X)(13Y)を制御するものである。X軸方向
変位検出装置(X) は回転体(1) のX軸方向の変位を検出
してこれに比例する信号を出力し、Y軸方向変位検出装
置(Y) は回転体(1) のY軸方向の変位を検出してこれに
比例する信号を出力するものである。X軸用およびY軸
用PID制御回路(15X)(15Y)は、各変位検出装置(X)(Y)
の出力を処理して、これに応じた制御信号を出力する。
FIG. 2 shows the configuration of only the part relating to the control of the piezoelectric elements (13X) (13Y). In FIG. 2, the control device (14) for the piezoelectric elements (13X) and (13Y) controls the X-axis based on the output signals of the X-axis displacement detector (X) and the Y-axis displacement detector (Y). PID control circuit (15X) and Y axis P
The ID control circuit (15Y) controls the piezoelectric elements (13X) (13Y) via the voltage amplifiers (16X) (16Y). The X-axis direction displacement detection device (X) detects the displacement of the rotating body (1) in the X-axis direction and outputs a signal proportional to this, and the Y-axis direction displacement detection device (Y) detects the displacement of the rotating body (1). The displacement in the Y-axis direction is detected and a signal proportional to this is output. X-axis and Y-axis PID control circuits (15X) (15Y) are for each displacement detection device (X) (Y)
Is processed and a corresponding control signal is output.

【0019】超電導軸受装置を作動させる場合、回転体
(1) を固定部(4) に対して上昇させ、回転体(1) の固定
部(4) に対する相対的位置決めを行なう。これにより、
永久磁石部(2) と超電導体部(3) との軸方向および径方
向の相対的位置決めが行なわれる。ついで、各超電導体
(9) を環状中空部(8) 内に循環させられる冷却流体によ
って冷却し、第2種超電導状態に保持する。すると、回
転体(1) の永久磁石部(2) から発せられる磁束の多くが
超電導体(9) の内部に侵入して拘束されることになる
(ピンニング現象)。ここで、超電導体(9) はその内部
に常電導体粒子が均一に混在されているため、超電導体
(9) 内部への侵入磁束の分布が一定となり、いわゆるピ
ン止め力によって超電導体(9) に対して永久磁石部(2)
とともに回転体(1) が拘束される。したがって、回転体
(1) は、安定的に浮上した状態で、アキシアル方向およ
びラジアル方向に支持されることになる。このとき、超
電導体(9) に侵入した磁束は回転を妨げる抵抗とはなら
ない。
When operating the superconducting bearing device,
(1) is moved up with respect to the fixed part (4) to position the rotating body (1) relative to the fixed part (4). This allows
Axial and radial relative positioning of the permanent magnet part (2) and the superconductor part (3) is performed. Then, each superconductor
(9) is cooled by a cooling fluid circulated in the annular hollow portion (8), and is maintained in a second-type superconducting state. Then, most of the magnetic flux generated from the permanent magnet part (2) of the rotating body (1) enters the inside of the superconductor (9) and is restricted (pinning phenomenon). Here, since the superconductor (9) has the normal conductor particles uniformly mixed therein,
(9) The distribution of the magnetic flux penetrating inside becomes constant, and the so-called pinning force causes the permanent magnet part (2) to move against the superconductor (9).
At the same time, the rotating body (1) is restrained. Therefore, the rotating body
In (1), it will be supported in the axial direction and the radial direction in a stable floating state. At this time, the magnetic flux that has entered the superconductor (9) does not become a resistance that prevents rotation.

【0020】そして、回転体(1) が高周波電動機により
回転させられる。すると、永久磁石(6) の超電導体部
(3) と対向する面の表面磁束密度に周方向のばらつきが
生じていること、および各超電導体(9) の材質にばらつ
きが生じていることに起因して、回転体(1) にラジアル
方向のふれが発生する。回転体(1) にふれが発生する
と、各変位検出装置(X)(Y)により回転体(1) のラジアル
方向の変位が検出され、制御装置(14)は、各変位検出装
置(X)(Y)の出力信号に基き、X軸用PID制御回路(15
X) およびY軸用PID制御回路(15Y) により電圧増幅
器(16X)(16Y)を介して圧電素子(13X)(13Y)を駆動する。
その結果、超電導体部(3) が回転体(1) のラジアル方向
に振動させられ、超電導体部(3) に侵入した磁束の磁場
中心が、回転体(1) の形状の中心に一致させられる。し
たがって、回転体(1) のふれが小さくなる。
Then, the rotating body (1) is rotated by the high frequency electric motor. Then, the superconductor part of the permanent magnet (6)
Due to the fact that the surface magnetic flux density of the surface facing (3) varies in the circumferential direction and the material of each superconductor (9) varies, the rotating body (1) has a radial Deflection of direction occurs. When the rotor (1) is shaken, the displacement detectors (X) and (Y) detect the radial displacement of the rotor (1), and the controller (14) controls the displacement detectors (X). Based on the output signal of (Y), PID control circuit for X-axis (15
The piezoelectric elements (13X) and (13Y) are driven through the voltage amplifiers (16X) and (16Y) by the X) and Y-axis PID control circuit (15Y).
As a result, the superconductor part (3) is vibrated in the radial direction of the rotor (1), and the magnetic field center of the magnetic flux penetrating the superconductor part (3) coincides with the center of the shape of the rotor (1). To be Therefore, the deflection of the rotating body (1) is reduced.

【0021】上記実施例においては、超電導体部(3) の
位置調整手段は、圧電素子(13X)(13Y)よりなるが、これ
に限るものではなく、適宜変更可能である。
In the above embodiment, the position adjusting means of the superconductor portion (3) is composed of the piezoelectric elements (13X) and (13Y), but the position adjusting means is not limited to this and can be appropriately changed.

【0022】[0022]

【発明の効果】この発明の超電導軸受装置によれば、上
述のように、回転体のふれを小さくすることができる。
したがって、回転体を非接触状態で安定的に支持するこ
とができ、その結果回転体の高速回転が可能となる。し
かも、回転体の位置を調整する場合のように、超電導体
に無理な力が作用することはなく、超電導体の常電導化
を防止できる。
As described above, according to the superconducting bearing device of the present invention, the runout of the rotating body can be reduced.
Therefore, the rotating body can be stably supported in a non-contact state, and as a result, the rotating body can rotate at high speed. Moreover, unlike the case where the position of the rotating body is adjusted, an unreasonable force does not act on the superconductor, and the superconductor can be prevented from becoming a normal conductor.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の実施例を示す超電導軸受装置の概略
縦断面図である。
FIG. 1 is a schematic vertical sectional view of a superconducting bearing device showing an embodiment of the present invention.

【図2】圧電素子の制御に関する部分の構成を示すブロ
ック図である。
FIG. 2 is a block diagram showing a configuration of a portion related to control of a piezoelectric element.

【符号の説明】[Explanation of symbols]

1 回転体 2 環状永久磁石部 3 環状超電導体部 4 固定部 13X 、13Y 圧電素子(位置調整手段) X1、X2 位置センサ 1 Rotating body 2 Annular permanent magnet section 3 Annular superconductor section 4 Fixed section 13X, 13Y Piezoelectric element (position adjusting means) X1, X2 Position sensor

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 回転体に同心状に設けられた環状の永久
磁石部と、この永久磁石部の端面に対して回転軸心方向
に間隔をおいて対向するように固定部に配置された環状
の超電導体部とを備えており、かつ固定部に対して回転
体を非接触状態で支持しうる超電導軸受装置であって、 固定部に設けられ、かつ回転体のラジアル方向の位置を
検出する位置センサと、固定部と超電導体部との間に設
けられ、かつ超電導体部を回転体のラジアル方向に移動
させて超電導体部の位置を調整しうる手段と、位置セン
サの出力に基いて位置調整手段を駆動する制御装置とを
備えている超電導軸受装置。
1. A ring-shaped permanent magnet portion concentrically provided on a rotating body, and a ring-shaped permanent magnet portion arranged on a fixed portion so as to face an end surface of the permanent magnet portion with a gap in a rotation axis direction. A superconducting bearing device which is capable of supporting the rotating body in a non-contact state with respect to the fixed portion, and which is provided in the fixed portion and detects the radial position of the rotating body. Based on the output of the position sensor, a means provided between the fixed part and the superconductor part and capable of adjusting the position of the superconductor part by moving the superconductor part in the radial direction of the rotating body. A superconducting bearing device, comprising: a control device that drives a position adjusting means.
JP24210692A 1992-09-10 1992-09-10 Superconductive bearing device Pending JPH0694030A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24210692A JPH0694030A (en) 1992-09-10 1992-09-10 Superconductive bearing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24210692A JPH0694030A (en) 1992-09-10 1992-09-10 Superconductive bearing device

Publications (1)

Publication Number Publication Date
JPH0694030A true JPH0694030A (en) 1994-04-05

Family

ID=17084391

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24210692A Pending JPH0694030A (en) 1992-09-10 1992-09-10 Superconductive bearing device

Country Status (1)

Country Link
JP (1) JPH0694030A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1767798A1 (en) * 2005-09-23 2007-03-28 Nexans Superconducting magnetic bearing
JP2011190837A (en) * 2010-03-12 2011-09-29 Kochi Univ Of Technology Vibration damping control mechanism in superconducting magnetic bearing and magnetic levitation device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1767798A1 (en) * 2005-09-23 2007-03-28 Nexans Superconducting magnetic bearing
JP2011190837A (en) * 2010-03-12 2011-09-29 Kochi Univ Of Technology Vibration damping control mechanism in superconducting magnetic bearing and magnetic levitation device

Similar Documents

Publication Publication Date Title
EP0526903B1 (en) Bearing device
JPH05240249A (en) Superconductive bearing device
JP3206044B2 (en) Composite superconducting bearing device
JP3665878B2 (en) Bearing device and starting method thereof
JPH0694030A (en) Superconductive bearing device
JP3663470B2 (en) Superconducting bearing device
JP3928094B2 (en) Starting method of superconducting bearing device
JP3735742B2 (en) Superconducting bearing rotation loss measurement device
JPH08298745A (en) Flywheel device
JP3663472B2 (en) Permanent magnet bearing device and permanent magnet rotating device
JP3663475B2 (en) Bearing device
JPH0681845A (en) Supercondctive bearing device
JPH0681843A (en) Supercondctive bearing device
JP3577559B2 (en) Flywheel equipment
JPH0681841A (en) Bearing device
JPH0681842A (en) Superconductive bearing device
JP2958598B2 (en) Power storage device
JPH04165119A (en) Superconductive bearing device
JPH06101715A (en) Bearing device
JPH076541B2 (en) Magnetic bearing device
JP3680231B2 (en) Control method for starting operation of superconducting magnetic bearing device
JP3622041B2 (en) Superconducting bearing device
Nagaya et al. Pulse motor with high-temperature superconducting levitation
JPH0886703A (en) Rotational loss measuring device of superconducting bearing part
JP2003329038A (en) Superconducting bearing device and power storage device

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20010626