JPH08298745A - Flywheel device - Google Patents

Flywheel device

Info

Publication number
JPH08298745A
JPH08298745A JP7101840A JP10184095A JPH08298745A JP H08298745 A JPH08298745 A JP H08298745A JP 7101840 A JP7101840 A JP 7101840A JP 10184095 A JP10184095 A JP 10184095A JP H08298745 A JPH08298745 A JP H08298745A
Authority
JP
Japan
Prior art keywords
rotating body
bearing
flywheel
permanent magnet
radial
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7101840A
Other languages
Japanese (ja)
Other versions
JP3551537B2 (en
Inventor
Ryoichi Takahata
良一 高畑
Hirotomo Kamiyama
拓知 上山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Koyo Seiko Co Ltd
Original Assignee
Koyo Seiko Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Koyo Seiko Co Ltd filed Critical Koyo Seiko Co Ltd
Priority to JP10184095A priority Critical patent/JP3551537B2/en
Publication of JPH08298745A publication Critical patent/JPH08298745A/en
Application granted granted Critical
Publication of JP3551537B2 publication Critical patent/JP3551537B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C32/00Bearings not otherwise provided for
    • F16C32/04Bearings not otherwise provided for using magnetic or electric supporting means
    • F16C32/0406Magnetic bearings
    • F16C32/044Active magnetic bearings
    • F16C32/0474Active magnetic bearings for rotary movement
    • F16C32/0476Active magnetic bearings for rotary movement with active support of one degree of freedom, e.g. axial magnetic bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C32/00Bearings not otherwise provided for
    • F16C32/04Bearings not otherwise provided for using magnetic or electric supporting means
    • F16C32/0406Magnetic bearings
    • F16C32/0408Passive magnetic bearings
    • F16C32/041Passive magnetic bearings with permanent magnets on one part attracting the other part
    • F16C32/0417Passive magnetic bearings with permanent magnets on one part attracting the other part for axial load mainly
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C32/00Bearings not otherwise provided for
    • F16C32/04Bearings not otherwise provided for using magnetic or electric supporting means
    • F16C32/0406Magnetic bearings
    • F16C32/0408Passive magnetic bearings
    • F16C32/0436Passive magnetic bearings with a conductor on one part movable with respect to a magnetic field, e.g. a body of copper on one part and a permanent magnet on the other part
    • F16C32/0438Passive magnetic bearings with a conductor on one part movable with respect to a magnetic field, e.g. a body of copper on one part and a permanent magnet on the other part with a superconducting body, e.g. a body made of high temperature superconducting material such as YBaCuO
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2300/00Application independent of particular apparatuses
    • F16C2300/40Application independent of particular apparatuses related to environment, i.e. operating conditions
    • F16C2300/62Application independent of particular apparatuses related to environment, i.e. operating conditions low pressure, e.g. elements operating under vacuum conditions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2361/00Apparatus or articles in engineering in general
    • F16C2361/55Flywheel systems
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/16Mechanical energy storage, e.g. flywheels or pressurised fluids

Abstract

PURPOSE: To obtain a flywheel device which prevents the structure of a bearing from becoming complicated and the bearing from becoming large-sized, in which the force- fitting and fixing operation of a ring-shaped member is simplified and in which the accuracy of the position control in the radial direction of a rotating body is enhanced. CONSTITUTION: A flywheel device is provided with a vertical fixed axis 2 and with a vertical cylindrical rotating body 3 the upper end of which is opened, the lower end of which is closed and which is arranged around the fixed axis 2 in such a way that it can be moved and turned in the axial direction and the radial direction with reference to the fixed axis 2. A flywheel 4 is installed so as to be fixed around the opening end part of the rotating body 3. The flywheel 4 is formed in such a way that a ring-shaped reinforcement member 5 is force-fitted and fixed around an outward flange 3a at the opening end part of the rotating body 3. An axial magnetic bearing 6, a permanent magnet bearing 7 and a superconducting bearing 8 which support the rotating body 3 in a noncontact manner in the axial direction with reference to the fixed axis 2 and radial magnetic bearings 9, 10 which support the rotating body in a noncontact manner in the radial direction are installed. Any of the radial magnetic bearings 9, 10 is endowed with an electrically-driven driving function.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、余剰電力をフライホ
イールの回転運動エネルギに変換して貯蔵する電力貯蔵
装置などに使用されるフライホイール装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a flywheel device used for an electric power storage device for converting surplus electric power into rotational kinetic energy of a flywheel and storing it.

【0002】[0002]

【従来の技術と発明が解決しようとする課題】この種フ
ライホイール装置として、従来、固定部に対してアキシ
アル方向およびラジアル方向の移動ならびに回転ができ
るように配置されかつ垂直軸を中心に回転する中実状回
転軸と、回転軸の一端部の周囲に固定状に設けられたフ
ライホイールと、回転軸を固定部に対してアキシアル方
向およびラジアル方向に非接触支持する非接触型軸受
と、回転軸を回転駆動する駆動源とを備えており、フラ
イホイールが、回転軸の一端部の周囲に環状部材を圧入
固定することにより形成されているものが知られてい
る。
2. Description of the Related Art As a flywheel device of this type, conventionally, it is arranged so as to be movable and rotatable in the axial direction and the radial direction with respect to a fixed portion, and rotates about a vertical axis. A solid rotary shaft; a flywheel fixedly provided around one end of the rotary shaft; a non-contact bearing for supporting the rotary shaft in a non-contact manner with respect to the fixed part in the axial direction and the radial direction; It is known that a flywheel is formed by press-fitting and fixing an annular member around one end of a rotary shaft.

【0003】しかしながら、このフライホイール装置で
は、電力貯蔵効率を向上させる目的で、たとえば直径1
000mm以上の大型のフライホイールを用いた場合に
は、固有振動数を低下させないために回転軸の外径を大
きくする必要があり、回転軸の重量が大きくなる。その
結果、回転軸を固定部に対してアキシアル方向に安定的
に非接触支持するには、アキシアル方向に非接触支持す
る軸受の剛性および負荷容量を大きくしなければならな
い。したがって、この軸受の構成が複雑になるとともに
大型化するという問題がある。また、このフライホイー
ル装置において、回転軸を高速回転させた場合に、環状
部材が遠心力により膨張するので、環状部材と回転軸と
の間に隙間が発生し、フライホイールに振れやがたつき
が生じるという問題がある。これを防止するためには、
しめ代を大きくする必要があるが、その場合、回転軸が
中実であるために環状部材の圧入固定作業が極めて困難
であるという問題がある。
However, in this flywheel device, in order to improve the power storage efficiency, for example, a diameter of 1
When a large flywheel of 000 mm or more is used, it is necessary to increase the outer diameter of the rotary shaft so as not to reduce the natural frequency, and the weight of the rotary shaft becomes large. As a result, in order to stably and non-contactly support the rotary shaft in the axial direction with respect to the fixed portion, it is necessary to increase the rigidity and load capacity of the bearing that is non-contactly and axially supported. Therefore, there is a problem that the structure of this bearing becomes complicated and increases in size. Further, in this flywheel device, when the rotating shaft is rotated at a high speed, the annular member expands due to the centrifugal force, so that a gap is generated between the annular member and the rotating shaft, and the flywheel shakes or rattles. There is a problem that occurs. To prevent this,
It is necessary to increase the tightening margin, but in that case, there is a problem that the work of press-fitting and fixing the annular member is extremely difficult because the rotating shaft is solid.

【0004】このような問題を解決するために、垂直固
定軸と、両端が開口し、かつ固定軸に対してアキシアル
方向およびラジアル方向の移動ならびに回転ができるよ
うに固定軸の周囲に配置された垂直円筒状回転体と、回
転体の一端部の周囲に固定状に設けられたフライホイー
ルと、回転体を固定軸に対してアキシアル方向に非接触
支持する非接触型軸受と、同じくラジアル方向に非接触
支持する制御型磁気軸受と、回転体を回転駆動する駆動
源とを備えており、フライホイールが、回転体の一端部
の周囲に環状部材を圧入固定することにより形成されて
いるフライホイール装置が考えられている。
In order to solve such a problem, a vertical fixed shaft and both ends thereof are opened and arranged around the fixed shaft so as to be movable and rotated in the axial and radial directions with respect to the fixed shaft. A vertical cylindrical rotating body, a flywheel fixedly provided around one end of the rotating body, a non-contact bearing that supports the rotating body in a non-contact axial direction with respect to a fixed shaft, and also in the radial direction. A flywheel including a control type magnetic bearing for non-contact support and a drive source for rotationally driving a rotating body, wherein the flywheel is formed by press-fitting and fixing an annular member around one end of the rotating body. The device is considered.

【0005】このフライホイール装置では、回転体が両
端が開口した円筒状であるので、環状部材の圧入固定の
さいに回転体がたわみ易く、その作業を容易に行うこと
ができるが、回転体を高速回転させた場合に、回転体自
身が遠心力により膨張し、回転体のラジアル方向の位置
制御の精度が低下するという問題がある。
In this flywheel device, since the rotating body is cylindrical with both ends open, the rotating body is easily bent when the annular member is press-fitted and fixed, and the operation can be performed easily. When rotated at a high speed, the rotating body itself expands due to centrifugal force, and there is a problem in that the accuracy of position control in the radial direction of the rotating body deteriorates.

【0006】この発明の目的は、上記問題を解決したフ
ライホイール装置を提供することにある。
An object of the present invention is to provide a flywheel device that solves the above problems.

【0007】[0007]

【課題を解決するための手段】この発明によるフライホ
イール装置は、垂直固定軸と、一端が開口するとともに
他端が閉鎖され、かつ固定軸に対してアキシアル方向お
よびラジアル方向の移動ならびに回転ができるように固
定軸の周囲に配置された垂直円筒状回転体と、回転体の
開口端部の周囲に固定状に設けられたフライホイール
と、回転体を固定軸に対してアキシアル方向およびラジ
アル方向に非接触支持する非接触型軸受と、回転体を回
転駆動する駆動源とを備えており、フライホイールが、
回転体の開口端部の周囲に環状部材を圧入固定すること
により形成されているものである。
A flywheel device according to the present invention has a vertical fixed shaft, one end of which is open and the other end of which is closed, and the flywheel device can move and rotate in the axial and radial directions with respect to the fixed shaft. The vertical cylindrical rotating body arranged around the fixed shaft, the flywheel fixedly arranged around the open end of the rotating body, and the rotating body in the axial and radial directions with respect to the fixed shaft. A non-contact bearing for non-contact support and a drive source for rotationally driving the rotating body are provided, and the flywheel is
It is formed by press-fitting and fixing an annular member around the open end of the rotating body.

【0008】[0008]

【作用】回転体が、一端が開口するとともに他端が閉鎖
された垂直円筒状であるので、回転体の重量が、従来装
置の中実の回転軸に比べて小さくなる。したがって、回
転軸を固定部に対してアキシアル方向に非接触支持する
軸受の剛性および負荷容量を、従来装置の軸受に比べて
小さくできる。
Since the rotating body is a vertical cylinder having one end open and the other end closed, the weight of the rotating body is smaller than that of the solid rotating shaft of the conventional device. Therefore, the rigidity and load capacity of the bearing that supports the rotary shaft in a non-contact manner with respect to the fixed portion in the axial direction can be made smaller than the bearing of the conventional device.

【0009】また、回転体が、一端が開口するとともに
他端が閉鎖された垂直円筒状であり、フライホイール
が、回転体の開口端部の周囲に環状部材を圧入固定する
ことにより形成されているので、環状部材の圧入固定作
業時に回転体をたわませることが簡単になり、その結果
圧入固定作業を容易に行うことができる。
The rotary body is a vertical cylinder having one end open and the other end closed, and a flywheel is formed by press-fitting and fixing an annular member around the open end of the rotary body. Therefore, it becomes easy to bend the rotary member during the press-fitting and fixing work of the annular member, and as a result, the press-fitting and fixing work can be easily performed.

【0010】さらに、回転体が、一端が開口するととも
に他端が閉鎖された垂直円筒状であるので、回転体を駆
動源により高速回転させた場合にも、回転体が遠心力に
より膨張することが防止される。
Further, since the rotating body has a vertical cylindrical shape with one end open and the other end closed, the rotating body expands due to centrifugal force even when the rotating body is rotated at a high speed by the drive source. Is prevented.

【0011】[0011]

【実施例】以下、この発明の実施例を、図面を参照して
説明する。
Embodiments of the present invention will be described below with reference to the drawings.

【0012】図1はフライホイール装置を適用した電力
貯蔵装置の全体構成を概略的に示しており、この電力貯
蔵装置は、真空チャンバ(1) と、真空チャンバ(1) の頂
壁(1a)に垂下状に固定された垂直固定軸(2) と、上端が
開口するとともに下端が閉鎖され、かつ固定軸(2) に対
してアキシアル方向およびラジアル方向の移動ならびに
回転ができるように固定軸(2) の周囲に配置された垂直
円筒状回転体(3) と、回転体(3) の開口端部の周囲に固
定状に設けられたフライホイール(4) とを備えている。
FIG. 1 schematically shows the overall structure of a power storage device to which a flywheel device is applied. This power storage device includes a vacuum chamber (1) and a top wall (1a) of the vacuum chamber (1). A vertical fixed shaft (2), which is fixed to the fixed shaft (2), and an upper end that is open and a lower end that is closed, and a fixed shaft (2) that is movable and rotatable in the axial and radial directions with respect to the fixed shaft (2). It has a vertical cylindrical rotating body (3) arranged around 2) and a flywheel (4) fixedly provided around the open end of the rotating body (3).

【0013】垂直固定軸(2) は、アルミニウム合金、非
磁性ステンレス鋼、銅合金などの非磁性体により形成さ
れたものであり、その上端に外向きフランジ(2a)が一体
に形成されている。回転体(3) は、アルミニウム合金、
非磁性ステンレス鋼、銅合金などの非磁性体により形成
されたものである。フライホイール(4) は、回転体(3)
の上端に一体に形成された外向きフランジ(3a)と、外向
きフランジ(3a)の外周に圧入固定されたCFRP(複合
繊維強化プラスチック)製の環状補強部材(環状部材)
(5) とよりなる。
The vertical fixed shaft (2) is made of a non-magnetic material such as aluminum alloy, non-magnetic stainless steel, copper alloy or the like, and an outward flange (2a) is integrally formed on the upper end thereof. . The rotating body (3) is made of aluminum alloy,
It is formed of a non-magnetic material such as non-magnetic stainless steel or copper alloy. Flywheel (4) is a rotating body (3)
Outer flange (3a) integrally formed at the upper end of the ring, and CFRP (composite fiber reinforced plastic) annular reinforcing member (annular member) press-fitted and fixed to the outer periphery of the outward flange (3a)
It consists of (5).

【0014】垂直固定軸(2) の外向きフランジ(2a)の下
面と、回転体(3) の外向きフランジ(3a)の上面との間に
制御型アキシアル磁気軸受(6) が設けられ、垂直固定軸
(2)の下面と回転体(3) の下端閉鎖壁(3b)の上面との間
に、磁気吸引力により回転体(3) を上向きに付勢する永
久磁石軸受(7) が設けられ、回転体(3) の下端閉鎖壁(3
b)の下面と真空チャンバ(1) の底壁(1b)上面との間に磁
気反発力により回転体(3) を上向きに付勢する超電導軸
受(8) が設けられ、垂直固定軸(2) の周面と回転体(3)
の周壁内周面との間に、回転体(3) の互いに直交する2
つのラジアル方向の位置を制御する上下2組の制御型ラ
ジアル磁気軸受(9)(10) が設けられている。
A control type axial magnetic bearing (6) is provided between the lower surface of the outward flange (2a) of the vertical fixed shaft (2) and the upper surface of the outward flange (3a) of the rotating body (3). Vertical fixed axis
A permanent magnet bearing (7) is provided between the lower surface of (2) and the upper surface of the lower end closing wall (3b) of the rotating body (3) to urge the rotating body (3) upward by a magnetic attraction force. Lower end closing wall (3
A superconducting bearing (8) is provided between the lower surface of b) and the upper surface of the bottom wall (1b) of the vacuum chamber (1), and the superconducting bearing (8) biases the rotating body (3) upward by magnetic repulsion force. ) Peripheral surface and rotating body (3)
Between the inner peripheral surface of the peripheral wall of
Two sets of upper and lower control type radial magnetic bearings (9) (10) for controlling the position in one radial direction are provided.

【0015】制御型アキシアル磁気軸受(6) は、垂直固
定軸(2) の外向きフランジ(2a)の下面に垂直固定軸(2)
と同心状に設けられかつ回転体(3) をアキシアル方向
(Z軸方向)の上側から吸引して同方向の回転体(3) の
位置を制御するための環状電磁石部(11)と、電磁石部(1
1)に対して上下方向に対向するように、回転体(3) の外
向きフランジ(3a)の上面に設けられた環状強磁性体(12)
とを備えている。垂直固定軸(2) の外向きフランジ(2a)
の下面に、環状凹溝(13)が固定軸(2) と同心状に形成さ
れており、環状凹溝(13)内に、環状電磁石(14)、ならび
に電磁石(14)の内周面、上面、外周面および下面の外周
側部分を覆うヨーク部材(15)が嵌められて固定されるこ
とにより電磁石部(11)が構成されており、ヨーク部材(1
5)の両側縁部にそれぞれ環状の下方突出部(15a) が一体
に形成されている。強磁性体(12)の上面には、ヨーク部
材(15)の2つの下方突出部(15a) と対向するように、2
つの環状上方突出部(12a) が一体に形成されている。な
お、図示は省略したが、アキシアル磁気軸受(6) は、回
転体(3) のZ軸方向の変位を検出するための変位センサ
を備えており、電磁石(14)および変位センサが図示しな
い磁気軸受制御装置に接続されている。そして、磁気軸
受制御装置により、変位センサの出力に基いて電磁石(1
4)の電流値すなわち吸引力が制御され、その結果回転体
(3) のアキシアル方向の位置が制御されるようになって
いる。なお、アキシアル磁気軸受(6) およびその制御装
置は公知のものであるから、詳細な説明は省略する。
The control type axial magnetic bearing (6) has a vertical fixed shaft (2) on the lower surface of the outward facing flange (2a) of the vertical fixed shaft (2).
An annular electromagnet section (11) concentrically provided for sucking the rotating body (3) from the upper side in the axial direction (Z-axis direction) to control the position of the rotating body (3) in the same direction; Department (1
An annular ferromagnetic body (12) provided on the upper surface of the outward flange (3a) of the rotating body (3) so as to face the vertical direction with respect to 1).
It has and. Outer flange (2a) of vertical fixed axis (2)
An annular groove (13) is formed concentrically with the fixed shaft (2) on the lower surface of the annular groove (13), and the annular electromagnet (14), and the inner peripheral surface of the electromagnet (14), An electromagnet portion (11) is configured by fitting and fixing a yoke member (15) that covers the outer peripheral portion of the upper surface, the outer peripheral surface, and the lower surface.
Annular downward protrusions (15a) are integrally formed on both side edges of (5). On the upper surface of the ferromagnetic body (12), make sure that the two downward protrusions (15a) of the yoke member (15) face each other.
Two annular upper protrusions (12a) are integrally formed. Although not shown, the axial magnetic bearing (6) is equipped with a displacement sensor for detecting the displacement of the rotating body (3) in the Z-axis direction, and the electromagnet (14) and the displacement sensor are not shown in the figure. It is connected to the bearing controller. Then, the magnetic bearing controller controls the electromagnet (1
The current value of 4), that is, the attraction force is controlled, and as a result, the rotating body
The position of (3) in the axial direction is controlled. Since the axial magnetic bearing (6) and its control device are publicly known, detailed description will be omitted.

【0016】永久磁石軸受(7) は、垂直固定軸(2) の下
面に設けられた固定永久磁石部(16)と、回転体(3) の下
端閉鎖壁(3b)の上面に設けられた回転永久磁石部(17)と
よりなる。固定軸(2) の下面の中心部に円筒状穴(18)が
形成されるとともに、その周囲に環状凹溝(19)が固定軸
(2) の軸心と同心状に形成され、円筒状穴(18)内に円柱
状固定永久磁石(20)が嵌められて固定されるとともに、
環状凹溝(19)内に環状固定永久磁石(21)が嵌められて固
定されることにより、固定永久磁石部(16)が構成されて
いる。両固定永久磁石(20)(21)は、それぞれその上下両
端部が逆の極性の磁気を帯びているとともに、円柱状固
定永久磁石(20)と環状固定永久磁石(21)の上下方向の両
端部が逆の極性の磁気を帯びている。たとえば、円柱状
固定永久磁石(20)の上端部はN極、下端部はS極の磁気
を帯びており、環状固定永久磁石(21)の上端部はS極、
下端部はN極の磁気を帯びている。回転体(3) の下端閉
鎖壁(3b)の上面の中心部に円筒状穴(22)が形成されると
ともに、その周囲に環状凹溝(23)が回転体(3) の軸心と
同心状に形成され、円筒状穴(22)内に円柱状回転永久磁
石(24)が嵌められて固定されるとともに、環状凹溝(23)
内に環状回転永久磁石(25)が嵌められて固定されること
により、回転永久磁石部(17)が構成されている。各回転
永久磁石(24)(25)は、各固定永久磁石(20)(21)と対向す
るように配置されている。両回転永久磁石(24)(25)は、
それぞれその上下両端部が逆の極性の磁気を帯びている
とともに、円柱状固定永久磁石(24)と環状回転永久磁石
(25)の上下方向の両端部が逆の極性の磁気を帯びてい
る。また、各回転永久磁石(24)(25)と各固定永久磁石(2
0)(21)の互いに対向する端部は逆の極性の磁気を帯びて
いる。たとえば、円柱状回転永久磁石(24)の上端部はN
極、下端部はS極の磁気を帯びており、環状回転永久磁
石(25)の上端部はS極、下端部はN極の磁気を帯びてい
る。
The permanent magnet bearing (7) is provided on the fixed permanent magnet portion (16) provided on the lower surface of the vertical fixed shaft (2) and on the upper surface of the lower end closing wall (3b) of the rotating body (3). It consists of a rotating permanent magnet part (17). A cylindrical hole (18) is formed in the center of the lower surface of the fixed shaft (2), and an annular groove (19) is formed around it.
It is formed concentrically with the axis of (2), and the cylindrical fixed permanent magnet (20) is fitted and fixed in the cylindrical hole (18),
The fixed permanent magnet portion (16) is configured by fitting and fixing the fixed annular magnet (21) in the annular groove (19). Both fixed permanent magnets (20) and (21) have magnets of opposite polarities at their upper and lower ends, respectively, and the vertical fixed ends of the cylindrical fixed permanent magnet (20) and the annular fixed permanent magnet (21). The part is magnetized with the opposite polarity. For example, the upper end of the columnar fixed permanent magnet (20) has an N pole and the lower end has an S pole, and the upper end of the annular fixed permanent magnet (21) has an S pole.
The lower end has an N-pole magnetism. A cylindrical hole (22) is formed in the center of the upper surface of the lower end closing wall (3b) of the rotating body (3), and an annular groove (23) is concentric with the axial center of the rotating body (3) around it. The cylindrical rotary permanent magnet (24) is fitted and fixed in the cylindrical hole (22), and the annular groove (23) is formed.
The rotary permanent magnet portion (17) is configured by fitting and fixing the annular rotary permanent magnet (25) therein. The rotating permanent magnets (24) (25) are arranged so as to face the fixed permanent magnets (20) (21). Both rotating permanent magnets (24) (25)
Both the upper and lower ends have magnetism of opposite polarities, and the columnar fixed permanent magnet (24) and the annular rotating permanent magnet.
Both ends of (25) in the vertical direction are magnetized with opposite polarities. In addition, each rotating permanent magnet (24) (25) and each fixed permanent magnet (2
The opposite ends of (0) and (21) are magnetized with opposite polarities. For example, the upper end of the cylindrical rotating permanent magnet (24) is N
The pole and the lower end are magnetized as the S-pole, and the upper end of the annular rotating permanent magnet (25) is magnetized as the S-pole and the lower end is magnetized as the N-pole.

【0017】超電導軸受(8) は、回転体(3) の下端閉鎖
壁(3b)の下面に設けられた環状の永久磁石部(26)と、永
久磁石部(26)に対して上下方向に間隔をおいて対向する
ように、真空チャンバ(1) の底壁(1b)上面に設けられた
環状超電導体部(27)とよりなる。回転体(3) の下端閉鎖
壁(3b)の下面に複数の環状凹溝(28)が回転軸心と同心状
に形成され、各環状凹溝(28)内に環状の永久磁石(29)が
嵌められて固定されることにより、永久磁石部(26)が構
成されている。各永久磁石(29)は上下両端部が逆の極性
の磁気を帯び、隣り合う永久磁石(29)の上下方向の同一
端部が逆の極性の磁気を帯びている。たとえば、内側の
永久磁石(29)の上端部はS極、下端部はN極の磁気を帯
びており、外側の永久磁石(29)の上端部はN極、下端部
はS極の磁気を帯びている。超電導体部(27)は、真空チ
ャンバ(1) の底壁(1b)上面上に断熱材(30)を介して固定
された環状の冷却ケース(31)を備えている。冷却ケース
(31)は、たとえばアルミニウム合金、非磁性ステンレス
鋼、銅合金などの非磁性体からなる。冷却ケース(31)内
の空間に環状超電導体(32)が固定状に配置されている。
冷却ケース(31)は冷却流体供給管(33)および同排出管(3
4)を介して図示しない冷却装置に接続されており、この
冷却装置により、たとえば液体窒素などの冷却流体が供
給管(33)、冷却ケース(31)内の空間および排出管(34)を
介して循環させられ、これによって超電導体(32)が冷却
されるようになっている。超電導体(32)は第2種超電導
体であり、イットリウム系高温超電導体、たとえばYB
2 Cu3 7-X からなるバルクの内部に常電導体(Y
2 Ba1 Cu1 )を均一に混在させたものからなる。そ
して、超電導体(32)は、これを永久磁石(29)の磁界を受
けない離隔位置に配置した後臨界温度以下の温度に冷却
(以下、この冷却をゼロ磁場冷却という)することによ
り、反磁性を示すものである。
The superconducting bearing (8) has an annular permanent magnet portion (26) provided on the lower surface of the lower end closing wall (3b) of the rotating body (3) and a vertical direction with respect to the permanent magnet portion (26). It is composed of an annular superconductor portion (27) provided on the upper surface of the bottom wall (1b) of the vacuum chamber (1) so as to face each other with a space. A plurality of annular concave grooves (28) are formed on the lower surface of the lower end closing wall (3b) of the rotating body (3) concentrically with the rotation axis, and an annular permanent magnet (29) is formed in each annular concave groove (28). The permanent magnet portion (26) is configured by fitting and fixing the. The upper and lower end portions of each permanent magnet (29) are magnetized with opposite polarities, and the same vertical end portions of adjacent permanent magnets (29) are magnetized with opposite polarities. For example, the upper end of the inner permanent magnet (29) is magnetized with the S pole and the lower end is magnetized with the N pole, and the upper end of the outer permanent magnet (29) is magnetized with the N pole and the lower end is magnetized with the S pole. It is tinged. The superconductor part (27) includes an annular cooling case (31) fixed on the upper surface of the bottom wall (1b) of the vacuum chamber (1) via a heat insulating material (30). Cooling case
(31) is made of a non-magnetic material such as aluminum alloy, non-magnetic stainless steel or copper alloy. An annular superconductor (32) is fixedly arranged in a space inside the cooling case (31).
The cooling case (31) has a cooling fluid supply pipe (33) and an exhaust pipe (3).
4) is connected to a cooling device (not shown) through which a cooling fluid such as liquid nitrogen is supplied via the supply pipe (33), the space inside the cooling case (31) and the discharge pipe (34). The superconductor (32) is cooled by this. The superconductor (32) is a type 2 superconductor, and is a yttrium-based high temperature superconductor such as YB.
Inside the bulk made of a 2 Cu 3 O 7-X , a normal conductor (Y
2 Ba 1 Cu 1 ) is uniformly mixed. Then, the superconductor (32) is cooled to a temperature below the critical temperature (hereinafter, this cooling is referred to as zero magnetic field cooling) by arranging the superconductor (32) at a separated position where the magnetic field of the permanent magnet (29) is not received, and It exhibits magnetism.

【0018】各ラジアル磁気軸受(9)(10) は、詳細な図
示は省略したが、回転体(3) を互いに直交する2つのラ
ジアル方向(X軸およびY軸方向)の両側から吸引して
同方向の回転体(3) の位置を制御するための電磁石、な
らびに回転体(3) のX軸およびY軸方向の変位を検出す
るための変位センサを備えており、これらが図示しない
磁気軸受制御装置に接続されている。そして、磁気軸受
制御装置により、変位センサの出力に基いて電磁石の電
流値すなわち吸引力が制御され、その結果回転体(3) の
ラジアル方向の位置が制御されるようになっている。な
お、ラジアル磁気軸受(9)(10) およびその制御装置は公
知のものであるから、詳細な説明は省略する。ラジアル
磁気軸受(9)(10) の少なくとも1組は、回転体(3) の位
置制御機能の他に、回転体(3) を回転駆動する電動駆動
機能を有するものである。電動駆動機能を有する制御型
ラジアル磁気軸受は、浮上回転モータあるいはベアリン
グレス・モータなどとして公知のものであるから、詳細
な説明は省略する。
Although not shown in detail in the radial magnetic bearings (9) and (10), the rotor (3) is attracted from both sides in two radial directions (X-axis and Y-axis directions) orthogonal to each other. It is equipped with an electromagnet for controlling the position of the rotating body (3) in the same direction, and a displacement sensor for detecting the displacement of the rotating body (3) in the X-axis and Y-axis directions. It is connected to the control device. Then, the magnetic bearing control device controls the current value of the electromagnet, that is, the attractive force, based on the output of the displacement sensor, and as a result, the position of the rotating body (3) in the radial direction is controlled. Since the radial magnetic bearings (9) and (10) and their control devices are publicly known, detailed description is omitted. At least one set of the radial magnetic bearings (9) (10) has an electric drive function for rotationally driving the rotating body (3) in addition to the position control function of the rotating body (3). A control type radial magnetic bearing having an electric drive function is known as a levitating rotary motor or a bearingless motor, and therefore detailed description thereof will be omitted.

【0019】上記の電力貯蔵装置には、次のように、運
転前に真空チャンバ(1) の固定軸(2) と回転体(3) の相
対位置を設定するための初期位置決め装置(35)が設けら
れている。
In the above power storage device, the initial positioning device (35) for setting the relative position of the fixed shaft (2) of the vacuum chamber (1) and the rotating body (3) before operation is as follows. Is provided.

【0020】回転体(3) の下方に、公知の適当な手段に
より昇降させられる昇降部材(36)が、真空チャンバ(1)
の底壁(1b)を貫通して配置されている。昇降部材(36)の
上面に凹球面状凹所(37)が形成されている。また、回転
体(3) の下端閉鎖壁(3b)の下面の中心部に、凹所(37)に
嵌まる半球面体(38)が下方突出状にかつ固定状に設けら
れている。そして、昇降部材(36)を上昇させると、半球
面体(38)が凹所(37)内に嵌まった状態で停止状態の回転
体(3) を持ち上げられ、回転体(3) のアキシアル方向の
初期位置決めが行われる。なお、昇降部材(36)は、電力
貯蔵装置の運転状態においては、半球面体(38)が凹所(3
7)の内面と接触しない下降位置にある。
Below the rotating body (3), an elevating member (36) which can be moved up and down by a known appropriate means is installed in the vacuum chamber (1).
Is arranged so as to penetrate the bottom wall (1b) of the. A concave spherical recess (37) is formed on the upper surface of the elevating member (36). Further, a hemispherical body (38) fitted in the recess (37) is provided in a downwardly projecting and fixed manner at the center of the lower surface of the lower end closing wall (3b) of the rotating body (3). Then, when the elevating member (36) is raised, the rotating body (3) in the stopped state is lifted while the hemispherical body (38) is fitted in the recess (37), and the rotating body (3) is moved in the axial direction. The initial positioning of is performed. It should be noted that the lifting member (36) has a hemispherical body (38) with a recess (3
It is in the lowered position where it does not contact the inner surface of 7).

【0021】初期位置決め装置(35)の昇降部材(36)上面
の凹所(37)と、半球面体(38)とにより、動圧軸受が形成
されており、これが非常時に回転体(3) の下端を非接触
支持するタッチダウン軸受(39)となっている。また、垂
直固定軸(2) の上部に、非常時に回転体(3) の上部を支
持する転がり軸受からなるタッチダウン軸受(40)が設け
られている。
A dynamic pressure bearing is formed by the recess (37) on the upper surface of the lifting member (36) of the initial positioning device (35) and the hemispherical body (38). It is a touchdown bearing (39) that supports the lower end in a non-contact manner. Further, a touchdown bearing (40), which is a rolling bearing, is provided above the vertical fixed shaft (2) to support the upper portion of the rotating body (3) in an emergency.

【0022】回転体(3) の回転を開始するさいには、ま
ず真空チャンバ(1) 内を真空状態にし、初期位置決め装
置(35)により、停止状態の回転体(3) を所定の位置まで
持ち上げて、回転体(3) のアキシアル方向の初期位置決
めを行う。このとき、アキシアル磁気軸受(6) の電磁石
部(11)のヨーク部材(15)における下方突出部(15a) と強
磁性体(12)の上方突出部(12a) とのアキシアル方向の間
隔が、ヨーク部材(15)の下方突出部(15a) 間のラジアル
方向の間隔よりも小さくなるようにする。また、超電導
軸受(8) の超電導体(32)が、永久磁石(29)の磁界を受け
ず、その磁束が侵入しないような位置にくるようにす
る。ついで、上下のラジアル磁気軸受(9)(10) の位置制
御機能だけを作動させることによって、回転体(3) のラ
ジアル方向の初期位置決めを行う。このとき、永久磁石
軸受(7) の回転永久磁石(24)(25)が固定永久磁石(20)(2
1)から上向きの吸引力を受け、これにより回転体(3) の
重量の一部が支持される。そして、アキシアル磁気軸受
(6) の電磁石(14)に通電する。すると、アキシアル磁気
軸受(6) の電磁石部(11)と強磁性体(12)との間に図1に
破線で示すような磁気回路が形成され、強磁性体(12)が
上向きの吸引力を受け、これによっても回転体(3) の重
量の一部が支持される。回転永久磁石(24)(25)が受ける
上向きの吸引力と、強磁性体(12)が受ける上向きの吸引
力との和が、回転体(3) の重量とほぼ等しくなるように
しておく。ついで、冷却装置により超電導軸受(8) の冷
却ケース(31)内に冷却流体を循環させ、超電導体(32)を
臨界温度以下の温度に冷却して超電導状態にし、この状
態で保持する。すなわち、超電導体(32)に反磁性状態を
出現させる。ついで、昇降部材(36)を下降させると、永
久磁石(29)と超電導体(32)との間に生じる磁気反発力に
より、回転体(3) は上向きに付勢される。したがって、
回転体(3) は、極めて安定した状態でアキシアル方向お
よびラジアル方向に支持されることになる。このように
アキシアル磁気軸受(6) 、永久磁石軸受(7) 、超電導軸
受(8) およびラジアル磁気軸受(9)(10) によって回転体
(3) が支持されたならば、昇降部材(36)をさらに下降さ
せて初期位置決め装置(35)による回転体(3) の支持をな
くす。これにより、回転体(3) は、アキシアル磁気軸受
(6) 、永久磁石軸受(7) 、超電導軸受(8) およびラジア
ル磁気軸受(9)(10) によって非接触支持されたことにな
る。回転体(3) が非接触支持されたならば、いずれかの
ラジアル磁気軸受(9)(10) の電動駆動機能を作動させて
回転体(3) を回転させる。そして、回転体(3) が回転し
ている間に、電気エネルギが回転運動エネルギに変換さ
れてフライホイール(4) に貯蔵される。回転体(3) が回
転しているさいに、アキシアル磁気軸受(6) およびラジ
アル磁気軸受(9)(10) の位置制御機能により、回転体
(3) にアキシアル方向およびラジアル方向の振れが発生
するのが防止される。
When starting the rotation of the rotating body (3), first, the vacuum chamber (1) is evacuated, and the rotating body (3) in the stopped state is moved to a predetermined position by the initial positioning device (35). Lift and perform initial positioning of the rotating body (3) in the axial direction. At this time, the axial distance between the downward protrusion (15a) of the yoke member (15) of the electromagnet portion (11) of the axial magnetic bearing (6) and the upward protrusion (12a) of the ferromagnetic body (12) is The distance between the lower protrusions (15a) of the yoke members (15) in the radial direction is made smaller. Further, the superconductor (32) of the superconducting bearing (8) is positioned so as not to receive the magnetic field of the permanent magnet (29) and its magnetic flux does not enter. Then, only the position control function of the upper and lower radial magnetic bearings (9) (10) is operated to perform the initial radial positioning of the rotating body (3). At this time, the rotating permanent magnets (24) (25) of the permanent magnet bearing (7) are fixed permanent magnets (20) (2
An upward suction force is received from 1), which supports a part of the weight of the rotating body (3). And axial magnetic bearing
Energize the electromagnet (14) of (6). Then, a magnetic circuit as shown by a broken line in FIG. 1 is formed between the electromagnet part (11) of the axial magnetic bearing (6) and the ferromagnetic body (12), and the ferromagnetic body (12) attracts upward attracting force. Therefore, a part of the weight of the rotating body (3) is also supported by this. The sum of the upward attracting force received by the rotating permanent magnets (24) and (25) and the upward attracting force received by the ferromagnetic body (12) is set to be substantially equal to the weight of the rotating body (3). Next, a cooling fluid is circulated in the cooling case (31) of the superconducting bearing (8) by the cooling device to cool the superconductor (32) to a temperature below the critical temperature to bring it into a superconducting state, and maintain this state. That is, a diamagnetic state appears in the superconductor (32). Then, when the elevating member (36) is lowered, the rotating body (3) is biased upward by the magnetic repulsive force generated between the permanent magnet (29) and the superconductor (32). Therefore,
The rotating body (3) is supported in the axial direction and the radial direction in an extremely stable state. In this way, the axial magnetic bearing (6), permanent magnet bearing (7), superconducting bearing (8) and radial magnetic bearing (9) (10)
When (3) is supported, the lifting member (36) is further lowered to eliminate the support of the rotating body (3) by the initial positioning device (35). As a result, the rotating body (3) is
(6), the permanent magnet bearing (7), the superconducting bearing (8), and the radial magnetic bearing (9) (10) are non-contact supported. When the rotating body (3) is supported in a non-contact manner, the electric drive function of one of the radial magnetic bearings (9) (10) is activated to rotate the rotating body (3). Then, while the rotating body (3) is rotating, electric energy is converted into rotational kinetic energy and stored in the flywheel (4). While the rotating body (3) is rotating, the position control function of the axial magnetic bearing (6) and radial magnetic bearings (9) (10) allows the rotating body to rotate.
(3) It is possible to prevent axial and radial runout.

【0023】回転体(3) が回転しているときに停電が発
生した場合、いずれかのラジアル磁気軸受(9)(10) の電
動駆動機能は停止するが、フライホイール(4) により、
回転体(3) はわずかに減速するものの継続して回転させ
られる。その結果、電動駆動機能を有するラジアル磁気
軸受(9)(10) が発電機として作動し、フライホイール
(4) に貯蔵されていた回転運動エネルギが電気エネルギ
として取り出され、図示しない蓄電池に蓄えられる。蓄
電池に蓄えられた電力は、図示しない外部の電力消費財
および超電導軸受(8) の冷却装置に送られ、電力消費財
および超電導軸受(8) が作動を継続する。蓄電池に蓄え
られた電力の一部はアキシアル磁気軸受(6) およびラジ
アル磁気軸受(9)(10) の磁気軸受制御装置に送られ、こ
れによりこれらの磁気軸受(6)(9)(10)の位置制御機能が
作動させられる。そして、フライホイール(4) に蓄えら
れていた回転運動エネルギが減少して回転体(3) が停止
するまでの間、回転体(3) はアキシアル磁気軸受(6) 、
永久磁石軸受(7) 、超電導軸受(8) およびラジアル磁気
軸受(9)(10) によって非接触支持される。しかも、アキ
シアル磁気軸受(6) およびラジアル磁気軸受(9)(10) の
位置制御機能により、回転体(3) にアキシアル方向およ
びラジアル方向の振れが発生するのが防止される。
When a power failure occurs while the rotating body (3) is rotating, the electric drive function of any of the radial magnetic bearings (9) (10) is stopped, but the flywheel (4) causes
The rotating body (3) is continuously decelerated although it is slightly decelerated. As a result, the radial magnetic bearings (9) (10) with electric drive function as generators, and flywheel
The rotational kinetic energy stored in (4) is taken out as electric energy and stored in a storage battery (not shown). The electric power stored in the storage battery is sent to an external power consumer goods and superconducting bearing (8) cooling device (not shown), and the power consumer goods and the superconducting bearing (8) continue to operate. A part of the electric power stored in the storage battery is sent to the magnetic bearing control device of the axial magnetic bearings (6) and radial magnetic bearings (9) (10), which causes these magnetic bearings (6) (9) (10). The position control function of is activated. Then, until the rotational kinetic energy stored in the flywheel (4) decreases and the rotating body (3) stops, the rotating body (3) keeps the axial magnetic bearing (6),
Non-contact supported by permanent magnet bearings (7), superconducting bearings (8) and radial magnetic bearings (9) (10). Moreover, the position control function of the axial magnetic bearing (6) and the radial magnetic bearings (9) (10) prevents the rotor (3) from swinging in the axial direction and the radial direction.

【0024】上記実施例においては、アキシアル磁気軸
受(6) およびラジアル磁気軸受(9)(10) は、それぞれ変
位センサを備えた磁気軸受であるが、これに代えて、公
知のセンサレス磁気軸受を用いることもできる。この場
合、センサ回路の故障による安全性の低下が防止され
る。
In the above embodiment, the axial magnetic bearing (6) and the radial magnetic bearings (9) and (10) are magnetic bearings each having a displacement sensor. Instead of this, a known sensorless magnetic bearing is used. It can also be used. In this case, it is possible to prevent a decrease in safety due to a failure of the sensor circuit.

【0025】また、上記実施例においては、ラジアル磁
気軸受(9)(10) の少なくとも1組は、回転体(3) の位置
制御機能の他に、回転体(3) を回転駆動する電動駆動機
能を有するものであるが、これに限るものではなく、い
ずれのラジアル磁気軸受(9)(10) も位置制御機能だけを
有していてもよい。この場合、固定軸(2) と回転体(3)
との間に、高周波電動機などの回転駆動源が設けられ
る。
In the above embodiment, at least one set of radial magnetic bearings (9) (10) has an electric drive for rotating the rotating body (3) in addition to the position control function of the rotating body (3). Although it has a function, the radial magnetic bearings (9) and (10) are not limited to this, and may have only the position control function. In this case, the fixed shaft (2) and the rotating body (3)
A rotary drive source such as a high-frequency motor is provided between and.

【0026】また、上記実施例においては、超電導軸受
(8) の超電導体(32)として第2種超電導体が用いられ、
これをゼロ磁場冷却したさいの磁気反発力により、永久
磁石(29)が上向きに付勢されるようになっているが、第
2種超電導体を用いたとしても、永久磁石(29)から発生
する磁束を、臨界温度以上の温度で超電導体(32)の内部
に侵入させた後、超電導体(32)を臨界温度以下の温度に
冷却(磁場冷却)して拘束し、いわゆるピン止め力によ
り生じる磁気反発力によって永久磁石(29)が上向きに付
勢されるようにしてもよい。さらに、超電導軸受(8) の
超電導体として、第2種超電導体の変わりに、水銀、鉛
などからなる完全反磁性を示す第1種超電導体を用いて
もよい。この場合、超電導体のマイスナー効果による磁
気反発力によって、永久磁石が超電導体により上向きに
付勢される。
In the above embodiment, the superconducting bearing is also used.
A type 2 superconductor is used as the superconductor (32) of (8),
The permanent magnet (29) is urged upward due to the magnetic repulsive force when it is cooled to zero magnetic field. However, even if a type 2 superconductor is used, it is generated from the permanent magnet (29). The magnetic flux to enter inside the superconductor (32) at a temperature above the critical temperature, and then cool (magnetic field cooling) the superconductor (32) to a temperature below the critical temperature and confine it by so-called pinning force. The permanent magnet (29) may be biased upward by the generated magnetic repulsive force. Further, as the superconductor of the superconducting bearing (8), a type 1 superconductor made of mercury, lead, or the like and exhibiting complete diamagnetism may be used instead of the type 2 superconductor. In this case, the permanent magnet is biased upward by the superconductor due to the magnetic repulsive force due to the Meissner effect of the superconductor.

【0027】[0027]

【発明の効果】この発明のフライホイール装置によれ
ば、上述のように、回転体の重量が、従来装置の中実の
回転軸に比べて小さくなるので、回転体を固定部に対し
てアキシアル方向に非接触支持する軸受の剛性および負
荷容量を、従来装置の軸受に比べて小さくできる。した
がって、軸受の構造が複雑になったり、軸受が大型化す
るのを防止することができる。
According to the flywheel device of the present invention, as described above, since the weight of the rotating body is smaller than that of the solid rotating shaft of the conventional device, the rotating body is axially attached to the fixed portion. The rigidity and load capacity of the bearing that is supported in a non-contact direction can be made smaller than that of the bearing of the conventional device. Therefore, it is possible to prevent the bearing structure from becoming complicated and the bearing from increasing in size.

【0028】また、回転体が、一端が開口するとともに
他端が閉鎖された垂直円筒状であり、フライホイール
が、回転体の開口端部の周囲に環状部材を圧入固定する
ことにより形成されているので、環状部材の圧入固定作
業時に回転体をたわませることが簡単になり、その結果
圧入固定作業を容易に行うことができる。
The rotary body is a vertical cylinder having one end open and the other end closed, and the flywheel is formed by press-fitting and fixing an annular member around the open end of the rotary body. Therefore, it becomes easy to bend the rotary member during the press-fitting and fixing work of the annular member, and as a result, the press-fitting and fixing work can be easily performed.

【0029】さらに、回転体が、一端が開口するととも
に他端が閉鎖された垂直円筒状であるので、回転体を駆
動源により高速回転させた場合にも、回転体が遠心力に
より膨張することが防止される。したがって、回転体の
ラジアル方向の位置制御の精度が向上する。
Further, since the rotating body has a vertical cylindrical shape with one end open and the other end closed, the rotating body expands due to centrifugal force even when the rotating body is rotated at a high speed by the drive source. Is prevented. Therefore, the accuracy of the radial position control of the rotating body is improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の実施例を示すフライホイール装置を
適用した電力貯蔵装置の概略縦断面図である。
FIG. 1 is a schematic vertical sectional view of a power storage device to which a flywheel device according to an embodiment of the present invention is applied.

【符号の説明】[Explanation of symbols]

(2) 垂直固定軸 (3) 垂直円筒状回転体 (3b) 下端閉鎖壁 (4) フライホイール (5) 環状補強部材(環状部材) (6) アキシアル磁気軸受 (7) 永久磁石軸受 (8) 超電導軸受 (9) ラジアル磁気軸受 (10) ラジアル磁気軸受 (2) Vertical fixed shaft (3) Vertical cylindrical rotor (3b) Bottom closed wall (4) Flywheel (5) Annular reinforcing member (annular member) (6) Axial magnetic bearing (7) Permanent magnet bearing (8) Superconducting bearing (9) Radial magnetic bearing (10) Radial magnetic bearing

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 垂直固定軸と、一端が開口するとともに
他端が閉鎖され、かつ固定軸に対してアキシアル方向お
よびラジアル方向の移動ならびに回転ができるように固
定軸の周囲に配置された垂直円筒状回転体と、回転体の
開口端部の周囲に固定状に設けられたフライホイール
と、回転体を固定軸に対してアキシアル方向およびラジ
アル方向に非接触支持する非接触型軸受と、回転体を回
転駆動する駆動源とを備えており、フライホイールが、
回転体の開口端部の周囲に環状部材を圧入固定すること
により形成されているフライホイール装置。
1. A vertical fixed shaft and a vertical cylinder which is open at one end and closed at the other end and is arranged around the fixed shaft so as to be movable and rotatable in the axial direction and the radial direction with respect to the fixed shaft. -Shaped rotating body, a flywheel fixedly provided around the opening end of the rotating body, a non-contact type bearing that supports the rotating body in a non-contact manner with respect to a fixed shaft in the axial direction and the radial direction, and the rotating body It has a drive source to rotate the
A flywheel device formed by press-fitting and fixing an annular member around the open end of a rotating body.
JP10184095A 1995-04-26 1995-04-26 Flywheel equipment Expired - Fee Related JP3551537B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10184095A JP3551537B2 (en) 1995-04-26 1995-04-26 Flywheel equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10184095A JP3551537B2 (en) 1995-04-26 1995-04-26 Flywheel equipment

Publications (2)

Publication Number Publication Date
JPH08298745A true JPH08298745A (en) 1996-11-12
JP3551537B2 JP3551537B2 (en) 2004-08-11

Family

ID=14311268

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10184095A Expired - Fee Related JP3551537B2 (en) 1995-04-26 1995-04-26 Flywheel equipment

Country Status (1)

Country Link
JP (1) JP3551537B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008039163A (en) * 2006-08-10 2008-02-21 Toshiba Corp Superconductivity-using support mechanism
KR20130032601A (en) * 2011-09-23 2013-04-02 한국전력공사 Emergency bearing and flywheel energy storage device using the same
JP2013213584A (en) * 2012-04-03 2013-10-17 Boeing Co:The Nested-rotor open-core flywheel
EP3486512A4 (en) * 2016-08-18 2020-03-25 Daikin Industries, Ltd. Magnetic bearing device and fluid mechanical system
CN111541335A (en) * 2020-05-27 2020-08-14 南京工业大学 Magnetic suspension flywheel energy storage device
WO2021015034A1 (en) * 2019-07-19 2021-01-28 株式会社イワキ Pump
WO2023053599A1 (en) * 2021-09-30 2023-04-06 日本電産株式会社 Rotary electric machine

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008039163A (en) * 2006-08-10 2008-02-21 Toshiba Corp Superconductivity-using support mechanism
KR20130032601A (en) * 2011-09-23 2013-04-02 한국전력공사 Emergency bearing and flywheel energy storage device using the same
JP2013213584A (en) * 2012-04-03 2013-10-17 Boeing Co:The Nested-rotor open-core flywheel
JP2018151072A (en) * 2012-04-03 2018-09-27 ザ・ボーイング・カンパニーThe Boeing Company Nested-rotor open-core flywheel
EP3486512A4 (en) * 2016-08-18 2020-03-25 Daikin Industries, Ltd. Magnetic bearing device and fluid mechanical system
WO2021015034A1 (en) * 2019-07-19 2021-01-28 株式会社イワキ Pump
CN114072586A (en) * 2019-07-19 2022-02-18 株式会社易威奇 Pump and method of operating the same
CN114072586B (en) * 2019-07-19 2023-11-03 株式会社易威奇 Pump with a pump body
CN111541335A (en) * 2020-05-27 2020-08-14 南京工业大学 Magnetic suspension flywheel energy storage device
WO2023053599A1 (en) * 2021-09-30 2023-04-06 日本電産株式会社 Rotary electric machine

Also Published As

Publication number Publication date
JP3551537B2 (en) 2004-08-11

Similar Documents

Publication Publication Date Title
EP0526903B1 (en) Bearing device
JP2999607B2 (en) Superconducting bearing device and its operation method
JPH08178011A (en) Flywheel device
JP3665878B2 (en) Bearing device and starting method thereof
JPH08298745A (en) Flywheel device
JP3206044B2 (en) Composite superconducting bearing device
JP4200775B2 (en) Flywheel power storage device
JPH08296645A (en) Magnetic bearing device
JP3663472B2 (en) Permanent magnet bearing device and permanent magnet rotating device
JP3577559B2 (en) Flywheel equipment
JP3632101B2 (en) Power storage device
JPH0681845A (en) Supercondctive bearing device
JP2003004041A (en) Fly wheel type super conductivity magnetic bearing and its system
JPH10299772A (en) Bearing device
JP3928094B2 (en) Starting method of superconducting bearing device
JP3236925B2 (en) Superconducting bearing device
JP3663470B2 (en) Superconducting bearing device
JPH08111946A (en) Superconducting flywheel device
JPH09233803A (en) Braking device for high-speed rotating equipment
JP2852157B2 (en) Flywheel generator
JPH08219158A (en) Magnetic bearing device
JP3735742B2 (en) Superconducting bearing rotation loss measurement device
JP3622041B2 (en) Superconducting bearing device
JP2958598B2 (en) Power storage device
JP3677320B2 (en) Superconducting bearing for rotating equipment and flywheel for power storage using the same

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20031226

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040323

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040419

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080514

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090514

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100514

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees